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Some properties of the operator algebra generated by Hodge's star and the exterior derivative are 
established and in particular it is shown that viewed as an algebra over its center, this algebra is 
four-dimensional. 

PACS numbers: 02.1O.Pk, Il.lO.Np 

One of the most promising recent developments in 
mathematical physics has been the discovery of the nice vec
tor bundle structure associated with gauge fields such as the 
electromagnetic field and the Yang-Mills field. In further 
developments of the theory both the exterior derivative d 
and Hodge's star * are bound to playa very important part. 
With a suitable normalization of the star, they have the fol
lowing properties: 

algebra over its center, A is a four-dimensional. For this pur
pose we define c(c for commutator) by 

d 2 = 0, (1) 

(2) 

and 

(3) 

where 1 is the identity operator. It can, therefore, be useful 
to study the purely algebraic structure of the algebra over C 
with unity generated by these two operators, or more pre
cisely the algebra A over C which is spanned by 1, d, *, (d*l", 
(*d)", (d*)nd, and *(d*l" with nEZ+ and d and * satisfying the 
above relations. Such an algebra has recently been studied by 
Plebanski. I However, as was pointed out by one of US,2 this 
study contains a mistaken identification of the center of the 
algebra. It is easy to verify that the center of the algebra is the 
polynomial ring C[k] over C generated by k (k for Kendra 
meaning center in Sanskrit) defined by 

k = d* + *d. (4) 

C[ k ] has many nice properties: it is a Euclidean ring which is 
an integral domain, that is, in other words, it is a Euclidean 
domain. In particular, C[k ] does not have any zero divisors. 

The main result of this work is a proof that viewed as an 

ai, a 2, a
" 

a 4EC[k], 
all + a 2d + a,* + a 4c = 0 

=> aid + (lI2)a, 

c = *d - d*. (5) 

We can now easily establish the following identities: 

*d = !(*d + d*) + !(*d - d*) 

= ~(kl + c), (6) 

and similarly 

and 

d* = !(kl - c), 

dc = kd= -cd, 

*c = d - *d* = 2d - d - *d* 

= 2d - (d* + *d)* = 2d - k* 

(7) 

(8) 

(9) 

We can, therefore, construct the following multiplica
tion table for the elements of A viewed as an algebra over its 
center: 

X 1 
l 1 

d d 

* * 
c c 

d 

d 

o 
~(kl + c) 

-kd 

* 
* 

~(kl - c) 

l 

c 

c 

kd 

2d -k* 

This shows that the dimension of A as an algebra over 
its center is not greater than four. We next show that this 
dimension cannot be less than four. To do this, suppose that 
for 

X(kl- c) + a 4kd = 0 
=> (lI2)a 3(kd - cd) = 0 
=> a ,kd= 0 

(multiplication on the left by d ) 
(multiplication on the right by d) 
[identity (8)] 

=> a 3 = 0 
=> all + a 2d + a 4c = 0 
=> aid + a 4kd = 0 (multiplication on the left by d) 

and 
a,d - a 4kd = 0 (multiplication on the right by d) 

=> ald=O 
and 
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and 

which with 

=> 
=> 

a 1 =O 

a 2* = 0 
a 2 = O. 

This completes the proof of our result. 
A more detailed study of the algebra is under progress. 

However, we would like to make two points. First, that since 
d is a differential operator, it is not the algebra over C which 
is going to be useful but the algebra over the ring C"'(M, q of 
analytic functions from a finite dimensional differential 
manifold M to C. Second, that though * can be normalized 
(cf. Ref. 1) so that it can have the nice property of being an 
involution, the normalizing factor for * as an operator is 
different for * in * and *d and therefore * in actual applica
tions will not have the purely algebraic character postulated 
above. 

The description of the algebra given by Plebanski I is, of 
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course, perfectly self-consistent, but the description of the 
algebra as an algebra over the center as in this work is clearly 
simpler than Plebanski's description as an algebra over a 
subcenter: for one thing, our description has a much lower 
dimension. To indicate some applications of our work, we 
wish to say that every object (operator) in Plebanski's 1 work, 
of course, belongs also to our algebra, where it has a simpler 
description. Further, Plebanski 1 in defining his extended al
gebra finds it necessary to postulate the existence of,;.1 .. 1/2 

and says something about the difficulty in giving a rigorous 
meaning to his postulate. If our description is used ,;.1- I n is 
simply the inverse of k and k is invertible if we take the 
quotient space of the domain of k by its kernel. We believe 
that every application given by Plebanski I becomes simpler 
in our description of the algebra. As already stated, further 
work on both the theory and its applications is in progress 
and will be reported in due course. 

'J. F. Plebanski, J. Math. Phys. 20, 1415 (19791. 
'CO S. Sharma, Math. Rev. 80, 2549 (19801. 
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Fermionic coherent states (FCS) are constructed via the Weyl supergroup of isometries of a Fock 
superspace. Their properties are derived and the connection with the pseudo-mechanics 
formalism is pointed out. 

P ACS numbers: 02.1O.sp 

1. INTRODUCTION 

Coherent states I are usually introduced for bosonic os
cillators via the Weyl group arising from the canonical com
mutation relations. Less is known about coherent states for 
systems with finite spectrum as arise in dealing with internal 
degrees of freedom. An approach in this direction was given 
by Perelomov2 in generalizing the concept of coherent state 
for an arbitrary Lie group. Here we present another logical 
possibility. The idea is that observables with finite spectrum 
do not have a strict classical analog, i.e., do not admit a c 
number classical description.' They should then be de
scribed "classically" by anticommuting dynamical Grass
mann variables, as in the pseudomechanics4 formalism. 
Upon quantization one obtains the usual Clifford algebra of 
fermionic oscillators. According to this view then all degrees 
of freedom of a finite spectrum are fermionic. 5 This argu
ment has been the basis of recent attempts at a unified de
scription of leptons and quarks as fermionic oscillator 
excitations.(' 

I n this paper we extend the notion of coheren t states to· 
the fermionic case. The arena of the formalism is a Fock 
superspace7 where the Weyl supergroupH acts as a unitary 
group generating the coherent states. The underlying num
ber system is a Grassmann algebra (GA) with involution 
used in substitution for the complex number field.'l The 
Weyl supergroup entails a correspondence between pseudo
classical anticommuting dynamical variables and quantum 
mechanical Fermi-Dirac operators. Such correspondence 
was first suggested by Schwinger 10 and is the basis of the 
pseudomechanics formalism. The mathematical founda
tions were given by Berezin. 

The organization of the material is as follows. In Sec. 2 
we review basic properties of GA's and settle notation. In 
Sec. 3 we sketch the construction of the Fock superspace. In 
Sec. 4 we construct the Weyl supergroup and study some of 
its properties. The families of FCS 11.12 are studied in Sec. 5. 
Section 6 briefly gives the Bargmann-Segal representation. 
Additional discussion is given in Sec. 7. 

2. PRELIMINARIES 

A GA d' over the complex field C is a set of elements x 
which is a vector space (under complex linear combinations) 
and has an extra l2-graded product operation; any element 
XE.(/ can be split into an even part Xo and an odd part XI 

X =Xo +x l (2.1) 

such that the product of any two elements x" of parity a, x~ 

of parity /3, obeys 

(2,2) 

(We use the first greek letters for l2-valued indices) To de
note that the parity of x" is a we write 

O"(Xa)=a. 

Thus .0/ has a l2-decomposition 

,(I = Ell .cI (l , 

aEZ~ 

where the set ,r:{o is a subalgebra. 
We assume ,0/ to have a bar involution obeying 

px =p*x, 
- -

x +y =x + y, 

xy = y X VX,YE,r/, pee. 

(2.3) 

(2.4) 

(2.5) 

We realize the elements of.':1 as formal polynomials 
x(B,e) on generators e" and eu obeying 

(2,6) 

The involution (2.5) is an inner automorphism of ,r/, 
We leave the dimensionality of d unspecified. 

Integration I.l is a linear operator defined by 

(2.7) 

and extended to all products in a straightforward way, Rules 
of a graded calculus are obeyed, From (2,7) two convenient 
measures can be defined 

dBde = IldB"dil;, 
a 

and 

u 

For example, 

f dBudiJueueu = 1 Va, (2,8) 

f dfl(eB )eaeu = I Va. (2,9a) 

Clearly the fl-measure is normalized to one, 

f dfl (ee ) = 1. (2,9b) 

We define a complex-valued inner product 

(x,y) = Jdfl (ee) x(e,e)y(e,e) (2.10) 

1521 J, Math. Phys, 22 (8), August 1981 0022-2488/81/081521-05$01,00 © 1981 American Institute of Physics 1521 



                                                                                                                                    

obeying the Hermiticity property 

(x,y) = (y,x)* x,YUY. 

The corresponding squared norm is positive definite when 
restricted to the "analytic" subalgebra .r/ + of elements of 
form x = x(e) and indefinite otherwise, in particular on "an
tianalytic" elements x = X(e)E.CY. In either case x ± E.rI ± ' 

its real part R(x+ ) defined as the first coefficient in the poly
nomial expansion, can be obtained by integration with re
spect to the Gaussian measure. 

R (x + ) = f df1 (ee)x I' x+ Ed I' R (x ± lee. 

An element x with R(x) #0 is invertible. II The set of such 
elements is closed under multiplication and contains the unit 
element. Hence it is a multiplicative group. Clearly it has an 
abelian normal subgroup containing only the even 
elements. 14 

3. FOCK SUPERSPACE 

Consider an assembly of N fermion oscillators, de
scribed by the algebra 

!ci,Cj l = ° = {e;,C;}, (3.1) 

k,e;}=oij' 
From the vacuum state defined by 

eilO) = ° (3.2) 

we define the Fock basis :-:iJ i' two-dimensional for each de
gree of freedom i, 

la)i = (c;)"'IO)i E ·'1J i (3.3) 

which is clearly orthonormal 

(a, IPJ = 0",(3," (3.4) 

The usual Fock space 7/' for the system is a complex vector 
space whose basis .%1 is the tensor product .YJJ = ® i :/J i' We 
now upgrade 7" from a vector space over C to a vector space 
.W over a GA .cl. For simplicity, we consider one degree of 
freedom and delete the index i. The canonical basis vectors 
la) are said to have parity a. They can only be multiplied by 
Grassmann coefficients of definite parity. The two possibili
ties give rise to two classes ,W'" of vectors 

Ih,J = Ih!C<+fJII/3 )E,W", (3.5) 
f3EZ, 

where h ln + fJ' E.rI,(l +f3 la + /31=(a + /3) mod 2. Ih,J is 
said to have parity a. Addition is defined only for vectors of 
the same parity. The Grassmann coefficients can be written 
on either side of the canonical basis vectors 1/3 )EfJ]J. (In gen
eral, care has to be taken with ordering). Clearly, Yro: is 
closed under addition and multiplication by even Grass
manns. The dual (bra) vector associated with (3.5) is 

(h,,1 = I (/31 11
1

0 +f3!' (3.6) 
(3a .. 

We define a Grassman-valued inner product 

(h~lhfJ) = III""+l'lhlfJ+Y' (3.7) 
Yf::::Z, 

clearly linear in the second factor and antilinear [in the sense 
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of the involution (2.5)] in the first factor 

(h~lhfJXl') = (h;,lh(3)x l' , 
(h ;,xl' Ihf3) = xl' (h ;, Ih(3 ), 

(3.8) 

(3.9) 

where Ih"xf3 )==Ih" )x/3' X(JE.cf' /3' Ih,JEcW'". The parity of 
the inner product (3.7) is la + /31 and its Hermiticity proper
ty is 

(3.10) 

In (3.8) and (3.9) we choose to write the Grassman coefficient 
to the right of the vectors. It can be transferred to the left by 
resolving the vectors in the canonical basis and using (2.2). 

Linear operators L1' in .Walso belong to two categories: 
grade-preserving (or even: r = 0) and grade-flipping (or odd: 
r = 1). They map W/" to,W In , 1'1 . Examples of even opera
tors are the identity and the number operators. Creation and 
annihilation operators are odd. The canonical basis for the 
algebra of operators is 

(3.11 ) 

with parity la + /31. A linear operator L1' is a linear combi
nation 

with Grassmann-valued matrix elements 

(a ILl' 1/3) = I;;(J 

having parity 

O"(t;;fj) = la + /3 + rl· 

(3.12) 

(3.13) 

(3.14) 

To the product of linear operators, there corresponds a su
permatrix product. Grade-preserving operators are closed 
under multiplication. The adjoint L ~,of L1' is defined as 

(h;,ILyh,,) = (Li.h~lh,,). (3.15) 

To any super-matrix I Y we associate an adjoint matrix I)'t 
defined by 

I ,,' I-Y (3.16) ;,(3 = (lit 

in analogy with the usual definition, algebraic involution re
placing complex conjugation. Hermiticity is defined with re
spect to (3.7). Hermitian supermatrices obey 

h ;;(! = h }~" 

and give rise to Hermitian operators. Similarly we define 
antiHermiticity. Unitary operators are exponentials of anti
Hermitean ones. 

4. THE HEISENBERG SUPERALGEBRA AND WEYL 
SUPERGROUP 

Complete the algebra of canonical anticommutation 
brackets (3.1) with the identity I, 

[I,e;] = ° = [I,ei] = [I,I], (4.1) 

so as to form a graded Lie algebra 7/'", over .c/. The identity 
generates a one-dimensional center. An element lIJE7/'/1/ is 
written as 

(4.2) 

J. W. F. Valle 1522 



                                                                                                                                    

The 2N parameters (w 1 ,w; ) are odd and Wo is even. With the 
help of the involution (2.5) we define a Hermitean conjuga
tion in 71','1 which takes Grassmann coefficients into their 
involutes. It obeys 

(cut)t = W, 

(w + w,( = wt + w't, 

(xw)t = (l/X, 

[w,w']t = [w't,wT]. (4.3) 

Therefore we can extract from 71 ','1 an isometry subalgebra 
u(I;N) defined by 

An element aEu( I;N) is written as 

a = ao + e· ct 
- e· c, 

(4.4) 

(4.5) 

where ao is an imaginary even parameter (ao = - au) and 
! e"e; I = ! if,,~ I = ! e,,~ I = O. Notice that 

[a"aj ] = 0, (4.6) 

We call u( I;N ) the Heisenberg superalgebra. I t is clearly 
not simple since the identity generates an abelian ideal. All 
the generalized Jacobi identities are trivial for u(l;N). 

A convenient matrix representation is 

IO>,~(~). 
c. = (0 1) 
, 0 0, 

Denote the 2N + 1 generators generically by X ~ , 
A E! 1,·· ,2N + 11. They are all traceless 

strX~ = 0, 

where the supertrace of a matrix M is defined by 

strM,,{3 = 2: (- ItMaa· 
UEZ2 

For any pair of elements a,a'Eu(I;N) the formula 

(a,a'> = strata' = (a',a> 

defines an invariant LeY u-valued inner product. 

(4.7) 

(4.8) 

(4.9) 

The corresponding supergroup V(I;N) is obtained via 
exponentation, 

(4.10) 

where g, = exp a,. The supergroup manifold!5 is parame
trized by 

z = (ao;e,e). 

Clearly, V(I;N) is a unitary supergroup 

gt(z)g(z) = I = g(z)gt(z), (4.11) 

or 

g(z) = g-I(Z) = g( - z). 

Therefore it is an automorphism group of the algebra of ca
nonical anticommutation relations. Its commutator 

g(z)g(z')g~ I(Z)g-I(Z') = exp (e'·e - e·e ') 
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belongs to the normal ungraded V( 1) subgroup. The coset 
space V( I;N )lV( 1) is parametrized by (e,e) with a generic 
element denoted g, 

g = exp(e·ct 
- e·c). (4.12) 

In the matrix representation (4.7) g is represented by a super
matrix (algl13 > = U"(J given by 

-e ) exp~if,~, ' 
(4.13) 

which is clearly not only unitary but unimodular as well. 
This follows from (4.8) and the general relation sdetU 
= exp str InU. 16 

5. FERMIONIC OSCILLATOR COHERENT STATES 

The use oftpe Weyl supergroup gives a natural formu
lation for the coherent states considered in Ref. 11. Fer
mionic coherent states were also discussed in Ref. 12. The 
use of anticommuting numbers is crucial since the nilpo
tence of the Fermi-Dirac operators precludes their having c
number eigenvalues. The underlying number system is then 
taken to be a GA which is a product of factors pertaining to 
each degree of freedom: 

Theorem: There exist in the Fock superspace dY fam
ilies.7 a CW'" of vectors lib" > obtained from the canonical 
Fock basis viagEV(I;N)lV(I), 

IIb,,>=g(e,e)la> (5.1) 

obeying the properties (a), ... ,(f) 

(a) c, Ilbo> = e,llbo>, 
(b) cillbl > = - if, Ilbl), 
(c) (lba IIb{3 > = ba {3' 

(d) The identity I is resolved as 

1= f de de IIb,,)( - 1)'" + II(lba I, 

corresponding to which there are reproducing kernels 
K a {3 [(J'(K"(3) = la + 131] defined by 

K a {3(e,e;e ',e')=(algtg'l13 >=(lba Ilbb), 
where g' is evaluated at (e', e'), etc. They obey 

(- 1)1
0

+ 1 IIb;3> = fdede Ilba) (lba IIb~>. 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

For example, we give the explicit expressions for K
aa

, 

Koo(e,e;e ',e') = exp[ - !(o·e + e'·e ') + e·e '], (5.8) 

KI de,e;e ',e') = exp[ !(e.e + e'·e ') + e.e'] , (5.9) 

which are "bi-analytic" on ((J,e ') and their involutes. 
(e) The operators 

S. = (1i/2)1/~(C; + c,), 'TT, = i(1i/2)1/2(C; - e,) (5.10) 

have their uncertainty products minimized in .7 a' 

(5.11 ) 

[LlA = ~ (A 2) - (A > 2 is the r.m.s deviation computed for a 
coherent state]. 

(f) The resolution property (d) is not restricted to the 
identity operator; the operators L,,(J = la) (131 can be re-
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solved with respect to the p-measure (2.9) as 

L"r! = f dp (ee) dp (e'e ')( yl Cy (ff)L"fJff I y) 

exp(e·e' - e'·e )p,,(e ',e'). 

where 

Co(ff) = ff, CI(ff) = gt, ff=-=ff(8,e) and l' = la -+ (31· 

P)'(8 ',e') are the projectors 

pyle ',e ')=,g' I y) (yl,g't == I 1//;.) (ti'; [. 

The corresponding supermatrices are 

(
1 - eA 

Po= ® 
i e, 

(
eiei 

PI = ® 
i -ei 

- e ) 
1 -+ e,'e

i 
' 

and clearly obey 

(5.12) 

(5.13) 

(5.14) 

P"P{3 = O,,{3P'3 P;' = P". (5.15) 

We now sketch the proof of the above. 
Eigenproperties (a) and (b) follow from e 7 = 0 = e;. 

The unitarity of ff assures that the vectors I t/J" ) are orthonor
mal, property (c). To prove (d), Eg. (5.5), notice that from 
(5.1), (4.12), and (4.6) it is sufficient to consider the case of one 
degree of freedom. Expand I t/J,,) in the canonical basis, 

I ti;,,) = I V y" I y), 
y 

where V,,{J= (a iff 1(3 ). Then we find 

f de de it/J,,)( - I)" • li(W" I 

= Ifde de v)''' fIr,,, 11') «(31( - 1)" + II = II(3) «(3 i = I 
{iy {3 

In the above we used 

J de de V re' U{3" = f de de [Pa ] )'I! 

= ( - 1)1" I IOlly,VaE'!..2' 

which follows from (4.13) and (2.8). 
Formula (5.7) is a corollary of(5.5). Property (e) follows 

from (a) and (b): 

(t/J" lSi IW,,)2 = 0 = (t/J" 111, Iw,,)~ 
and 

(w" IS~lwa) = fI/2 = (t/Ja 1~1t/J,,)· 

The Fock states la )E.::i] are particular solutions of(5.11) cor
responding to zero eigenvalue in (a) and (b). We now verify 
formula (5.12) for the case of the annihilation operator (one 
degree of freedom). The rhs of (5.12) becomes 

J dp (ee) dfl (e'e ')(1ltIO) 

X (1 iffi 1) exp(ee' - e 'e )PI(e ',e '). 
Using the representation (4.7), we substitute the projection 
matrix PI form (5.14) in the above, together with 

(1ItlO) = ~)I = - e 
(I iffll) = V" = 1 -+ ee /2. 
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The final result after fi and fl' integration is 

which is the appropriate matrix for c. 
Similarly, we can complete the proof. Thus (5.12) shows 

that any operator can be reconstructed from its "diagonal" 

matrix elements. As an example, the identity I = "\' L ad-L a(l 

mits a fl-measure resolution 

I = J dp (ee) dp (e',e ')I (Olffla) (algIO) 
" 

X exp (ee' - e'e)po(e',e') (5.16) 

=~ f dp (ee) dp (e'e ')( - e, - e;Ola) 

X (ale,8;O) exp (ee' - e'e )Ie ',e';o) (e ',e';ol, 

where le,8;O)-ff(e,e)IO)=It/Jo)' 

6. THE BARGMANN-SEGAL REALIZATION FOR THE 
FERMIONIC CASE 

We now briefly sketch how the fermionic Fock super
space is realized in terms of wavefunctions in a way entirely 
analogous to the bosonic case. The wave functions are ana
lytic on a set of complex [in a sense analogous to (2.5)] anti
commuting Grassmann variables u i • The creation and anni
hilation operators are Ui and a /au i obeying 

lui,uj 1= 0 = la/au" a/auj j, (6.1) 

I Ui' a/au) 1 = 0ij' 

For simplicity we take the case of one degree offreedom. The 
vectors Iw" )E.(7" are realized by 

(uj¢'" )=w,,(u) = I ufJVrJ" , 
{JcZ, 

so, from (4.13), 

wo(u) = (1- ee/2)(1 -+ ue), 

WI(U) = (1 -+ ee /2)(u - iJ). 

(6.2) 

(6.3) 

Clearly both the argument (u) as well as the label (e,e) of 
the coherent wavefunctions are anticommuting, the corre
sponding GA's being independent. We list below some of the 
properties of the functions t/J,,(u), 

a 
Tuwo(U) = et/Jo(u), (6.4) 

Ul/II(U) = - iJwl(u), 

f dfl (uu) t/J,,(u)t/J,](u) = [jar]' 

(6.5) 

(6.6) 

The identity, i.e., the reproducing kernel for analytic wave
functionsfrJ (u), 

(ulu') = exp uu' (6.7) 

obeying 

frJ(ul = J dfl (u'u') exp UU};J(u') (6.8) 

is resolved as 

eUI< = fdedeW,,(U)( -1)'" I t/J,,(u'). (6.9) 
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We can easily compute the reproducing kernels K"f3' Eq. 
(5.6), in this realization. For example, 

Koo(e,e;e ',e') = I d,u(uu) ll'o(u) tb()(u). (6.10) 

Therefore 

K (e e-e' e-') {IO!2e ii'Il'/2Idll (u-uJe1JUe UO ' O() ,; , =e {'"'" 

= exp [ - ~(ee + ii'W) + ee 'J, 

and so on. The kernel (6.9) also admits a,u-resolution corre
sponding to (5.16) 

exp uu' = I d,u (ee) d,u(iJ'e ')"?; U"(1 u,w 

(6.11 ) 

7. DISCUSSION 

We have shown how the coherent state formalism for 
fermionic oscillators emerges naturally from the Weyl su
pergroup by upgrading the fermionic Fock space into a su
perspace. The treatment is analogous to the bosonic case but 
is purely algebraic; the underlying number system is a GA 
instead of the field of complex numbers. This enlargement 
permits the extra solutions (5.1) to (5.11). Built into the for
malism is the idea that "classical" analogs of fermions are 
anticommuting. For example, the expectation value of a fer
mionic operator in a coherent state is an odd Grassmann. 

We now compare the present formalism with the bo
sonic case. In both cases, the whole structure is multiplica
tive. The distinguishing feature is the use of nil po tents. This 
makes this formalism applicable even to the case of an infi
nite number of degrees of freedom, whereas in the bosonic 
situation one usually truncates to assure convergence. The 
algebraic nature of the present approach completely evades 
convergence questions. 
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The present paper can be viewed from two standpoints. The first is that it derives the canonical 
transformation that takes the Hamiltonian of the Coulomb problem (in the Fock-Bargmann 
formulation) into that of the harmonic oscillator, while transforming the angular momenta of 
both probler;}" into each other. The second is the one in which the solution of the previous problem 
is required if we wish to find the canonical transformation relating microscopic and macroscopic 
collective models, where the former is derived from a system of A particles moving in two 
dimensions and interacting through harmonic oscillator forces. The canonical transformation 
shows the existence of a U(3) symmetry group in the microscopic collective model corresponding 
to that of the three-dimensional oscillator which is the Hamiltonian of the macroscopic collective 
model. The importance of this result rests on the fact that had the motion of the particles taken 
place in the physical three-dimensional space, rather than the hypothetical two-dimensional one 
discussed here, the symmetry group would have been U(6) rather than U(3). Thus, the group 
theoretical structure of an s-d boson picture or, equivalently, of a generalized Bohr-Mottelson 
approach, is present implicitly in an A-body system interacting through harmonic oscillator 
forces. 

PACS numbers: 02.20. - a, 21.60.Ev, 03.65.Fd, 03.65.Ca 

LlNTRODUCTION AND SUMMARY 

In a recent article Chacon, Moshinsky, and Vanagas l 

discussed the relations between macroscopic and microscop
ic nuclear collective models. The former have had a long 
history starting from the original liquid drop model of 
Bohr,2 through the unified model of Bohr and Mottelson,' 
and continuing up to the present time in the interacting bo
son approximation (IBA).4 The latter have been viewed from 
many angles,5 but one that was stressed in Ref. 1 concerned 
the transformation of the single particle variables to a set of 
coordinates that included in an explicit fashion six that could 
be identified with collective degrees offreedom.6

•
7 Jt is possi

ble then to project out a collective Hamiltonian from an A
nucleon system by restricting the Hamiltonian of the latter 
to a single representationK.'i of the orthogonal group 
O(A - 1) associated with the A-I Jacobi coordinates. This 
could be the lowest weight irreducible representation of the 
O(A - I) group consistent with the Pauli principle, as sug
gested by Filippov and his collaborators. x Alternatively, as 
suggested by Vanagas,'I it could be the scalar representation 
of the O(A - 1) group. It is the latter viewpoint that was 
considered in Ref. 1, where an explicit procedure was imple
mented to go from A particles interacting through harmonic 
oscillator forces to what was called the microscopic collective 
(MC) model, arriving finally at an oscillator boson approxi
mation (OBA) which can be viewed as a macroscopic collec
tive model. The last step, illustrated in Fig. 1, required a 
canonical transformation in the classical picture, for which 
only the explicit representation in quantum mechanics was 
available. I The purpose of the present paper is to find this 
canonical transformation explicitly when the A particles move 

"'Member of the Instituto Nacional de Investigaciones Nucleares and EI 
Colegio Nacional. 

in a two-dimensional space, in which case all the steps of the 
quantum mechanical analysis where implemented in Ref. 1. 

To achieve our objective we start in Sec. 2 by reviewing 
the transformation of coordinates that brings out the collec
tive degrees offreedom.6

•
7 If the motion takes place in two

dimensional space the scalar part with respect to the 
O(A - 1) group of the A -particle Hamiltonian I reduces to 
the Coulomb problem as discussed by Fock and Barg
mann. 10.11 The states of this Coulomb problem are charac
terized not by the standard angular momentum L = (L I' L 2, 

L,), but by the SU(2) group whose generators are J = (A I,A 2 , 

L3) with A I' A2 being the first two components of the Runge 
Lenz vector. I 

We also indicate in Sec. 2 that the macroscopic collec
tive Hamiltonian is that of the three-dimensional oscillator 
whose states, in the rotational limit, I are characterized by 
the standard angular momentum vector 
'f = cy~ 1'<>:1' 2'·1' ,). 

The canonical transformation we are interested in is the 
one that takes the Hamiltonian of the Coulomb problem into 
that of the harmonic oscillator with the added condition that 

J=.Y'. 
In Sec. 3 we discuss the canonical transformation that 

leaves the Hamiltonian of the Coulomb problem invariant 
but takes the vector J into L. We then require only the ca-

OSCILLATOR HAMILTONIANS 

FIG. I. The present figure symbolizes the canonical transformation relating 
the microscopic collective (MC) Hamiltonian with the oscillator boson ap
proximation (OBA). This figure should be seen in the context of Fig. 1 of 
Ref. I where the full relation between macroscopic and microscopic collec
tive models. both for oscillator and arbitrary interactions, is presented. 

1526 0022-2488/81/081526-10$01.00 
© 1981 American Institute of Physics 1526 



                                                                                                                                    

nonical transformation that takes the Coulomb into the os
cillator problem with L = ::t", which is much easier to derive 
than the one mentioned in the previous paragraphs. 

In Sec. 4, with the help of the dynamical group 0(4,2) of 
the Coulomb problem, we find operators functions of the 
generators of 0(4,2) whose matrix elements with respect to 
the eigenstates of the Coulomb problem are the same as 
those of the standard creation and annihilation operators 
with respect to the eigenstates of the oscillator problem. 

In Sec. 5 we pass to the classical limit of the operator 
functions mentioned in the previous paragraph and show 
that they lead to the canonical transformations relating the 
Coulomb and oscillator Hamiltonian with L = 1'. This ca
nonical transformation is non-bijective (i.e., not one to one 
onto) and in Sec. 6 we find explicitly the ambiguity groupl2 
that relates the points in the Coulomb phase space that map 
on a single point in the oscillator phase space. This ambigu
ity group will be obtained with the help of the fact that the 
energy levels of the Coulomb problem have a two to one 
correspondence with those of the oscillator. 

Finally in the concluding Sec. 7 we discuss the implica
tions of the canonical transformations we derived and their 
possible generalizations to the physical case when theA par
ticles move in three dimensions. 

Note that Secs. 4,5, and 6 may be read independently of 
2,3, and 7 by a person interested in the relations between 
Coulomb and oscillator Hamiltonians rather than in prob
lems associated with collective motion in nuclei. 

II.THE MICROSCOPIC AND MACROSCOPIC 
COLLECTIVE HAMILTONIANS 

In this section we briefly review the derivation of the 
microscopic collective Hamiltonians and its integrals ofmo
tion to establish its connection with the macroscopic collec
tive Hamiltonian, from which we will obtain the canonical 
transformations that relate them. 

As mentioned in the introduction, we restrict ourselves 
to motion in a two-dimensional space, and for theA-particle 
system we have 2A - 2 Jacobi coordinates x' . a = I 2· 
s = 1,2, ... ,A - 1. The translationally invaria~; Hamil~;nian 
for particles interacting through harmonic oscillator forces 
takes then the form I 

A - I 2 

Ho =! 2: I [eX;,)2 + (p~ )2], (2.1) 
s-=la=1 

where p~ is th momentum canonically conjugate to x;" and 
we use units in which fl, the mass of the particle, and frequen
cy of the oscillator are 1. 

The coordinate transformation that brings out the col
lective degrees of freedom was introduced by Dzublik et al. h 

and Zickendraht,7 and for this problem it has the form I 
2 

x~ = Ip(JDA(l(tJ)D~_'+(J.sCr), (2.2) 
/3'~ I 

where pi ,p~ are connected with the principal moments of 
inertia of the A-body system, tJ is the Euler angle taking us 
from the frame of reference fixed in the body to the one fixed 
in space, and we have 2A - 5 coordinates more, denoted by 
X 's, that parametrize the orthogonal group O(A - 1) men
tioned previously. In (2.2) 
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sintJ ] 
COStJ 

(2.3) 

is a 2 X 2 matrix for the defining irreducible representation 
charcterized by I (which is the reason for the upper index of 
D I) of the 0(2) group. We have similar interpretation 
for liD :, (X II) , only that now the group is O(A - I), and as 
we do not need the full matrix of the representaion but just 
the rows t = A - 3 + /3, /3 = 1,2, we have onlyl 2A - 5 of 
the X 's rather than the full complement 1 of(!)(A - I)(A - 2). 

Carrying out the transformation (2.2) for the Hamilton
ian (2.1) where p~ = - ia lax;" we can express it in terms of 
the PI' Pz, tJ, and (2A - 5) X 's as well as their derivatives. If 
we restrict ourselves to a scalar representation of the 
O(A - I) orthogonal group, the Hamiltonian ' (which we 
designate by He rather than the 112 He or Ref. I) will depend 
onlyonpl,P2' tJ,a lapl,a lapz, a latJ,and if we carry out the 
point transformation 

PI =pcosy, 

P2 =p siny, 

r =p2/2, 

e=2Y+1T12, 

cp = 2tJ, 

it becomes ' 

He = !r( - V2 + I), 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

(2.5) 

in which the Laplacian V2 is given in terms of the spherical 
coordinates (r,e,cp). This Hamiltonian is identical to the one 
of the Coulomb problem 10.11 when we replace the radial co
ordinate r by rl(n + 1), where n is the total quantum num
ber' starting at n = O. 

. The Hamiltonian (2.1) commutes with the generators of 
Its U(2) symmetry group given by' 

A-' 
«(;j u/3 = ~ I (X~X8 + P~P8 ) 

5=1 

i A -, 

+ 2 I (x~p~ - P:,X~); a,/3 = 1,2, 
.\"= f 

(2.6) 

and thus also with those of it SU(2) subgroup given by 

11 = ! ( (6" II - '(,' 22), 

J2 = -!((0"12+"(;'21), J3 =!Wt5"2-(tS'21)' (2.7) 

As shown in Ref. I, J" = Au, a = 1,2, where A" are the 
first two components of the Runge-Lenz vector, while 
13 = L 3, where L3 is the third component of the angular mo
mentum. These operators satisfy the standard commuta
tions relations of the generators of the SU(2) group. The mi
croscopic collective states we are interested in will then be 
eigenstates of He, J2, J l, where all those operators are ex
prese~ I in term~ of the position vector r = (XI' x

2
, Xl) whose 

sphencal coordmates are given by the r,e,cp of (2.4c)-(2.4e) 
and the corresponding momenta p = (PI' Pz, Pl) = - iV. 

As discussed in Ref. I, the macroscopic collective mod
el starts from the idea of quadrupole vibrations of a two
dimensional liquid drop that leads to two component 0 bo
sons. To this we add a scalar (T boson to get a (T-O three
component boson analogous to the six-dimensional sod bo-

M. Moshinsky and T. H. Seligman 1527 



                                                                                                                                    

son system4 in three-dimensional physical space. The mac
roscopic collective Hamiltonian ,}Y' e is then the one of the 
three-dimensional oscillator. 

,}Y'e = ~(P2 + R 2), (2.8) 

where here we designate the coordinates R = [X,, X2 , X
J

] 

and momenta P = [PI' Pz, P3] by capital letters. The inte
grals of motion we are interested in for JY e, when we consid
er the rotational limit, ' are those associated with the stan
dard angular momentum 

,2" = RXP. (2.9) 

The corresponding eigenstates will then be characterized by 
the eigenvalues of £'e, :£2,,:£',. 

The main objective of this paper will be to find the ca
nonical transformation 

(2.10) 

(where the braces [ , 1 stand for the Poisson bracket) such 
that 

He = '}Ye, J = Y. (2.11) 

To achieve this purpose, we shall first indicate in the 
next section how can we find a canonical transformation 
taking J = (A" A z, L J) into L = (L" L 2, L J ). Thus, the re
maining problem will be to find the canonical transforma
tion (2.10) that relates 

He = ,j7"e, L = ,Y, (2.12) 

which will be discussed in Sees. 4 and 5. 

III.CANONICAL TRANSFORMATIONS RELATING 
DIFFERENT SETS OF INTEGRALS OF MOTION OF THE 
COULOMB PROBLEM 

The Coulomb Hamiltonian He of (2.5) admits as inte
grals of motion the angular momentum Li and Runge-Lenz 
vectorsA i , '0," whose components i = 1,2,3 satisfy the Pois
son bracket relations 

{L,,He} = 0 

{Ai,HC} = 0, 

{Li,LJ=L" 

{Ai,A}}=L" 

{Li,AJ=A" 

where iJ,k are cyclic permutations of 1,2,3. 

(3.la) 

(3.1b) 

(3.lc) 

(3,ld) 

(3.1e) 

In this section we shall deal with He,Li,Aj; ij = 1,2,3, 
as classical concepts and denote by T some linear combina
tion of them, i.e., 

" 3 

T=aHc + IbiLi + IeiA" (3,2) 
i ~- Ii--=- 1 

where a,b , ,ei are arbitrary constants. The T can act on an 
observable F (xi,p) ) through the Poisson bracket relation 

{T,F} = ± (aT aF _ aT aF). (3.3) 
k ~, ax, aPk aPk ax, 

Ifwe want to obtain the one parameter group of canoni
cal transformations associated with T, where we designate 
the parameter by s in the interval O.;;;s < 00, we need to deter-
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mine F (x"p) ,s) that satisfies the first order linear differen
tial equation '3 

dF (xi,Pi's) { } 
----= T,F(Xi'P},S) , 

ds 

with the initial condition 

F (xi,p},O) = F (xi,p}). 

Defining the operator" 

it is clear from (3,2)-(3.4) that 

F (xi,p},s) = exp [s{T)"p ]F(x"pj)' 

where 

exp[s(T)"p] = I (n!)-'sn [(T)"p In. 
,,=0 

(3.4) 

(3.5) 

(3.7) 

(3,8) 

If Fis the coordinate Xi or momentumpj' we obtain for 
a given observable T and value s of the parameter, the new 
coordinate xi(s) or momentumpj(s) which are related with 
xi(O) = xior Pj(O) = p} through the canonical transformation 
(3.7). 

Let us consider 

T=A" 

s = 1lT. 

(3,9a) 

(3,9b) 

and see how it affects, through (3,7), the He,Li,Ai them
selves. Clearly, from (3,1), it leaves He, L"A, invariant, but 
from 

(A 3 )"pL, = {A"LJ = A 2, 

(A,)opL2 = {A"L2} = -AI' 

(A,)~pLI = {A,,AJ = - L" 

(A\)~pL2 = - {A,,A,} = L 2, 

we get 

exp[(lTI2)(A,)"p ](~J 

(3. lOa) 

(3.10b) 

(3.lOc) 

(3.lOd) 

= cosh [(lTI2)(A,lop ](~) + sinh [(lTI2)(A,)"p ](~) 

= COS(lT/2)~J + Sin(lTI2J( ~~) = (~~). (3.11) 

Thus exp[{lT/2)(A,lop] when applied to the vector 
L = (L, ,L2,L J) transforms it into the vector (A 2' - A "L,). 

In a similar fashion from the fact that 

(L,lopA, = {L,,A ,} = A 2, 

(L,)"pA 2 = {L" AJ = - A" 

(L,)~pA, = {L,,A J = - A " 

(LJ)~pA2 = - {L,A J = - A 2, 

we obtain 

(A,) (A2) 
exp[(lTI2)(L,)oph.A2 = -A,' 

Thus we see that 

M. Moshinsky and T. H. Seligman 

(3.12a) 

(3.12b) 

(3.12c) 

(3.12d) 

(3.13) 
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oxp [ - (u12I1L,)~ loxp [(u12I1A ,)", lG:) ~ G:) 
3 3 

(3.14) 

providing us with the cannonical transformation that takes 
the vector L = (L I ,L2,L3 ) into J = (A 1,A2,L3 ). We note that 
as [L,,A,] = ° we can also write the operator in (3.14) as 
exp [(1T/2)(A, - L 3)op]. 

From the above discussion we see that we can obtain the 
canonical transformation we are looking for by restricting 
ourselves to the one that maps the Coulomb on the oscillator 
problem taking L into theY of (2.9). To achieve this pur
pose we shall derive first in the next section a quantum me
chanical operator relation between the generators of the 
dynamical groups associated with the oscillator and Cou
lomb problems. 

IV.MATRIX ELEMENTS OF THE GENERATORS OF THE 
DYNAMICAL GROUPS OF THE OSCILLATOR AND 
COULOMB PROBLEMS IN THEIR RESPECTIVE BASIS 

We shall start our discussion with the oscillator prob
lem. Normally one speaks ofSp (6) as its dynamical group, 13 

but another possibility is to consider the group whose gener
ators are the creation and annihilation operators 

1] = l/V!(R - iP), 

~ = l/V2(R + IP), 

(4.1a) 

(4.1b) 

plus the number and angular momentum operators 

. I' = 1]'~ = ,71'c - ~, 

.X = - i(1]X~) = RXP. 

(4.lc) 

(4.ld) 

Clearly these operators together with I form a Lie algebra as 
their Poisson brackets (related to the commutators through 
{A,B} = - i[A,B 1 are also in the set as shown in Table I. 

Furthermore, any eigenstate INLM) of the operators 
. I ·,.'/'2,.Y'" can be expressed as a polynomial function of the 
creation operators 1Ji applied to the ground state 10), i.e., 14 

INLM) = Avd 1]'1] )(N- L )12:1/ LM(1])IO), (4.2a) 

where /1/ BI (1]) is a solid spherical harmonic of the variable 
and the normalization constant is given byl4 

AVL =(_ljI'v L)l2[41T/(N+L+ I)!!(N-L)!!P, 
(4.2b) 

with N - Leven. 

TABLE I. Poisson brackets of the generators of the dynamical group for the 
oscillator problem. The square associated with a given row (e.g., .Y',) and 
column (e.g .. "lJ) is the Poisson bracket (e.g., { f, ."lJ} = "l,). where i,j. k are 
cyclic permutations of 1,2,3. As I A.B I = - I B,A I the expressions below 
the antidiagonal are suppressed. 

t j "lJ f , - j ./' 

/' it/ - i"lj 0 0 
,f, t, "l, ,Y', 

"l, ib,; 0 
t, 0 
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Clearly then, all the states of the harmonic oscillator 
belong to a single representation of the Lie algebra whose 
generators are (4.1), and thus we can consider that they de
fine a dynamical group for the oscillator. 

As a last point related with the oscillator we consider 
the matrix elements of the generators (4.1) with respect to the 
states 1 N LM ). Those oCV, Y; are obvious, while that of b; 
is the Hermitian conjugate of that of1J;. The latter is a vector 
and taking it in spherical components 1JT' i = 1,0, - I in
stead of the cartesian ones 1Ji' i = 1,2,3, we have 

(N'L 'M'I1J,INL 'M) = (N'L '111JIINL ) (LM,lTIL 'M'), 
(4.3) 

where the last bracket ( 1 ) is a Clebsch-Gordan coefficient. 
The reduced matrix elements are given in Ref. 14, and the 
only ones different from zero are 

(N + I,L + 1111JIINL) = [(N + L + 3)(L + 1)I(2L + :: 
(4.4a) 

(N + I,L - 1111JIINL) = [(N - L + 2)L /(2L - I)] 1/2 

(4.4b) 

We now turn our attention to the Coulomb problem. The 
dynamical group is then 0(4,2), and its generators expressed 
in terms of the lower case coordinates r = (x I ,xl ,x .,) and mo
menta P = (PI,P2,P2) discussed in Sec. 2 have the form, 15,16 

L, = (rXp); (i = 1,2,3 everywhere), 

Ai = - !xi(Pz - I) + Pi (r'p), 

Ni = - A; + Xi = !X;(P2 + I) - p;(r'p), 

N4 = (2/3)(r'p) + (l/3)(p'r), 

K; =rp;, 

K4=!r(p2-1)=Hc -r, 

:JC = !r(p2 + I) = Hc. 

(4.5a) 

(4,5b) 

(4.5c) 

(4.5d) 

(4.5e) 

(4.5f) 

(4.5g) 

The L;and Ai' i = 1,2,3 are respectively the angular 
momentum and Runge-Lenz vectors which are the six gen
erators of the 0(4) symmetry group of the Coulomb problem. 
The generators (4.5) form a Lie algebra as their Poisson 
brackets, given in Table II, are also in the set. The order in 
which the components X;'Pj appear in the generators (4.5) 
was chosen in such a way so that Table II applies not only to 
the classical Poisson brackets but also to the quantum ones 
related to the commutators by !A,B J = i[A,B]. Note from 
Table II that the ten operators '1c,L;,Ni ,K;, i = 1,2,3 close 
under the Poisson bracket relation, and thus form a sub
group of 0(4,2) which can be identified 15 with 0(3,2). 

The eigenstates 1 n 1m) of the operators, '1c, 
L 2 = L ~ + L ~ + L L L, in (4.5) have the form l.17 

lnlm) = 21 + 1[2(n -l)!/F(n + 1+ 2)] 1/2 

r1e- rL ~1:+/(2r)Ylm(e,t,6), (4.6) 

where n = 0,1,2 .. · is the total quantum number (i.e., eigen
value l of'1, - I), L ~/~/ is a Laguerre polynomial, and 
Y1m (e,t,6 ) a spherical harmonic. All these states belong to a 
single irreducible representation 15 of 0(4,2) and in fact we 
show explicitly below that they can be related by the gener
ators of the subgroup 0(3,2) mentioned in the previous 
paragraph. 
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T ABLE II. Poisson brackets of the generators (4.5) of the dynamical group 0(4,2) for the Coulomb problem. The square associated with a given row (e.g., Ai) 
and a given column (e.g., Nj ) is the Poisson bracket le.g, {A"Nj } = DuN4), where i,j, k are cyclic permutations of 1,2,3. As I A,B I = - I B,A I the expressions 
below the antidigiagonal are suppressed. 

K4 Kj N4 

Li 0 K, 0 

A, Ki -DiJ K4 Ni 

~I N4 NJ -K4 

N, 0 Du~1 Ai 
N4 ~I 0 0 
K, Ai -Lk 

K4 0 

group 0(3,2) mentioned in the previous paragraph. 

Our next step is to find the matrix elements of the gener
ators (4.5) in the basis (4.6). Those of:1I, L;, are obvious while 
those of A, can be obtained by expanding Inlm) in terms of 
eigenfunctions in parabolic coordinates as shown in the ap
pendix of Ref. 1. The matrix elements that will be ofparticu
lar interest to us are those of N, ,K; and specially of a linear 
combination of them denoted by B / which we define as 

Bit = (NT +iKT)' r= 1,0, -1, (4.7) 

and write in terms of spherical components r = 1,0, - 1 
rather than the Cartesian ones i = 1,2,3. As the matrix ele
ment of B - is related to the Hermitian conjugate of that of 
B+, we restrict ourselves to the latter which, being a vector, 
takes the form 

(n'I'm'IB T+ Inlm) = (n'I'IIB +llnl)(lm; lr l/'m').{4.8) 

The reduced matrix element can be calculated by applying 
the operator 

B + , = ~:11 - (ri. + 1 _ r)_a_, 
r ar ax + 

_ 1 ( .) 
x t = + v2 x, ±IX2 , (4.9) 

to the state I nil ) as discussed in Appendix A. The only re
duced matrix elements that are different from zero then take 
the values 

(n + 1, 1+ IIIB +lln, I) 
= [In + I + 3)(n + I + 2)(1 + 1)1(2/ + 3)]'/2, (4.10a) 

(n + 1,1- IIIB +lln,l) 
= - [In -I + 1) (n -I + 2) 1/(21- 1)]'/2 (4.10b) 

We would like now to find some function ofB+ whose 
reduced matrix elements with respect to the states I nlm) 
would have an identical form as those of'll with respect to 
INLM) given in (4.4). This will allow us to establish an oper
ator correspondence which in the classical limit provides the 
canonical transformation we want to obtain. 

To achieve our objective we first note that from Table II 
and the definition (4.7), we have with iJ,k, being cyclic per
mutations of 1,2,3 that 

{L;,B/} = B t, iJ,k (4.11 ) 

and thus we conclude that 
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N, ~l, A
J 

Lj 

. I ., 0 A, Lk 
-DuN. 0 L, 

-K
J 

0 

-L, 

i{L2,B+} = [L2,B+] = -i[(LxB+) - (B+XL)]. 

The reduced matrix element of [L 2,B T+ ] with respect to the 
states Inlm) becomes then 

(n + 1, I + 111 [L 2, B + lIIn!) 

= 2(1 + 1)[(n + 1+ 3)(n + 1+ 2)(1 + 1)1(21 + 3)]\, 
(4.13a) 

(n + 1, 1- 111 [L 2, B + ]llnl) 

= 21 [(n -I + l)(n - 1+ 2)1/(21- 1)]l, (4.13b) 

as follows immediately from (4.10). 
From (4.10) and (4.13) we get the following values for 

the reduced matrix elements of operators that are linear 
combinations of[L 2, B+] and B+: 

(n + 1, I'll [L 2,B +] + 21 B + lin!) 

= 2(21 + l)(n + I + 2)~[(n + I + 3)(1 + 1)1(21 + 3)]lD[.[ f-' 

(n + 1, I'll [L 2, B -+] - 2(1 + I)B + lin!) 

= 2(21 + 1) (n -I + 1)![(n -I + 2)1/(21- 1)]lD[.[ ,. 
(4. 14b) 

It is clear therefore that the linear combination 

[L \B / ] + 21B T+ [L l,B T+ ] - 2(1 + I)B T+ 

-"'-------- + , ' 
2(2/+ l)(n+I+2)~ 2(2/+ 1)(n-l+ 1)' 

(4.15) 

has reduced matrix elements with respect to Inlm) of exactly 
the same form as those of 1] T in (4.4), if we replace in the latter 
the capital by lower case letters. 

The expression (4.15) is not yet an operator as it con
tains the eigenvalues n,l ofa specific keto We can transform it 
though into an operator by recalling that n + I, I (I + 1) are 
eigenvalues of :11, L 2, i.e.,' 

:1llnlm) = (n + 1)lnlm), L 2lnlm) = 1(1 + 1)lnlm). (4.16) 

Thus, for example, we can establish the correspondence 

[2(21 + 1)]- '+-+ 1/4 (L 2 + 1/4) ~, (4.17a) 

when the operator acts on the ket I nlm). Similarly, we have 
the correspondence 

[In + 1) ± (l ± 1 + !) - ~]~ 

+-+[(91 - 1) ± (L 2 + 1/4)~ - (112)]- ~ (4.17b) 

when the operator acts on the bra (n + 1, I ± l,ml. Using 
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(4.12) we see then that the vector operator 
J+=WR-l)+(L 2+j)I_!J-1 

X {i(B+ XL) - i(LXB+) + B+ [2(L 2 + !)! - 1 J} 

XW- 1/2(L 2+!)-I+ wn-l)-(L2+!)I_~J-1 

X {i(B+ XL) - i(LXB+) + B+ [ - 2(L2 + i)l - I]} 

Xi(L 2 + !)-l, (4.18) 

has exactly the smae matrix elements with respect to the 
states Inlm > as the vector operator 11 of(4.la) has with re
spect to the states INLM> . 

The operator (4.18) is the main result of the present 
paper, as in the next section we will show that in the classical 
limit it will provide the canonical transformation we are 
looking for. 

V. CANONICAL TRANSFORMATIONS RELATING THE 
COULOMB AND OSCILLATOR PROBLEMS 

We wish now to express the vector operator 1+ of(4.18) 
as a classical observable. We note first that if instead of di
mensionless units we had used normal ones, the! following 
L 2 would contain a factoriiZ, and the~, 1 appearing in (4.18) a 
factor ii. Thus, in the classical limit when ii-o these factors 
would disappear and, in particular, (L 2 + i)l can be replaced 
by L = (L i + L ~ + L ~ )1. Furthermore, classically our ob
servables commute and thus (LXB+) = - (B+ XL). Ifwe 
now equate the classical limit ofI+ with 11 = (l/v2) 
(R - IP), replace in the former B+ by N - iK, where N, K 
given by (4.5c) and (4.5e) are real vectors, and equate real and 
imaginary parts, we obtain 

R = W+L -I(KXL) + W_N, 

P = - W+L -I(NXL) + W_K, 

where 

(5.la) 

(5.1b) 

(5.lc) 

Another form of the canonical transformation can be 
obtained by noting from (4.5c) and (4.5e) that 

NXK = 9(L. (5.2) 

Replacing the vector L appearing in (5.1) by its value (5.2), 
the canonical transformation expressed in components takes 
the form 
Xi = (9(- IL -IW+K2+ W_)N; -9(- IL -IW+(N.K)K

p 

(5.3a) 

P; = - 9(- IL -IW+(N.KjN
i 

+ (9(- IL -IW+N 2 + W_)K
i

• (5.3b) 
While the matrix elements of 1+ with respect to the 

states Inlm) suggest that in the classical limit 1] = 1+ will 
give the canonical transformation, it does not prove it. To 
achieve this we must show that the transformation (5.3) 
guarantees that, when considered as classical observables, 
we have 

(5.4) 

!(P2 + R 2) = ~r(p2 + 1), (5.5a) 

RXP = rXp. (5.5b) 
This can be obtained, in a laborious but straightforward 

fashion, by using Table II for the Poisson brackets and rela-
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tions such as (5.2) and its square, i.e., 

(NXK)2 = N 2K2 _ (N.K)2 = 9(2L 2, 

as well as 

N 2+K2=9(2+L2, 

where the latter follows from the definitions (4.5). 

(5.6) 

(5.7) 

We have then the canonical transformation that relates 
the observables (5.5a) and (5.5b) but as mentioned in the pre
vious sections, we want to find the one that relates 

~(p2 + R 2) = !r(pl + 1), 

RXP=J, 

(5.8a) 

(S.8b) 

where J = (A I,A2,L3 ). We found though in Sec. 3, that the 
operator exp [(1T12)(A3 - L 3 )op ] acting on L transforms it 
into J, while it leaves 9( invariant, as L,A are integrals of 
motion of the Coulomb problem. Furthermore, from the 
Poisson bracket relations of Table II we see that for) = 1,2,3, 

(A3)OPAj = {A 3,Aj} = - Dj3 N4' (S.9a) 

(AJ)~pAj = - DjJ {A J,N4 } = - Dj3 N 3, (5.9b) 

(A3)opKj = {AJ,KJ = - Dj3 K4 , (S.9c) 

(A3)~pKj = - Dj3 {A 3,K4 } = - Dj3 K3, (S.9d) 

EL4while with respect to (L 3 )op' the observables Aj ,K) be
have as ordinary vectors. Thus by a reasoning similar to the 
one given in Sec. 3 we conclude that 

<xp[("./2I(A, - L,I~ lG:) ~ ( ~ ~J (5.10) 

<xp n"./2I(A, - L,I,," lG} C ~:) (5.11) 

The canonical transformation associated with the rela
tions (5.8) can then be obtained from (5.3) ifin the right-hand 
side of the latter we carry out the following transformations 

9(----+9(, 

L = (L.,L2,L3)-J = (A 1,A2,L1), 

K = (K 1,K2,K3)-K'=( - K2.K1, - K4)' 

N = (N1,N2,NJ )-N'=( - N 2,N1, - N4 ). (S.12) 

Thus we have achieved the purpose outlined in Sec. 2 of 
finding the canonical transformation that relates the macro
scopic and microscopic nuclear collective Hamiltonians. 

We now proceed to study the properties of the canoni
cal transformation (5.3) starting from the fact that, as there is 
not a one to one correspondence between the energy levels of 
oscillator and Coulomb problems, the transformation is 
nonbijective. 12 In the next section we derive the ambiguity 
group associated with this nonbijectiveness. 

VI. THE AMBIGUITY GROUP OF THE CANONICAL 
TRANSFORMATION 

In Fig. 2 we draw the energy levels of the oscillator 
Hamiltonians dY' e of(2.8) and the Coulomb one He of(2.5). 
Clearly the energy levels of the Coulomb case cover twice the 
energy levels of the oscillator as indicated in the figure. The 
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FIG. 2. The energy levels of the oscillator and Coulomb Hamiltonians Ithe 
latter in the Fock-Bargmann form H,. = ~r(p2 + I)] as functions of the total 
and angular momentum quantum numbers. We note that there are twice as 
many levels in the Coulomb as in the oscillator case. We can establish a one 
to one relation n = N, I = L between the levels marked by an x in the Cou
lomb case with those of the oscillator. Those unmarked can also be put into 
a one-to-one relation if we consider n = N + I, I = L. 

work of the authors 12 on the representation of canonical 
transformations immediately indicates that transformation 
(5.3) must then be nonbijective and that, in fact, there must 
be two points in the phase space (r,p) of the Coulomb prob
lem that map on a single one in the phase space (R,P) of the 
oscillator problem, requiring two sheets for the latter. 12 Our 
first question will then be what is the canonical transforma
tion that connects these two points, leading to the concept 
we denoted as the ambiuity group, associated in this case 
with (5.3). 

To achieve this objective we start again with the quan
tum picture. We notice that the set of levels in the Coulomb 
case marked by x have the property that n + I; is even while 
for those unmarked n + 1 is odd. There is one to one corre
spondence between the x levels on one hand and those un
marked on the other, with those of the oscillator, as indicat
ed in Fig. 2. From the eigenvalues of9C,L 2 given in (4.16), it is 
clear that the operator written symbolically as 

('-exp{i1r[~e + (L 2 + 1)\ - (312)]), (6.1) 

when acting on the states Inlm > gives 

exp[hr(n + I)] = ( - I)" + '. (6.2) 

Thus it distinguishes between the states marked by x for 
which n + 1 is even and those unmarked for which n + 1 is 
odd. 

A corresponding operator to (/ for the oscillator prob
lem will be 

7, = exp{i1T[.1 . + (.y2 + 1)1/2 - mJ), 

which, when it acts on INLM>, gives 

exp[i1T(N+L)] =(_I('+L. 

(6.3) 

(6.4) 

We note though that as in the oscillator problem N + Lis 
even, ( - I)N +- f. is always 1, and thus fJ is the unit operator 

Clearly then, when we apply the unitary transformation 
associated with (/ to (r,P), i.e., 

(6.5) 

1532 J. Math. Phys., Vol. 22, No.8, August 1981 

~e get other vector operators (r',p'), while the application of 
(l to (R,P) leaves them invariant. We wish to implement the 
step (6.5), but in the classical picture. Again disregarding 1, 
3/2 as compared respectively with L 2,~e we can replacel~ the 
transformation (6.5) by 

exp [1T(~( + L lop ] (;), (6.6) 

where L = (L i + L ~ + L ~ )l. 
Rather than calculate this directly we first apply 

exp [1T(Je + L lop ] to the vectors K, N, and A. An analysis 
similar to that in Sec. 3, using Table II for the Poisson brack
ets, which is implemented in detail in Appendix B, shows 
that 

oxp[~91 + L ),," {:] ~ [? J 
We see then from (4.5) that 

r=N +A, 

and thus 

exp[1T(9C + L )op]r = N - A = 2N - r 

= rp2 - 2p(r.p) = r'. 

(6.7) 

(6.8) 

(6.9a) 

Furthermore, again from (4.5), p = r-1K, and thus from 
(6.7) and (6.9a), 

exp[ 1TP' + L L,pP = IN - AI-1K = p-2p = p']. (6.9b) 

As K, N and also obviously 9'e, L, remain invariant un
der the operation exp[1T(N + L )op], it is clear that (r,p), (r' ,p') 
[where the latter are given by (6.9)], are two points in the 
phase space of the Coulomb problem that are mapped on a 
single point (R,P) in the oscillator phase space through the 
transformation (5.3). 

The ambiguity group of the canonical transformation 
(5.3) has then only the unit element e and the operation (6.9) 
that relates (r,p) with (r',p'). One sees immediately that carry
ing the last operation twice we return to e. 

It is of interest to note that in Sees. 4,5, and 6 we obtain 
explicitly the canonical transformation that maps the Cou
lomb Hamiltonian (in the Fock and Bargmann formulation) 
into the oscillator one, while taking the angular momenta of 
both problems into each other. Furthermore, if we write the 
total quantum numbers in the Coulomb and oscillator prob
lems as 

n = 2s + I + a, s,l = 0,1,2 .. ·,a = 0,1, 

N = 2S + L, S,L = 0,1,2···, 

and denote the corresponding kets by 

Inlm)-Islm,a), INLM )-ISLM j, 

(6.10) 

(6.11 ) 

we get for the representation of the canonical transformation 
mentioned above the expression 1 

, 
(RaW ir) =!! I (Rlslm l(slm,alr), 

\ () 1,=0 m "C-

where a = 0,1 is the ambiguity spin associated with the two 
irreducible representations of the ambiguity group men
tioned in the previous paragraph. 
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We have here an example in three dimensions of the 
type of canonical transformations and their representations 
that were discussed in Ref. 12 only for one dimension. 

In the concluding section we return to the problem of 
collective motions and discuss the implications of our results 
as well as their possible generalization when the A particles 
move in the physical three-dimensional space. 

VII. CONCLUSION 

The main conclusion we want to draw from this paper is 
that the microscopic collective Hamiltonian projected out of 
the A-body system through the scalar representation of 
OrA - 1) has a symmetry group U(3). This comes from the 
fact that U(3) is the symmetry group of the three-dimension
al oscillator Hamiltonian associated with the (7-8 boson pic
ture, and the canonical transformation (5.3) combined with 
(5.12) maps the microscopic collective Hamiltonian on it. 
Thus the symmetries of a (7-8 boson picture appear in a mi
croscopic collective Hamiltonian in two-dimensional space 
and we could expect that the symmetries of the s-d boson 
picture4 would appear in the physically relevant situation 
when the A particles move in three-dimensional space. 

Considering first the problem classically the three-di
mensional osci11ator (2.8) has as generators of its U(3) sym
metry grouplH 

Cij=17,tj = HX,X; + P,~) + !i(X,Pj - P,X;), (7.1) 

whose Poisson brackets take the form 

(7.2) 

If we substitute then X;.~ in (7.1) by their values (5.3) in 
which we make the replacements (5.12), we have a rather 
complex realization of the generators ofU(3) in terms of 
r = (X I ,X2,Xl ), P = (PPP2,P3)' the coordinates and momenta 
of the microscopic collective model. The appearace ofU(3) 
was by no means expected. The Hamiltonian (2.1) for A par
ticles interacting through harmonic oscillator forces in two
dimensional space, is equivalent to an oscillator in (2A - 2)
dimensional space. Thus its symmetry group is V (2A - 2) 
which, among others has the following subgroups 

V(2A - 2p;,v(2)X V(A - 1) 
u u 

S1/(2) OrA -- 1) (7.3) 
u u 

(f;(2) SII 

In (7.3) the tJ, 0 stand for orthogonal groups of the dimen
sions indicated and SA is the symmetric group of perm uta
tions of A particles. The generators of u& (2) are given by (2.6), 
those ofs u2'(2) by J = (A 14 2,L3) of(2. 7), and the single gen
erator of 1'(2) is J 3 = L 3 • Nowhere in this picture is there a 
U(3), though from (2.1 I) the subgroup 0(3) ofU(3), whose 
generators are c5£ = ((Y pcY" 2'Y 3)' coincides with su,v(2), 
i.e, .5£ = J. Thus the canonical transformation (5.3) with the 
replacements (5.12), was fundamental for detecting the pres
ence or U(3) in the microscopic collective model. 

If we want to pass to the quantum picture the gener
ators of U( 3) can be constructed if in the definition (7.1) we 
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replace 17, by I, +- of (4.18) and the tj by its Hermitian conju
gate (/ j + )t=Ij- , thus obtaining the operator 

/'+/j- (7.4) 

A note of warning should be given here. In Ref. 1 the Hamil
tonian He of (2.5) was obtained not from projecting the scalar 
part ofO(A - 1) from theA-body system, but by considering 
only the case A = 3. Vanagas9 has shown though that in the 
collecti ve coordinates P I ,p2' t? the projection from the A
body system will add only the term 

- !(A - 3)(~ ~ + ~ ~) = -l...-(A - 3)(~1T1 + J..-1T2 ) 

PI JpI P2 Jp2 2 PI P2 
(where1Tu = -iJIJpu' a = 1,2) to the collective Hanilton
ian. This term is linear in the momenta 1Ta , and comparing it 
with the quadratic terms in 1Ta appearing in the rest of the 
kinetic energy, we conclude that, when we use normal rather 
than dimensionless units, it would contain an fz and thus 
disappear in the classical limit. Therefore all the classical 
analysis presented here still holds when we project from the 
A rather than the A = 3 particle problem. 

In the quantum case the Hamiltonian (2.5) is modified 
by a term depending on A. It is necessary then to find the 
dynamical group, which turns out to be another realization 
of 0(3,2), for this Hamiltonian, and also to find the new kets 
Inlm). This has been done recently by Chacon and Mo
shinsky and in a future publication they will discuss the op
erators / / required in the quantum generators (7.4) ofU(3). 

As mentioned at the end of the first paragraph of this 
section, the interesting physical problem is related with the 
derivation of the canonical transformation that connects the 
microscopic collective Hamiltonian in three-dimensional 
space with an oscillator of appropriate dimension. In this 
case the collective variables are PI,P2'P] whose squares are 
related to the three principal moments of inertia and the 
three Euler angles t?1,t?2,t?y Thus the microscopic collective 
Hamiltonian is in a configuration space of six and a phase 
space of twelve dimensions. We want to map it on a six
dimensional oscillator characterized by a single s and five 
(m = 2,1,0, - 1, - 2) d bosons. 

This problem will be considerably more difficult than 
the one discussed in this paper. Among other requirements, 
we will have to determine the generators of the dynamical 
group in terms of these six collective coordinates and their 
canonically conjugate momenta. Furthermore, we will need 
explicitly the eigenkets of the microscopic collective Hamil
tonian associated with the irreducible representations (ir
reps) of the SU(3) symmetry group of this problem, which 
will be much more complicated to derive than /nlm) of(4.6). 
Once these eigenkets are available there is the problem of 
getting reduced matrix elements with respect to them of suit
able operators such as the B + in (4.10). 

One may try to implement this ambitious program, 
though on the other hand, as the two-dimensional case al
ready illustrates all the conceptual points, one may also work 
directly with the collective part i.e., the scalar representation 
of the OrA - 1 ) group] of Hamiltonian for A particles inter
acting through appropriate two-body forces, to see what are 
the predictions that have relevance for real nuclei. 1<) 

M. Moshinsky and T. H. Seligman 1533 



                                                                                                                                    

ACKNOWLEDGMENTS 

The authors are indebted to Professor V. Vanagas and 
Professor K. B. Wolffor many helpful discussions in relation 
with the present problem. 

APPENDIX A: REDUCED MATRIX ELEMENTS OF B+ 

In this Appendix we derive the reduced matrix ele
ments (4.10) ofB+ by applying the operator (4.9) for B ~ I to 
the states Inlm) of (4.6). From the Wigner-Eckart theorem 
indicated in (4.8) we can restrict ourselves to applying B ~ I 

to Inll), and from the commutation properties ofB+ with 91 
and its polar vector character we obtain 

B ~ I Inll) = In + 1,1 + 1,1- 1) 

(n + 1,1 + IIIB +lln!)[(2! + 1)(1 + In- l12 

+ In + 1,1- 1,1- I)(n + 1,1- IIIB +lln!) 

X[(2/- 1)1(21 + 1)]1/2 (AI) 

where we already introduced in the square brakets on the 
right-hand side the relevant values of the Clebsch-Gordan 
coefficients. 20 

The ket I nil ) can be written as 

Inll) = AvJv/(r)x/+ , (A2) 

where we denote by v the radial quantum number 

v = n -I, 

and have 

(A3) 

A,., = [2'(21 + 1)!v!l1rr(v+21 +2)]1/2(1!)-I, (A4) 

and 

/v,(r) = L ~/ + 1(2r)e - '. (A5) 

A similar expression holds for In + 1,1 - 1,1 - 1) if we re
place the corresponding quantum numbers. For 
In + 1,1 + 1,1- I) we have20 

In + 1,1 + 1,/ - I) 

= Av/ + Iiv' + I (r)[(1 + 1)(2/ + l)px';1 

X[x+x_ + 1(21 + 1)-I,I], (A6) 

where 
x± = +(1Iy12)(XI±ix2),XO=X3',I= -2x+x_+x~. 

Applying theB -+: I of(4.9) to Inll), we get 

B + I Inll) 

= [(x_Ir)!!' - (ralar + 1 - r)alax+ ]AvJ./ (r)x'+ 

=Av,x/~l{(x_x+lr)[(v+1 + 1}f;./ 

+ (ra lar + ! + 1 - r)a/v,lar] - I (ra lar + 1- r)/v/} 

= A,./xl
; I{[X_X+ + 1(21 + 1)-I,I]Q - S}, (A7) 

where 

Q-lIr[(v+1 + I}f;./ + (ralar+1 + l-r)al,./Iar], 
(A8) 

S _I (ra lar + 1- r)I,./ + 1,I(2! + 1)-IQ. (A9) 

We now proceed to evaluate Q and S. To begin with let 
us denote 

L ~l + 1(2r)=L (z), z = 2r. (A 10) 
We have then that 
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re'Q 

= (v+l+ I)L +e'(ralar 

+1 + l-r)e-'(aLlar-L) 

= (v + ! + I)L + (zd I dz + I + I - z) (2dL I dz - L ) 

=2zd 2Lldr+ (21 +2-3z)dLldz+ (v+z)L 

= - (21 +2+z)dLldz+ (z-v)L, (All) 

where the last line was obtained from the use of the equation 
for Laguerre polynominals21 

zd 2L Idz2 + (21 + 2 - z)dL Idz + vL = O. (A 12) 

Finally, with the help of Eqs. 2,4,5 of8.971, p. 1037 of Ref. 
21 we have 

- (21+2+z)dL~/+I(z)/dz+ (z-V)L}/+I(Z) 

=ZL;/+3(Z), 

and thus 

Q = 2e - 'L ~/ + 3 ( 2r) . 

(A13) 

(AI4) 

Turning now our attention to S we see from (A9) and 
(A 11) that it can be written as 

e'S = I (zd Idz + 1- z)L 

+ [/zI(41 + 2)] 

[- (2/+2+2)dLldz+ (z-v)L] 

= [11(41 + 2) ]{C2/- z)zdL ~'+ 1 (z)/dz 

+ [2(2/+ 1)/- (4/+2+v)z+z2]L~/+I(z)} 

+ I ( 41 + 2) - I ( V + 1)( v + 2) L ~/; 21 ( 2r) , 
(AI5) 

where we made use again of formulas 3-5 of8.971, p. 1037 of 
Ref. 21. 

We then get 

B :+: 1 Inll) 

= Av/X/; I{[X _xc + 1(21 + l)-I,I]2e - 'L~' + 3(2r)} 

_ Av/x/; II (41 + 2)-I(V + I)(v + 2)L ~';21(2r)e - '. 
(AI6) 

Comparing it with (A I) and using (A2)-(A6), we immediately 
conclude that the reduced matrix elements 
(n + 1,1 ± IIIB + lin!) have the form (4.10). 

APPENDIX B: DERIVATION OF THE EXPRESSION (6.7) 

In this Appendix we apply exp[1T(91 + L lop] discussed 
in Sec. 6 to the vectors K;.N;,A;, i = 1,2,3 so as to derive the 
expression (6.7). Note that we are dealing with a classical 
problem and thus from the definition (3.6) of (91 + L lop and 
Table II we get the Poisson brackets 

{!!C + L,Kj = {!!eXj + (2L ) -1{L 2,Kj 

=N;-L- 1(LX K );, (BI) 

{91 + L,N;} = {91,N;} + (2L )-I{L 2,N;} 

= -K; -L -l(LXN);. (B2) 

{9'C + L,A;} = {!!C,N;} + (2L )-l{L 2,A;} 

- L -ICLXA);, (B3) 
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as L 2 = L ~ + L ~ + L 3. Furthermore, as the Poisson 
brackets of L j with 9C and L vanish, we have also 

{!.n +L,L -'(LXK)j=L -'(LX{9C +L,K})j 

=L -'(LX [N -L -1(LXK)])j 

=L -'CLXN), + K, 

= - {9C +L,N,}. (B4) 

and similarly, we obtain 

{9C +L.L -'(LXN)J=Ni +L -I(LXK), 

= {9C + L.KJ. (B5) 

{9C +L.L -I(L XA ),}=Ai • (B6) 

where in all these relations we make use of the fact that from 

(4.5b), (4.5c), and (4.5e) we have L·A = L.~ = L.~ = O. 
On the basis ofthe previous results we Imme~hately con-

clude that for any integer v we have the relations 

(9C + L )~;Kj = ( - l)V + 122v 
- 1{9C + L.Nj}. (B7) 

(9C + L )~;+ IK j = (- Itr{9C + L,K,), (BS) 

(9C + L ) ~;Nj = ( - 1 )v22v - 1{9C + L.Ki }, (B9) 

nn + L )~~+ Wj = (- Ip2v{9C + L.NJ. (BIO) 

un + L );~Aj = ( - WAit (Btl) 

(9C +L )~~+ IA j = (- W+ IL -'(LXA)j' (BI2) 

Writing now 

exp(1T(9C +L )op) 

= cosh [1T(9C + L )op] + sinh [1T(9C + Lop)], (B13) 

and developing the cosh and sinh in power series we see that 

exp[1T(9C + L )op ]Kj 

= K j - (!)(cos 21T - I ){9C + L.Nj} + (~)sin 21T 

X{9C+L.KJ=Kj, (BI4) 

exp(1T(9'~ + L )op ]Nj 

= N j + (~)(cos 21T - I){9C + L.KJ + (~)sin 21T 

X {9C + L,NJ = N" (BI5) 
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exp[1T(9C +L )op]Aj 

= (cos1T)A j -sin1TL -'(LXA)j = -Ait 

and thus arrive at the expression (6.7). 
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We investigate finite groups of the form lm sln and give all irreducible representations and 
~lebsch-Gordan coefficients in analytic form. Two subclasses are considered which seem to be 
tnportant for a~plications: t~e M-metacyclic groups which are important for spin systems, and 
the K-metacychc groups whIch are the smallest finite groups that have an irreducible 
representation of dimension p - 1, where p is prime. 

PACS numbers: 02.20.Df 

I.INTRODUCTION AND SUMMARY 

Finite groups have in general found less applications in 
physics than continuous (Lie) groups, and their properties 
are not as well known, with the possible exception of the 
crystallographic and permutation groups. 

However, in recent years finite groups have found new 
areas of application: They can be used as a symmetry of the 
flavor sector of unified gauge theories of the weak and elec
tromagnetic interactions. 1 In studying the behavior of four
dimensional lattice gauge theories defined on Lie groups by 
using Monte Carlo calculations,2 the results can be approxi
mated with gauge theories defined on discrete subgroups.3 
In statistical mechanics discrete groups are considered in 
systems with finite symmetries (generalized Ising models).4.5 

These developments motivated us to investigate more 
closely finite groups. In this paper we study groups G that 
are semidirect products6 of two cyclic groups, G = lm sln . 
Such groups of order mn are equivalent to the Z-metacycIic 
groupS.6.7 They are the simplest cases of semi direct products 
with an abelian normal subgroup. For such groups the res
presentation theory is known (see Refs. 5 and 8, and especial
ly the book by Mackey9), and the groups G are best suited to 
illustrate the methods involved. 

As we will show, the special form of the groups not only 
allows one to find the representations but also the Clebsch
Gordan coefficients (and thus also 6-j symbols etc.) in closed 
analytic form. Especially, it provides for a solution of the 
"multiplicity problem." That is, if in the decomposition of 
the tensor product of two irreducible representations a given 
representation occurs several times, then we found a group 
theoretical way to label them. 

The same methods can also be applied for semidirect 
products with several factors; for example we have obtained 
similar results 10 for the groups {In ® 'l..n )sl, and 
(Zn ® l" )s5\ I I 

Beside their mathematical simplicity, the groups lm sZ" 
are also attractive for physical applications. As shown by 
Marcu, Regev and Rittenberg,S they appear as global sym
metries of spin systems. Then the analytic form of the cou
pling coefficients would allow one to obtain, for example, the 
finite temperature expansion in closed form. Also, lm sl, 
groups appear as (finite) subgroups of SU(3). 10 

·'Supported by Studienstiftuns des Deutchen Volkes. 

The lm sln groups have also another nice property. If 
we ask the question, which is the smallest finite group which 
has an irreducible representation of a given dimension d? 
then in the cases where a unique answer is possible (in a sense 
to be made precise below) the group is alm sln group [except 
for d = 3, where the group is the tetrahedral group T, a prod
uct of the form (l2 ® l2)sl,J. 

Let us sketch some properties of the groups lm sl" . 
They are defined by m and n and by a homomorphism H 
which maps Z" into the automorphisms of lm' fo H is given by 
H (a):/3_acx/3, where aEln, /3Elm; a is an integer such that 
an = I mod m and a and m have no common divisor except 
1. To given m, n there are generally several possible a. a and 
a' give equivalent groups if the least solutions I and I' to aX 
= I modm and a'x = I modm are equal. I is the dimension of 

the largest irreducible representations. The groups often fac
torize unless n = I, which is indeed the physically most inter
esting case. 5 

If m = p = prime considerable simplifications take 
place (ZS-metacychc groups7).For example the irreducible 
representations have only dimensions I and 1. If, further
more, n = - I (and n = I) we come to the K-metacyclic 
groups7 which are the smallest groups with a (p - I)-dimen
sional representation. 121t remains an interesting problem to 
look for the smallest group with an irreducible representa
tion of arbitrary dimensions d # p - 1. 

Before closing this section we would like to discuss 
qualitatively the way how the multiplicity problem gets 
solved. It is closely related to the structure of the groups as a 
product of two abelian factors. 

When one constructs the irreducible representations, 
one may first choose the representations R of the elements /3 
of the normal subgroup 'lm to be diagonal, e.g., 

where the J i are elements oflm ; that is we can assign to each 
state a "lm -quantum number" Q. The elements a of the 
factor group In now act on the states eiJ

, according to the 
homomorphism H used to define the group: If H (a): J,-+Ji , 

then the representation matrix has for the ith column andjth 
row only a nonvanishing element at the intersection (i,i). The 
representation matrices of a can thus be thought of as chang-
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ing the quantum numbers of states by a fixed amount.j (a). 
Now we take the decomposition of the tensor product 

of two representations (by representation we always mean 
irreducible ones) with basis states ei,ej , and consider the 
product states ei ® ej • In general there are t (t> 1) such states 
which tranform in the same way, say as the k th component 
of a representation R. Then R occurs in t copies and the 
problem is to find a label rJ which characterizes those linear 
combinations of the ei ® ej which go into one copy of R, 
denoted as RTJ . 

The action of the group elements of Zn now consists in 
lifting the" quantum charge" by the amount.j. Therefore, 
the difference in charges .j Qij = Qj - Qi of the states 
e.and e· is constant and can be taken as n. In short, we may J I ./ 

say that the group Z" induces a grading of the vectors 
ei ® ej , LlQij' and by this grading we solve the multiplicity 
problem. 

The actual realization of this mechanism is generally 
quite involved. For the groups described in this paper it is 
most clearly demonstrated by the the K-metacyclic groups. 
The mechanism can be observed quite clearly in the case of 
the.j (3n 2

) groups 10 which are of the form (Zn ® Zn )SZ3' 
If the factor group (Z" in this case) is not abelian it does 

not have a complete grading; in this case a complete labelling 
of the irreducible representations might become impossible. 
It is an interesting problem to investigate such a situation. 

The remainder of this paper is organized as follows: In 
the next section we give some properties of the groups 
G (m,n,a). Then, in Sec. III, the irreducible representation 
and Clebsch-Gordan coefficients are given. The representa
tions have previously been presented by P. Tucker. s We re
derive them in our notation for completeness and coherence, 
using the method of induced representations. 9 Then, in Sec. 
IV we consider the special cases that are of interest to phys
ics; with an occasional glimpse to some earlier definition it 
can be read by itself. An appendix shows that the smallest 
group with a d-dimensional representation has d (d + 1) 
elements. 

II.THE Z-METACYCLIC GROUPS 

In this section we consider some properties which are 
relevan t for our purposes of groups of the form 

G = Z",sZ", m,nEN, (2.1 ) 

wheres denotes the semidirect product. 6 We will see that the 
groups (2.1) are identical with the well-known Z-metacyclic 
groupS.7 But we will introduce a notation for the group ele
ments, inspired by (2.1), which will enable us to give explicit 
(analytic) formulae for the irreducible representations and 
Clebsch-Gordan coefficients of the above groups. 

Let us denote the groups Gin (2.1) by G (m,n,a). The 
index a distinguishes between the various automorphisms 
used to define the semidirect product in (2.1). The elements 
of G (m,n,a) are denoted by 

(2.2) 

with the product rule for two elements given by 

(2.3) 
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The possible values ofthe indices m,n,a are restricted by 
the conditions 

an = 1 mod m, (a,m) = 1, (2.4) 

where (a,m) denotes the largest common divisor of a and m 
and mod stands for modulo. 

First we demonstrate the connection to the mathemat
ical nomenclature.7 If we put 

T=g6 S=g~, (2.5) 

we see that S, T are generators of G (m,n,a) and that they 
satisfy 

o S mOl T.ST - I -_ gOa = sa. Tn = go = 1, = go = , (2.6) 

It is well known7 that all finite Z-metacyclic groups 
(groups whose commutator subgroups and commutator 
quotient groups are cyclic) can be expressed by (2.6), and 
thus by (2.3). 

Let us examine conditions (2.4) closer. We notice that 
for any m,a with (a,m) = 1 Euler's theorem 13 allows one to 
choosen = ¢ (m) [¢ {m)is thenumberofintegersgi < m, with 
(gi,m) = 1 and is usually called Eulers ¢-function]. Thus, 
there exist Z-metacyclic groups for any value of m. Given m 
and a, all possible values of n are multiples of a number I, 
given as the smallest solution to 

aX = 1 mod m. (2.7) 
1 will be seen to play an important role: the largest irre

ducible representation of G (m,n,a) has dimension I. Not ev
ery choice of n leads to an interesting group, as may be seen 
by the following theorem 

Theorem (Factorization): Let m = k-p with (k,p) = 1, 
n = r·s with (r,s) = 1, and furthermore ar = 1 mod k and 
a' = 1 modp. Then 

G (m,n,a) = G (k,r,a) ® G (p,s,a). (2.8) 

To show this, consider the mappings 

¢:G (k,r,a)-G (m,n,a) 

g'/J-¢{i'/J) g;,#, g'/JEG(k,r,a), 

t/!:G (p,s,a)-G (m,n,a), 

g'/J-t/!{g,/;) g~~, g'/JEG{p,s,a). 

Now, any element of G (m,n,a) may be written as follows: 

¢ (gp )t/!{gp', ) 
w + ra' ra' + sa ra' + sa .I.(/;a' )A. (;;a) =gp{3+a"'k{3' =gp{3+k{3' = gk{3'+a"'p{3 = 'l'5{3' 'I' 5{3' 

which proves (2.8). Notice that all the assumptions of the 
theorem enter the last equations. 

Consider some special cases of this theorem: 
(I) Let be k = m,p = 1. If n = rs, (r,s) = 1, and ar = 1 

mod m, then 

G (m,n,a) = G (m,r,a) ® G (1,s,a) = G (m,r,a) ® Z,. 
(2) Let be r = n, s = 1. Then factorization demands 

a = 1 modp. We now put n = 2, a = m - 1 which implies 
1 = 2. Thus, 

G (2k,2,2k - 1) = G (k,2,k - 1) ® Z2 (k odd). 
Observing that G (2k,2,2k - 1) ~D2k; (dihedral group) we 
have recovered the well-known factorization theorem3 for 
dihedral groups. We note, in passing, that the G (k,4,2k - 1) 
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are the" double" dihedral groups. 
(3) As an exercise we leave to the reader to show that 

G (35,6,4) = G (7,3,4) ® G (5,2,4). 
Thus, in most cases only the choice n = I, where I is the 
smallest solution of aX = 1 mod m, gives groups that cannot 
be expressed as direct products of smaller groups. (We will 
see later that even if (/,nll) ¥- 1 and no immediate factoriza
tion occurs, I is still the maximal dimension of the irreducible 
representations, and only the case n = I should be interesting 
for applications.) 

Can different choices of the number a lead to equivalent 
groups? An answer is the following theorem. 

Theorem: G (m,n,a) and G (m,n,a') are isomorphic if and 
only if the smallest solution of the equations 

aX = 1 mod m, a'x = 1 mod m 

coincide and are given by I. Consider first the case where 
n =1. 

Observe now thatthetwo sets {aa laEZJ and {a~ laEZJ 
coincide. Thus a' = ak for some kEZI and (k,1 ) = 1. The map
ping a-+a' = ka satisfies aka = a,a The desired isomor
phism between the groups is then given by gp_g~a. Using 
the division properties of I,n,k, this isomorphism can be ex
tended to all possible values of n. 

The theorem tells us that there are as many inequivalent 
metacyclic groups to given m,n as there are divisors of n. 

We finally come to the class structure which we need for 
the classification of the representations. 

The element gp: is conjugate to 

ga- ~pg{3:gp = g;:' "p, + (a'" - Iia "p 

for all aEZn, f3EZm' 

(2.9) implies: 

(2.9) 

(i) Elements with different a 1 lie in different classes. 
(ii) If aa, ¥- 1 mod m all elements with the same a 1 are in 

the same class. 
(iii) If aa, = 1 mod m, that is, a 1 = k·1 for some kEZV, 

(v = nil), gp: and g'/J '; are in the same class if and only if 

f3; E{J3I}={J3If3 = f3l aa for some aEZn}. (2.10) 

We will call {f3 tl the orbit of f31' 
The orbits of two numbers f3,{J , are either identical or 

have no common element. We therefore must calculate 
numbersj"oo., jq such that each element ofZm is contained 
in the orbit of just one ofthe/s. We can now label the classes 
as follows: 

K; = {gp la = i¥-k./}, 

KlkJ 1 = {gpi a = k./,{3EV}}, 

jE{jw" jq}. (2.11) 

In order to get a complete set of/s we may proceed as 
follows: put 

j, = 0, j2 = 1, 
js = smallest element ofZm which is not yet contained in one 
of the orbits Vr}, r <S.14 We will denote the number of ele
ments in the orbit {jJ by Ij (length of the orbit). All these 
numbers will be extensively used later. Observe that for 
m = prime, the lengths of all orbits except 10 are all equal. 
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(An example may help the reader to become familiar with 
these constructions: Take m = 7, a = 2; then 
{j,J2'" J = {a, 1,3 J and the lengths of {1 J, {3 J are 3, while 
the length of { a J is 1.) 

111. REPRESENTATIONS AND CLEBSCH-GORDAN 
COEFFICIENTS 

We now want to investigate the unitary irreducible re
presentations of the groups G (m,n,a) of the previous section. 
We will give a simple analytic expression for the matrix ele
ments of the representations and the Clebsch-Gordan coef
ficients which simplifies all calculations done with these 
groups enormously and is thus especially important for ap
plications. The representations are obtained using the meth
od of induced representations. 9 

We denote the irreducible representations of the 
G (m,n,a) by a pair of indices 

[k,ll, (3.1) 

wherejEV" ... ,jq} and kEZvj,Vj = nllj • (thej;and I; are de
fined in the previous section). 

The dimension of the representation [k,ll is Ij (see be
low). We introduce the following notation for the basis vec
tors in the representation space of[k,ll Let eb ,e; , ... ,e; _ 1 be 

a standard (orthogonal) basis in IR/J. Arrange now the'ele
ments of the orbit {jJ in ascending order: 

(3.2a) 

and put 

(3.2b) 

As an example take m = 7, n = 3, a = 2. The values ofj 
are 0,1,3 (see previous section). Forj = 3 we have 
{3 J = (3,6,5), and thus 

eb = e3 , e; = es e; = e6 • 

[Notice that the orderings ofthejaU
" (3.2a) and of the a; need 

not correspond.] 
Using this notation, the group acts as follows on the basis 
vectors: 

The matrix elements of the T's are thus given by 

(3.3) 

(3.4) 

[T lkJI( a)] .. ja" "'(3 klp"m (35) g(3 ja',ja' = W E Uja'Ja" "" . 

the superscript m at the Kronecker delta indicating that the 
lower indices are to be taken mod m. Equation (3.5) gives for 
the characters X, 

I, , 
IkJI( a) _ " _,;a'(3 klps;:m X gp - L w E U jJa ". (3.6) 

.\'=0 

By means of(3.6) we can easily show that (3.3) are in
deed all unitary irreducible representations of G (m,n,a): 

We have 

<X IkJ1,X1k'J'I) 

2: X [k J1 (g{3)X Ik'J'I(g{3)* 

gfjEG(m,n,aj 
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This proves inequivalence and irreducibility. The com
pleteness follows by applying the theorem of Burnside l5

: 

I (dim)[kj]2 = Iv)] = In.lj = n·m, 
jE{j •.. .jq} j j 

kEZVj 

by definition of {j I,,·jr}. 
We will give examples of the formulae (3.3-3.5) in the 

next section. But first we conclude this part with the expres
sions of the Clebsch-Gordan coefficients. Take the product 
of two representation (k ' j'] and (k " j"]. The C G coefficients 
for the representation [kJl (basis vector eja,) in the irreducible 
decomposition of the product [k ' j'] ® [k " j"] (basis vector 
e/a , ® era") is 

IkJI.,Ja' 
elk 'J'lla" ;(k" J"IJ"a" 

with T = tf;(tf;(lj,/j' ),tf;(lj,lr)) 

A = tf;(lj,l)" ).I//~ 

(3.7) 

(3.8) 

and where tf;(a,b ) denotes the least common multiple of a and 
b, The index rJI6 distinguishes between various identical re
presentations which may occur in the decomposition of the 
product of two representations. Its range is restricted to 
O<,rJ < (Ij'!)"), but not all numbers in this range need give 
nonzero coefficients in (3.7). Its explicit appearance in the 
formula (3.7) is a noteworthy feature; it allows a group theo
reticallabeIIing of the several identical representations in the 
Kronecker product and thus a correspondence between the 
basis vectore e/a,· ® era" and eja ,. As is well known from, say 
SU (3), this is not always possible. From (3.7) we derive the 
expression for the CG series: 

[k ' j'] ® [k " j"] 
Vj-Il/j,/j.)-I" _I 

= . {;$ .} ~ ~ I 87a· + ra"Jo i'q. + k "Ii' - kljlf.o [kj]7I' 
jE 1.···Jq k - 0 1] - 0 r = 0 

The appearance of the Kronecker-delta 8':',. '/. in both 
Ja +J a" 

(3.7) and (3.9) makes it necessary to analyze the solutions of 

j'ar + j"a71 =j mod m (3.10) 

for given}' j" and a. As far as we know there does not exist a 
closed form for the solution of the diophantine Eq. (3,10). 
However, it is always easy to find by trial and error the solu
tions (r,rJJ) to (3.10) for each special case. Thus by means of 
(3.7-3,9) the determination of all the CG coefficients of all Z
metacylic groups is reduced to the simple number-theoreti
cal problem of solving (3.10), This result is similar to the one 
obtained for the groups.9J (n)17 which are semidirect pro
ducts of three Zn groups, and for the groups considered in 
Ref. 10). We conjecture that also other groups which are 
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semidirect products of Z groups have this property. 
We will see in the following chapter that for an impor

tant class oftheZ-metacylic group, theK-metacycIic groups 
(see below or Ref. 3 for a definition), the problem of solving 
(3.10) does not occur. 

We close this paragraph by sketching the derivation of 
(3.9). The method employed is standard and described in 
detail in any textbook on representation theory (see Ref. 9). 
One first constructs the vectors 

IkJI 
Ps (e/a•· ® era" 

-==.-!L I [T (kJI/g'p) l;a'j 
m·n gj;E(Glm,n,al 

X (T1k'JI ® (T1k" J"I )/g'p)e/a< ® era" 

/. n-Im-I 
= _J_ L I [T{kjl/g'p)];a'j 

mn a =0 {3=O 

X ( T1k',f')® Tlk"j"I)InC')e ®e, . \15/3 10,0( J"o~ 

= Ij I To ;;.'" +., + )" a'" "l/a,8('", If + k "Ii' - kl)/'O 

XE - sl,k'if + k "Ii' - kl) 

1/1 -I 
X t. Eljl1k'Ij + k "Ii' - kl) 

y=O 

X (e. I." .,' -~,., ® e." 1'+ " ".,). 
)a ) a 

Here we made use of the fact that 

e/a , ® era! = el ® er · 
Observe further, that 
//1-1 t- Ijl1k'lf + k "Ii' - kljl( ) L E elat.~' t- 111j t.'i Ijrl ® er a(,H + "Ii + .~ .lp1 

y=O 

= EI~(k'lr + k "I;, - kljl 

1/1- 1 

X t- (k 'If + k "Ii' - k9/jY( ) L E ej"a'" + ~ fp'l ® eral ,· IS 1J"y • 
y=o 

Thus, if the tupels (S',s") and (5',5") differ only by 
(Alj ,Alj), AEZm , the resulting vectors are proportional. We 
therefore select one of them to be our new basis state by 
restricting the range of s',s" by 

s' < tf;(lj,lj" )ll Ilj 

s" < (lj,l)" ). 
Now, we set s = 0 in order to obtain the first basis vector in 
the representation space of [kJl 

Ikjl 
Po (ej'a" ®ej"a" ) 

= (1/1)1120;;" +Fu"J8;\k'lj + k "I)' - k9,O 
III-I 

X t- ijl1klf + k "Ii' - kl)( L eja(" IjY) ® eri'· 
y=o 

Ip1 ). 

The square root above appears for normalization of the new 
basis vectors. ApplyingplkjJ to the above first basis vector, 
we get the other basis vectors: 

p!kJlpbkJJ 
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= (IT Y12D;;" +J"a'JD;(k'lj + k"I,' _ kill 

T/I ... 1 

X t-. elk' 1/ + k "IJ• _. kl)lIjY .. sl ( , ) L II::" e" I' !, If)'1 ®e." I'" I, /,1"\ • 

y~"ll JU JU 

If D)'a" + j"a'J #0 for different tupels (s; ,s;'j, (s~ ,s~'j, we obtain 
for each of them a distinct vector e., of the same representa-

Ja 

tion, This signals, that the same representation occurs sever-
al times, It is easy to see that if s; #s; then also s;' #s;' etc, 
Thus, we may choose any of the two indices s' and s" to 
distinguish between the various identical representations, 
Calling this index 1], we arrive at (3.7). The reason, why 1] 

appears in such an unsymmetrical way in (3.7) is thus a pure 
convention. 

IV.SPECIAL CASES 

We now want to apply the results of the previous sec
tion to those G (m,n,a) Z-metacyclic groups that are impor
tant for applications. In the mathematicalliterature7 two 
special cases of Z-metacyclic groups are generally intro
duced: the ZS-metacyclic groups and the K-metacyclic 
groups; the latter is of special interest to us. We would like to 
introduce still another special case which we shall call M
metacyclic; these groups have been shown by Marcu and 
RittenbergS to appear as global symmetries in spin systems. 
The above groups are described as follows: 

ZS-metacyclic: (n,mj = I mod m. 
K-metacyclic: m = p = prime, n = p - 1, and a is 

primitive root mod p, that is p - I is the smallest solution of 
aX = 1 modp. We consider the K-metacyclic groups in de
tail, for they are the smallest groups with a fp - I )-dimen
sional representation. 

M-metacyclic: m = p = prime; n = I, where I is the 
smallest solution of aX = I modp. (n is a divisor offp - I)]. 
These groups are subgroups of affine transformations of'l..p, 
that is of transformations of the type 

gp :x-x' = ax + /3 x,/3,E'l..p, aE'l..p '\ O. (4.1) 

We observe that the product rule for these transforma
tions is given by 

(4.2) 

which is isomorphic to the rule (2.3) if a is a primitive root. 
On the other hand, all subgroups of affine transformations 
(4.2) are obtained by choosing different a's and restricting 
the range of a to 'l..1' See Ref. 5 for applications of (4.1). 

We begin with the M-metacyclic groups. Recall from 
the previous section that there exists a set of numbers,j I = 0, 
j2 = 1,J", .. j" [r = fp - 1)/1] constructed as follows: define 
the orbits {j'} ofi as {j'} = {jjjjajja", .. ·,mod m} andj, is 
the smallest number not in {j,}, r <so Each orbit, save! 01 
has I elements. There are only I-dimensional and one-dimen
sional representations; since I = n the I-dimensional repre
sentations can be labelled by (OJ] [see Eqs. (2.11) and (3.1)] 
and the one-dimensional by (k,O], kE'l..I' We have for their 
matrix elements 

[T10JI(ga)] . . =Oya" "'(3D B j<l\Ja' i{/ Ja(' "I , 
(4.3) 

j = 1,2, ... ,fp - 1)// 
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(I-dimensional representations), 

T I k.OI (g~ ) = cka , kE'l..1 (4.4) 

(one-dimensional representations). In (4.3) the indicesja'ja' 
label the matrix elements between the basis vectors 
e)u,and eja , (notice that the ep are not necessarily labelled in 
the usual order e l , e2, ... ; they are labelled in ascending order 
ofja' mod m, not of t 1). [For a more detailed description of 
the basis see (3.2) and the discussion there.] The characters of 
the representations (4.3) are 

I I I 1 

X(g'P) = I CtJ"'(JDj,;u ,,= I CtJ"'fJD",o. (4.5) 
..,--,--0 .'>-0 

The Clebsch-Gordan coefficients C ~ '.R" for the representa
tion R in the product R ' ® R " are 

C lk,DI 
I OJ' IJ' u': I OJ" [i" a' 

1 1- 1 (- I 

= -= "8'. '+'" 0 "t _ L jU ). ~ 
~I ,-0 hD 

C IOJIJa' _;:,{) - k "Sf:p 
10j'IJ'a":lk ",0 1- Ujj'c Ua'.a" 

C 1~'~(\I:lk ",() I = D~, I k ",k, 

y u'" 

(4.7) 

(4.8) 

(4.9) 

where 1] is an index to label identical representations which 
occur several times in [0/] ® [OJ'']. 

As an example consider the group G (7,3,2j: we have 
j=0,1,3. Forj= 1,3 we have the bases 

j = 1:\e l ,e2 ,e4 l, 
j = 3: \ e"es,e6 1. 

The one-dimensional representations are [(4.4)] 

Tlk.ol(gA)=c\ T lk,OI(g7) = 1, c=e2"m, 

while the three-dimensional one's are [(4,3)] 

T,O"(gi,) ~ G ~ D 
T'"Ii (!I:) ~ G 0 

o~,) 0 (J.r 

0 

T to" (g;) ~ (: 
0 

D 0 

1 

T'o" (g:J ~ G' 0 

D (J)0 

0 

(J) = e2rrj17
• 

(4.10.1) 

(4.10.2) 

In order to arrive at the expressions (4.10.2) we must 
remember that the order of basis vectors is e" eo' et>, which 
corresponds to the order 0,2, 1 of the respective exponents of 
a (i.e, 3 = 3.tl, 5 = 3.2 2

, 6 = 3·2'), 
We might wish to decompose the product 

Tlo. 11 ® TID,II. Equation (4.6) then yields 
2 

C IOJI,j2' . " ;:,7 87 8 7 
10,11,2' :10, 1),2' = k.. U2' I 2"J 2" ',2' 2'" ',2' . 

r ,~ () 
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Ifj = 1, r = 77 = 2 and we have 

C lo.I]", ".Z' _>:7 >:7 _>:7 ,,7 
10.1].2';10.1 ],2" - U 2, • ,,2'U2' ".2" - U2 + ,.s'U2 + ,.s" • 

Ifj = 3, on the other hand, we have either 71 = 0, r = 1, 
or 71 = 1. r = O. Thus 

C 10.3],,3·2' _ >:7 >:7 
10.1 f,3.2';[0.11.3,2'· - ul + ,,s,U,.s'" 

(4.12.1) 

C 10.3],.3.2' - >:7 ,,7 (4 122) 
10.1),3.2";10.11. 3,2' - U,.s·UI +s.,"· •• 

No one-dimensional representation occurs in the prod-
uct, for 2' + 1 = ° mod7 has no solution. We have thus 
found 

(0,11 ® [0,1] = [0,1] is (0,3] is [0,3] (4.13) 

We leave it to the reader to verify the following decom
positions (3.9): 

[0,3] ® [0.3] = [0,3] is [0,1] is [0,1]. (4.14) 

[0,1] ® [0,3] = [0,1] is [0,3] is [0,0] is [1,0] ffi [2,0]. (4.15) 

We now turn to the K-metacyclic groups, namely the 
G(p,p - l,a) where a is a primitive root modp. These groups 
have just one (p - 1 I-dimensional representation and (p - 1) 
one-dimensional ones. Their order being pIp - 1), they are 
the smallest groups with a (p - I)-dimensional representa
tion. Observe, that there is just one K-metacyclic group of a 
given order. 

The expressions above for the representations and CG 
coefficients simplify now a lot since there is no need to evalu
ate a set ofj's as before [see Eq. (3.10)] or solve an equation 
for rand 71. We have 

1541 

T Ik.OI (ga) = Eak kE'l (I , p" I 

(one-dimensional ), 

[T 1(1.1 I (g;nL =0)'" "!3CY;"a 

((P-I )-dimensionaIJ. 

C[OIIIOI] = 

[k,O] 
s' s" ° 1 2 
1 1 
1 2 
1 3 
1 4 ~ ~ [ 

0 

2 1 
2 2 

2 3 I 
i 

-~ :2 -
2 

2 4 
3 1 
3 2 I -! I 

:2 2 2 
3 3 
3 4 

4 1 ~ 
i _1 --

2 2 

4 2 
4 3 
4 4 

(blank entries are zero) 

(4.16) 

t,s = I, .... (p - 1) 
(4.17) 

[0, 1 ]~ 
3 1 2 

I 
'j 

-i --
2 

-! 

1 
i -
2 

1 
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3 

1 

Notice the simplified labelling for the basis in (4.17). The 
characters are 

Xlk.OI (g~) = €ka, (4.18) 

Xlo.ll(d')=IY:.-I(".;:;p -1). 
15/3 a.O 'Y"{3.O 

The C G coefficients are simply 

C lo.II .,.;, .. =8': ,8': .. 23 (P1)(419) ID,I].s ;[0,11,.1 (1- Tils .. ' T,.,.S' 71 = , , ... , - , . 
1 p-2 

C:~:n";IO,II.," = 2: €-ky{jP r ,{jP_ ,,,,(4.20) 
~p _ 1 y=o a.S a.s 

C IO.I]" £,-k"p>:O 
IO.lI,,';lk ",0 I = " U,,," where p:af' = s mod p 

C [k,O] " 
[k',OJ;lk",O I = Uk' + k ".k· 

The C G series can be given explicitly in this case: 

[k,O] ® [k' ,0] = [k + k' ,0], 

[k,O]®[O,l] = (0.1], 
p-2 

[0,11 ® [0,1] = [0.1] ffi ... ffi [0,1] is ffi [k,O]. 
p - I times k = 0 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

As an example, consider the group G (5,4,2). This group 
of order 20 has one four-dimensional representation 

rIO" ~~) ~ (! 1 ° 

V' 
° ° ° ° ° 

r[o"~n~(~ ° ° ~) 0)2 ° ° 0)3 

° ° 0)4 

0) = e21T/ 5i 

The C G coefficients are for [0,1] ® [0,1], given by 

[0,11; [0.1]} 
4 1 2 3 4 1 2 3 4 

1 
I 

1 

1 

1 

1 

1 

1 
1 
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Notice again how the multiplicity problem is solved; there is 
an index 1/, that labels in a group theoretical way the irredu
cible representations of [0, 1] ® [0,1] and allows a unique con
nection between the states s' ·s" of [0, 1] ® [0,1] and the [0,1] 
states s. 
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APPENDIX 

Assuming a group G is the smallest with an n-dimen
sional representation, it has only one such representation R 
which is therefore real. Considering now the Clebsch-Gor
dan series of R with itself, the R cannot occur more than 
(n - 1) times: The number of thimes R occurs in the expan
sion ofR ®R is nR = l:X ?n:X fwhereXi is the character for 
a group element gi in the representation R, and the sum 
extends over all gi E G. Since Xi <,n (because the representa
tion is unitary, with Xi = n) only for the identity or for n = 1 
(remember: all Xi are real) we have 

nR < ( = )n~X7/~X7 = n. 

Thus, only (n - 1) n states of the n2 states of R ® R can 
be absorbed by R. The remaining n states must go into new 
representations. This is achieved most economically with 
one-dimensional representations, since higher dimensional 
representations, say of dimension t, swallow only t states but 
contribute a factor t 2 to the order of the group (or, more 
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mathematically, one seeks to minimize ~7'~ 1 n7 with fixed 
~;: 1 no m free). Thus the minimal group must have n(n + 1) 
elements. 
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We present a new class of finite subgroups ofSU(3) of the form Zm s Zn (semidirect product). We 
also afply the m;thods u.sed to inv.estigate semidirect products to the known SU(3) subgroups 
..:1 (3n ) and..:1 (6n ) and give analyttc formulae for representations (characters) and Clebsch
Gordan coefficients. 
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I. INTRODUCTION 

In the last years lattice gauge theories with continuous 
gauge groups have become the subject of many studies, 
mainly using Monte-Carlo techniques. I At the same time the 
interest in such theories with discrete gauge groups in
creased. They are interesting in their own righe but also in 
connection with the continuous gauge theories. Rebbi3 and 
Petcher and Weingarten4 have shown that the SU(2) gauge 
theories can be approximated by using gauge theories de
fined on discrete subgroups ofSU(2); and one hopes to attack 
the important SU(3) of quantum chromodynamics in the 
same way. 

The finite subgroups ofSU(3) are not welI known. Mill
er, Blichfeldt, and Dickson5 and Fairbairn, Fulton and 
Klink6 gave six groups, corresponding to regular polyhe
drons ofSU(3) and two infinite sequences, the..:1 (3n 2

) and the 
..:1 (6n 2

) groups of order 3n 2
, 6n 2

, respectively. In a recent pa
per7 we investigated finite groups of the form Zm s Zn (s 
denotes the semidirect product) of order n'm. Their simple 
structure (semidirect product) enabled us to give not only alI 
representations and characters, but also the Clebsch-Gor
dan coefficients in analytic form. H (For example, we can 
write a simple analytic formula for the characters of pro
ducts of elements which can be used in lattice gauge theor
ies.) These groups include, for example, the two sequences 
Cn andDn of finite SU(2) subgroups. As we will see, they also 
generate new sequences of SU(3) subgroups. These groups, 
denoted here by Tn' are of the form Zm S Z3 where m must 
contain at least one prime factor of the form p = 3n + 1 
(p = 7, 13, .. · but not 5, II, ... ). They are the generalizations of 
the dihedral groups Dn ("Trihedral" groups). 

There is no closed formula for all possible m (essentially 
because there is no closed formula for prime numbers), but a 
possible choice is mn = 1 + n + n2

, n integer. [The con
struction also holds for SU(N) if 3 is replaced by N.] The 
smallest Tm is T7 of order 21. This group is the smalIest SU(3) 
subgroup which is not also SU(2) subgroup. 

The method of representing finite groups as semidirect 
products is not only useful for two factors. We will show that 
also the groups..::i (3n 2

) and..:1 (6n 2
) can be cast into this form; 

namely..:1 (3n 2
) = (Zn ® Zn) S Z3 and..:1 (6n 2

) = (Zn ® Zn) S S3 
(note that for n = 2, ..:1 (3n 2

) is the tetrahedral group T and 
L1 (6n 2

) the octahedral group 0). This will enable us to give 

alSupported by Studienstiftung des Deutschen Volkes. 

again the irreducible representations and coupling coeffi
cients in analytic form, a property which is most useful in 
numerical calculations. 

From the physical point of view we would like to add 
the folIowing note: 

The A (3n 2
) and the..:1 (6n 2

) groups have, in contrast to 
the Dn groups, a nontrivial n-oo limit. For example, the 
A (6n 2

) give (U(I) ® U(I)) s S3 where S3 connects the two 
U( 1 )'S . ..:1 (6 00 2) consists of the elements corresponding to 
the Cartan subalgebra ofSU(3) and combinations of the oth
er SU(3) elements. 

We also note that all the groups Tn' A (3n 2
), and..::i (6n 2

) 

do not contain the center ofSU(3), Z3' This is analogous to 
the situation in SU(2). In this case, the center can be incorpo
rated by making a "central extension" with multiplicator Z2 
(double groups). One might consider such extensions with Z3 

for SU(3) subgroups ("triple groups") . 
The remainder of this paper is organized as folIows. In 

the next section we review the necessary aspects of Ref. 7 and 
identify the SU(3) subgroups of the form Zm s Zn. We give 
the analytic formulae for the representations (the Clebsch
Gordon coefficients may be found in Ref. 7). In Sec. III we 
show how theA (3n 2

) and..:1 (6n 2
) can be written as semidirect 

products and give representations and coupling coefficients. 
The Appendix contains a proof of a theorem in the next 
section. 
II. "DIHEDRAL-LIKE" SUBGROUPS OF SU(3) 

We begin by recalling the most important aspects of the 
groups Zn s Zm· These groups are characterized by three in
tegers m, n, a [we will denote them by G (m,n,a)] which satis
fya n = 1 mod m and (a,m) = 1 (the greatest common divisor 
of a and m is 1) with a < m. The elements of these groups are 
denoted by 

gp, aEln , [3EZm , 

and satisfy the multiplication rule 

"u ,,,u' -"u + a' 
5{35{3' -5{3+a"{3" 

(2.la) 

(2.1b) 

g~ andg~ generate the whole group. The order of the group is 
n'm, An important role is played by I, the least nonzero solu
tion to aX = 1 mod m. It is the dimension of the largest irre
ducible representation of G (m,n,a), n must always be a multi
ple of I. 

The irreducible representations of the groups G (m,n,a) 
are found as follows, First, one has to calculate a set of num
bersjl,j2"",jg as follows:jl = 0,j2 = 1, andjs = smallest 

1543 J. Math. Phys. 22 (8), August 1981 0022-2488/81/081543-05$01.00 @ 1981 American Institute of Physics 1543 



                                                                                                                                    

number not contained in the set Ur I, r < s, with 

{jJ = {j"jr a,jra2 , ... } (2.2) 

andjra" i=jrai mod m if k =/=i. The number of elements (or 
length) of Ur I is obviously at most I; we will denote it by I. 

) 

We must continue this procedure until all numbers Z", 
are used up in the various iii. Defining furthermore, 
vi = nllj (n is always a multiple of Ij ) and letting kjEZ'1' we 
can label the irreducible representations by [kj,j]. Their di
mension is Ij and their matrix form is 

[T[k,Ji(g")] = ,Ja" H'rJck/f's::", 
f3 jal\ia' W II;: ujaIJa" "I' (2.3) 

Here, w = e2rrilm
,E = e2rril /!; the basis vectors are labeled by 

j'ar, r = O,l, ... ,(lj - 1), in ascending order of the j.a r, not of 
the r. Finally, the superscript m on the Kronecker-delta indi
cates thatja' and)d' - n) have to be equal mod m. As an 
illustration let us take m = 7, n = 3, a = 2. Then I = 3, and 
we have Ii = 0 I = 0, Ii = 11 = 1,2,4, and Ii = 31 = 3,6,5. 
) = 1,3 correspond to three-dimensional representations 
whose basis vectors are (e"eZ,e4 ) and (e 3 ,eS ,e6 ), respectively. 
For j = 0 we have three one-dimensional representations, 
labelled by k = 0,1,2. As another example take arbitrary m; 

if we put n = 2, a = m - 1, we obtain the dihedral groups 
D",; the well-known factorization theorem for theDn is easi
ly recovered using a general factorization theorem of Ref. 7. 

We are now ready to investigate which of our groups 
G (m,n,a) are SU(3) subgroups. To do this we require the fol
lowing sufficient conditions: 

(1) The group should possess a faithful three-dimen
sional unitary representation with determinant one. 

(2) To ensure faithfulness we require this representation 
to be irreducible, and the group should not possess irreduci
ble representations of higher dimension. Of course, the sec
ond condition is by no means necessary. But it is convenient 
to impose it, and a complete answer to the problem posed 
this way can be found. On the other hand, in the SU(2) case 
the dihedral groups are just those which fulfill the analogous 
conditions. 

From the second condition we see that n has to contain 
a factor 3 and a J = 1 mod m. 

A factorization theorem in Ref. 7 implies that for 
n = Yq we have G (m,n,a) = G(m,3r,a) ® Zq. We can there
fore restrict our attention to the case n = Y. Now, G (m,3 r,p) 
has representations [k,)], where kE'lyllj for I) = 3, kEZy ,. 
For r> 1 the representations with k = 0 are not faithful; on 
the other hand, for the three-dimensional representations 

det(T 1k J1 (g6)) = E"', E = e2 ;Ti/l'. 

Thus only for the case r = 1 both our conditions can be 
fulfilled. 

It remains to consider the other generator g~. We must 
ask for which m there exists a number a such that for some 
representation [0,)], 

det(TIOJJ(g?)) = ull ' + a + a') = 1. 

This condition can be rewritten in the following form: 

1544 

a=/=lmodm, j(1+a+a2 )=0 modm, 

a" = 1 mod m, ja=/=) mod m. 
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One finds that this set of conditions can be fulfilled whenever 
m contains at least one prime factor p of the form 
p = 3n + 1, nEN. The complete answer to our problem is 
contained in the following theorem. 

Theorem: Let 

m = 3'P'Q, Q = q7'···q;\ q" =/=3z + 1, qK =/=3 

P =p~, ... p:', p" = 3z + 1; q,p prime, 

and not all /3k = O. Then there exists a number a such that 
the group G (m,3,a) fulfills conditions (1) and (2) and is a sub
group ofSU(3). Furthermore, 

(i) if i=/= 1 then G (3 iQP,3,a) = G (3 iP,3,a) ® Zo' 
(ii) if i = 1 then G (3QP,3,a) = G (P,3,a) ® '1..'0' 
The proof of this theorem involves some number-theo

retical considerations and is given in the Appendix. 
The theorem can easily be generalized to SU(n), essen

tially by replacing 3 by n. It may be noted that for SU(2) any 
m =/= 1,2 is permitted because any prime = 1 mod 2 (except 
2). Thus, the dihedral groups D", are defined for all m > 2. 

It is amusing to observe that as n increases the "dihe
dral" subgroups ofSU(n) become "rarer." 

It is a bit displeasing that we cannot give the possible m and a 
explicitly. There is however, one sequence of groups, namely 
the G(l + n + n2,3,n), nEN which always are SU(3) 
subgroups. 

From (2.3) we immediately get the expression for the 
representations and characters: 

3 dim:[T1oJI(g")].,., = ulu,. - "18m
. 

j3 JG .J(J ;o'J(J' (2.4) 

dim:[Tlk.ol(g~)] = E"a, 

2 

XIOJI(g~) = Ioy"'(J8;:a (2.5) 
\ -- () 

The Clebsch-Gordon coefficients may be found in Ref. 7. 

III. THE Ll(3n2j AND Ll(6n2j GROUPS 

In the last section we introduced the dihedrallike sub
groups ofSU(3) and pointed out how their properties can be 
investigated. But the methods applied to them can also be 
used to analyzes.1> the sequencesLl (3n 2

), Ll (6n 2
). These groups 

display a more complicated structure and should reflect the 
properties ofSU(3) in more detail; nevertheless we will show 
that the representations and Clebsch-Gordon coefficients 
can again be given in an analytical form. 

The application of the methods used in Ref. 7 depends 
on the observation that the Ll (3n 2

) and Ll (6n 2) groups can be 
written as 

Ll (3n 2
) = (Z/1 ® Z/1) sZ\, 

Ll (6n 2
) = ('l/1 ® Z,,) s s,. 

(3.la) 

(3.1bl 

S, itself is a semidirect product 7 of the form Z, s '1,2' and its 

elements can be labelled by g~.,rEZ2,rEZ,. Z, is a subgroup of 
S, with r_O (or omitting r). If we identify 7../1 ® '1./1 with the 
two-dimensional module '1.;' over Z/1' spanned by ((\) and Ci ), 
the automorphisms defining the semidirect products in (3.1) 
can be given in matrix form as follows: 

(r,r)~MY N r
, (3.2) 
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with 

(
-I 

M= 
I 

M and N form just the two-dimensional representation of S, 
over Z" , clearly M' = I, N 2 = I. We will denote the trans
pose of M by M. 
The elements of the L1 (6n 2

) are labelled by 

g~' r, rEll' YEl" pEl~, 

and the product rule is 

gr,r'gr',Y' = gr + r',y + 1 - '(y' 
p p p +- /'4 V,V ~p' • 

For L1 (3n 2
) we have simply 

(3.3) 

(3.4) 

(3.5) 

From (3,3) and (3.5) we see that if n = 2, the groups L1 (3n 2
) 

and L1 (6n 2
) are the tetrahedral group T and the octahedral 

group 0, respectively. 
The representations can be constructed using the meth

od of induced representations. 9 We do it for the L1 (6n 2
) 

groups and specialize to the L1 (3n 2
) groups in the end. (We 

give the results without derivation; the method is described 
in Ref. 9). 

First some notation: For an element m = (:JEl~ the 

set 

{m} = {m'lm = MYNrm , YE'l." rEl2} 

= {(m'),(m2),(m2 - m'),(m, - m2), m2 m, -m, -m2 
( -m2)( -m, )} 
m,-m2'm2-m. (3.6) 

is called the orbit of m with respect to S3; its number of 
elements, or length, will be denoted by 1m (obviously, 1m is at 
most 6). Two orbits are either identical or disjoint. 

We can introduce an ordering on the module l~ with 
respect to S,. It allows one to select, in a canonical way, a set 
of representatives for all orbits in l~ with respect to S3' Let 
this set be fl'. To label all representations, we also need to 
introduce the orbits in l3 with respect to l2' There are only 
two orbits/ 0 = ! Oland I = ! 1,21 oflength I and 2, respec
tively. Let R be the set of these two orbits. 

The representations will be denoted by 

(3.7) 

and kz, k, depend on the}, m (see below). We can put} = 0 if 
m#O and m = 0 if}#O. The dimension of(3.7) is 1m or Ij • As 
mentioned Ij = 1,2 and 1m = 6,3 or I in general; if n = 3·z, 

zEN, an orbit (in l~) oflength 2 occurs. It is easy to check that 

10=1, \~)=3, 1(2:,;~)=2, n=3z. 

The number of representations is thusb
: 

n = 3x ~n(n - 3), six-dimensional rep., 
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2(n - I), three-dimensional rep., 

4, 

2, 

two-dimensional rep., 

one-dimensional rep., 
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n # 3x !(n - 2) (n - I), six-dimensional rep., 

2(n - I), three-dimensional rep., 

I, two-dimensional rep., 

2, one-dimensional rep. 

The basis vectors in the representation space of [k l,klJ,m] 
are written as 

eM"N"m;( _ Irj' aEl3, bEll' cEll' (3.8) 
The assignment to a standard Euclidean basis is made ac
cording to the ordering introduced on the module l~ and on 

Z3' 
The number of basis vectors is obviously the length of 

the orbits) or m. The matrix representations are now 

[ T I k 'ok "j,m I (gry) ] 
pi;i"N"m;I·II'j.,W"N"m,{ II'j 

1"",1.·1)"1' ( 1)lmk" ,J11 I)' = (Il, • - ·W., (3.9) 

X M,W, "N "m·N 'Af ;'p 83 
j(- 11'.)( 

with Wj = e2
"i/

j
, and the dot means the standard scalar prod

uct. Although this expression looks somewhat complicated, 
it simplifies considerably if it is used for the particular repre
sentations. For the representations with}#O we can neglect 
a, a', b, b '; if 1m = 3(2) we omit c, c/ and b, b /(a,a'). Only for 
the six-dimensional one's we must keep a, a', b 'b ' (but omit c, 
c'). Notice that for 1m = 3 we must take m = (m,m). 

For the L1 (3n 2
) the expressions simplify considerably. 

We can omit all Z2 indices and also), c, c'. Eq. (3.9) then 
reduces to 

m is now to be taken from a set of representatives of the orbit 
decomposition ofl~ with respect to l3' 1m is I or 3, kEZ3 , and 
we haveb 

n # 3x: !(n 2 
- I), three-dimensional rep., 

3, one-dimensional rep., 

n = 3x: !(n 2 
- 3), three-dimensional rep., 

9, one-dimensional rep. 

Equations (3.9) and (3.10) yield the following for the 
characters: 

L1 (3n 2
): ik.ml(g;) = Iw~1' W:;'M" I'p 8n 

M"m,M O Ym ' 
aEZ, 

1m = 3: Xll<.ml(g;) = t5~.o (w:;'P + W:;'Mp + W:;,M'P), 

1m = I: Xlk.ml(g;) = w:;'P'w~1', 

L1 (6n 2
): 

1m = 6: 
io,O,o,m l(g7) = Iw::,M"NI·P.t5~.8~, 

}=O aEZ\ 

bEZ, 

1m = 3: ik"o,o.ml(g;Y) = I ( - 1 )k,r wM"m'p 

aEZ\ 

j=O 

X (t5r.o Oy,o + t5r .• t5y.a - I)' 
1m = 2: XIO.k,.o,ml(g;n = IW~_l)bk'Y wmNbPt5r,o 

bEZ, 
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(3.12) 

(3.13) 

(3.14) 

(3.15) 
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j=O 
( 

nl3 ) 
m ~ _ nl3 

= 2(\0 co*r(kr + P I - P2)' (p = PI ,P2), 

1m = 0: X(O,O,I,O](grr) = 6 (36 - 1) p r,O y,O , 

j=1 

1m = 0: X(k"O,O,O](g;;r) = (U~,r, 

j=O 

(3,16) 

(3,17) 

(3,18) 

The above forms of the representations can be used to calcu
late the Clebsch-Gordon coefficients [and higher-order cou
pling coefficients (6-j etc,)]. 

We illustrate the procedure for the case of the A (3n 2
) 

groups. We follow the standard method of constructing pro
jection operators onto the irreducible components in the ten
sor products. 10 

Reducing the product representation [k ' ,m'] ® [k ",m"], 
we construct the vectors 

p(k,m](e_, ®e-, ) = "'[T(k,m](gY)]~ 
a MUm' M" mN ~ P M"mlrn 

Y,P 

'(T(k',m'] ® T(k",m"]) (g~)eM"m' ®eM"'m" 

_ '" (/m,k' + Im,k" -Imk )" _ _ 1M"' 
- L.,(U3 UM':."M Ym (Un 

l'm'+M U
• l'm" -M"m)p 

y,p 

'eM", "m' ®eM", l'm" 

311m - I 
_ '" (/m,k' + Im,k" - Imk) Iy - a)" _, _ , 
- ~ (U3 Um,M"m' + MU m N 

y=O 

Thus taking into account that summation over r occurs only 
if [k,m] is one-dimensional, we get 

P 1k
,m) p bk,m](eM"m' ® eM"'m") 

311 - I 
_ ~ (/m,k' + Im,k " - Imk ) Iy - a) 8 _. _ , 
- L., (U3 m,M"lm' + M" a'm") 

y~O 

·eMU'~U Ym' ®eMu"\U l'm ... • (3.19) 

We notice that if 1m = 1 we can add to a' and a" some com
mon integer, say s, and obtain proportional vectors. One of 
them can be selected by restricting a' by 

O';;;a' < min(/m" ,1m ), 

where we assumed 1m, >lm" without restriction of generality. 
From (3.19) the Clebsch-Gordon coefficients follow: 

C(k,m)TI,a 
(k '.m')a',(k ",m"]a" 

= (1m )1/2 Imi 1 3/1f 1 (U~m'k' + Im,k" - Imk) Iy - a) 

3 r~O y~O 

"n 81m , 81m
' " • (3 20) 

XUm.M"lm'+M'm") 1}+a-y,a r+1}+a-y,a • 

The parameter 1] counts the multiplicity of the representa
tion [k,m] in [k ',m'] ® [k ",m"]. It allows one to label in a 
group theoretical way the several copies of [k,m] occuring in 
thedecompositionof[k 'm'] ® [k ",m"]. The possibility to de
fine such a label is closely related to the structure of the 
group as a semidirect product as discussed in Ref. 7. 

To illustrate (3.20) consider some special cases: 
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c(O,m]T/,a _ '" 8n 83 83 
[O,m']a';[O,m"]o" - ~ m,M'} (m' + fVju m") 11 + a,a' u + 7/ + a,a'" 

UEZ 1 

C (k,m) _ I '" - ky "n ,,3 ,,3 
(O,m')a';(O,m")a' - v'3L.,(U3 Um,m'+M"m"Uo',-y Uu-y,o" 

ueZ\ 

y<:Z, 

1m , = 3;/m" = I, 1m = 3, 

C (O,m).a _ - k "a,," ,,3 
(O,m')a';lk ",m" ) - (U3 Um,m' + m" Ua,a" 

1m , = 1m " = 1m = 1, 

qz'~~,).(k ",m" ) = 8!,k' + k" 8;;',m' + m'" 

The coupling coefficients of the A (6n 2
) have been found in an 

analogous way. I I 
All of the above is applicable to any SU(N), For exam

ple, we could define the 
A (N !nN 

- I) = (In ® In ® .. , ® In ) s S N as subgroups of 
SU(N). 

ACKNOWLEDGMENTS 

We thank V. Rittenberg for suggesting that some of the 
groups of Ref. 7 might be SU(3) subgroups and for discus
sions. We thank M, Marcu for many most helpful 
comments, 

APPENDIX 

In this appendix we wish to prove the theorem in Sec, II. 
We first show the following lemmas: 

Lemma 1: IfP = pf''''P~', withp; = 3z; + 1, there exists 
aEZp such that 1 + a + a2 = 0 mod p, To show this we ob
serve that there exist a; such that 1 + a; + a; 2 = 0 mod p;. 
In fact, fromp; = 3z; + 1 it follows that there exists a num
ber, say b; such that 3z; is the smallest solution to b/ = 0 
modp;. (b; is a so called primitive root l2 which exists for all 

prime numbers) Now set a; = b :;, Since a; of. 1 mod p;, the 
equation (a/ - 1) = (a; - 1) (1 + a; + a/) = 0 modp; im
plies 1 + a; + a; 2 = 0 mod p; (because p; is prime). 

Now, using the theory of congruences, 12 it is easy to 
show that there exists an a with the property stated in 
Lemma 1. Furthermore, once a set of a; 's is known, it is 
possible to construct a in a step-by-step fashion. 

Lemma 2: If m = Q'P or m = 3QP, P as in Lemma 1, 
Q = qf""qa" q; of. 3z; + 1 and q; of. 3 and a3 = 1 mod m, then 
G (m,3,a) = G (P,3,a) ® lQ or G (m,3,a) = G (P,3,a) ® l3Q' 

a3 = 1 mod m implies a3 = 1 mod P and a3 = 1 mod Q. But, 
due to the assumption, this implies a = 1 mod Q, The 
Lemma is now a direct consequence of a factorization theo
rem stated in Ref. 7. 

It remains to consider the case where m contains the 
factor 3 more than once. 

Lemma 3: Let m = 3;'Q'P, i> 1. Then there exists a 
such that (a - 1) (1 + a + a2

) = 0 mod m and 
(a - l)aof.a - 1 modm. The first part of the lemma is trival; 
for the second observe that (a - l)a = (a - 1) mod m implies 
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(a - l)a = (a - 1) modp; thus a + 1 = 2a modp and so 
1 + a + a2 = 3 mod p. This implies a = 1 mod P. (See 
Lemma 1.) But according to Lemma 1 there exists ap i= 1 
mod P and ap 3 = 1 mod P. Lemma 2 states that the only 
solution to a3 = 1 mod Q is 1 mod Q. The congruence a3 = 1 
mod 3i has a solution, say a3• Applying now a theorem from 
the theory of congruences, the so-called Chinese remainder 
theorem, 12 we can show that there exists an a satisfying 
a3 = 1 mod 3iQP such that a = ap mod P, a = 1 mod Q, 
a = a3 mod 3i

; thus a i= 1 mod P and we see that Lemma 3 
holds. 

We are now ready to show for what values of m we 
obtain subgroups ofSU(3): 

Therorem: Let m = 3i·Q·P, Q, P, defined above, P i= l. 
Then there exists an a such that the group G (m,3,a) is a sub
group ofSU(3). Furthermore, G (m,3,a) = G (3 iP,3,a) ® 'lQ if 
i> 1 and G (m,3,a) = G (P,3,a) ® 'l3/if i = 1,0. 

Proof If i<.l the theorem follows immediately from 
Lemmas 1 and 2 considering the representation [0,1). Ifi> 1, 
we consider the representation [O,a - 1] and observe that by 
Lemma 3 the orbit of a-I, that is a-I, ala - 1), a2(a - 1) 
has length 3 [that is a-I, ala - 1) and a2(a - 1) are all dif-

1547 J. Math. Phys., Vol. 22, No.8, August 1981 

ferent), thus, [O,a - 1] has dimension 3 and determinant 
(a - 1) (1 + a + a2

) = 1, which proves the theorem. 
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1. INTRODUCTION 

This paper deals with an important application of group 
theory to "nonrelativistic" quantum physics; that of how to 
determine the semi unitary projective representations (here
after SUPR's) of the kinematical group describing the New
tonian universe, namely the complete Galilei group [fj . 

Why the physical interest of this mathematical prob
lem? From the classical works ofWigner l and Bargmann2 it 
is well known that a quantum system which is invariant un
der a group G of spacetime transformations is described by 
means of the representation space of a semi unitary (unitar
y/antiunitary) projective representation of the group G. So 
in order to be able to solve this problem several techniques 
have been developed according to the specific structure of 
the group G, mainly when it is a finite group,3-5 a connected 
Lie group6.7 or a more general kind of topological group. H.9 

Papers devoted to the study of the corresponding problem 
when G is a nonconnected Lie group are seldom found even 
if discrete symmetries have played a very important role in 
quantum physics; for instance, the first paper where the 
problem of the complete Poincare group is considered, is the 
one ofWigner lO although the results of his paper had been 
previously announced by Wightman. II However, the meth
od which was used by him is very cumbersome and it cannot 
be considered as a general method but a very "ad hoc" one. 
The more recent papers by Shaw and Lever l2 and that of 
Ebner I, are also worthy of note. 

In spite of the great importance of the complete Galilei 
group there are very few papers devoted to the study of the 
SUPR's of ,'f, the oldest being that of Brennich l4 to the best 
of our knowledge. However, Brennich studied only some of 
the representations of [I}' and this through the multiplier re
presentations of an auxiliary group. Cattaneo l5 has shown 
how it is possible to determine all the SUPR's of [fj by means 
of the SUR's of a "representation group" for ,~ . In this pa
per we deal with the method of determining such a group as 
well as carrying out all calculations which are needed in or
der to describe the SUPR's of ,C§ . 

The first point to be clarified is that it is not fully correct 
to say "semi unitary representation of G" but "semiunitary 

"This work has been supported by Instituto de Estudios Nucleares. 
"'In part from the Ph.D thesis. 

representation of the pair (G,G + )", where G + is the sub
group. (of index one or two) of the elements of G represented 
by umtary operators: therefore the subgroup G is to be 
specified. In the case of the complete Galilei gr~up ;5' , the 
only four possibilities for a closed subgroup of index one or 
two are 

(i) .'f + = if ou.'Y oP, 

(ii) :~ f = .''l ou:5' oT, 

(iii) :'i , = ;f} oui9 (?T, 
and the trivial case ,'5' f =:9, where ,"lois the connected 
component of the identity. 

The first possibility seems to be the only appropriate 
on~ due ,to analogy with the relativistic case of the complete 
POincare group, but in this case there is an additional rea
son 16: with a different choice for:'/ f ,the restriction of any 
SUPR of (,'f) ,.'9 + ) to :5' () would correspond to a "massless 
representation" of ~ 0 which is unphysical 17 and hence only 
the first possibility will be considered. 

We remind that a representation group Gfor (G,G,) is 
an extension ~f G by a well-defined abelian group A 'i.x; the 
elements of G may be denoted as pairs (a,g) where aEA and 
gEG. There is an epimorphism p:G-+G, p[(a,g)] = g, and 
~erefore ker p is isomorphic to A. Let G, be given by 
G + = r 1G_.,. ). The link between SUPR's of (G,G. ) and 
SUR.'sof(G,G + ) is as follows: if 11 isaSURof(G,G; )such 
that Its restriction to A is a (multiple of a) one dimensional 
unit~ry representation of A, we define the associated SU
PR't' of(G-.:.G • ) by u/I = 1T. if/.S, where s is an arbitrary sec
tion s:G-+G,p's = idG . 

Notice that the subgroup A is isomorphic to the dual 
(relative to some appropriated topology) of the second coho
mology groupH; (G,T). The subscript * is used to denote the 
action of G on T given by A g = A whenever gEG + and 
A 8 = A - I if giG t • 

When the trivial action of G on an abelian group is con
sidered, the corresponding cohomology groups will be de
noted by the subscript O. Finally, when the action ofG on the 
abelian group A is ag = a if gEG +, ali = a-I if giG +. The 
corresponding cohomology groups will carry the subscript 
- [e.g.,Z2 (G,A)]. 

The organization of this paper is as follows: in Sec. 2 we 
find one representation group (:'9 ,;~+ ) to be used in the deri
vation of the SUPR's of (;~I ,:1 t) and its structure is studied. 
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In Sec. 3 we determine the SUR's of (g, g +) which may be 
gotten from the UR's of .C§: + by means of a well-known tech
nique; a great part of these calculations are given in Appen
dices A and B. In Sec. 4 we study the SUPR's of (:'9,.'9+), 
that is to say, we study the classes of pseudoequivalence of 
the SUR's of(:~,g +). Finally, Sec. 5 is a short comment of 
the relation between this work and the precedent ones, as 
well as the physical significance of some of the results which 
are obtained. 

2. THE STRUCTURE OF A REPRESENTATION GROUP 
FOR THE COMPLETE GAll LEI GROUP 

In this section we study the structure of a representa
tion group for the complete Galilei group f3. The group .'9 is 
a semidirect product of the restricted group .'9 () by the 
inversions group V = I I,P, T,PT J (notations as in Levy-Leb
lond's paperIH). The action of the subgroup Von .(fj () is the 
usual one, namely, b changes its sign under T and PT, etc. 
We will denote (g,a) the elements of.'9, withgE.'9 () and aEV; 

g" means the image of g by a. Sometimes we will use the 
notation (b,a,v,A)" = (b ",aa,v",A ), bearing in mind the dif
ferent meanings of b ct, aU, and va. 

As indicated in the introduction, we shall only study 
thoseSUPR'sof.'9 where uZ,(P) is unitary and uZ,(T)antiuni
tary, 16 so that our choice for f3 + is 
~fj + = I (g,a),gE.'9' a,a = I,P I· In this case the representation 
groups have been given by Santander') and Cattaneo. 15 There 
are three nonisomorphic representation groups. Now we 
shall give the necessary details about the structure and the 
construction of one of these groups. The notations and pro
cedures are similar to those used in Ref. 5 which deals with 
the case of finite groups. 

The first step is to know H;;(f3 ,T), where .'f} acts on T 
via V, i.e. I and P act as the identity while T and PT as the 
inversion. The group H! (.'9 ,T) is isomorphic to lR ® C2 ® V, 
and the generic element of this group will be denoted by 
[M,l,m,n], MElR,l,m,nEI - 1,1 J. The isomorphism can be 
derived as in Ref. 15, or in a more pedestrian way by a simple 
analysis of the structure of the factor system of a semidirect 
product following the pattern of Mackey's result 19.20 in an 
adequately generalized way in order to allow a nontrivial 
action.<J·16.21 We refrain from giving the unnecessary details. 
The representation group we are going to use is obtained as 
follows: we choose a homomorphic section 
s:H!UfJ,T)----.Z! ( .'9',T), given by 

s[M,l,m,nj----.[ (g',a';g,a) 
----.exp[iM(ba'v'z + v'R 'a"'j]sAR ',R )wmn(a',a)j, 

(2.1) 

where $1 is a lifting of [l]EH6(SO(3),T) with $I(R ',R) = 1, 
and $ _I(R ',R ) takes only the values ± 1 [for example, the 
one obtained from a section a: SO(3)----.SU(2) as 
aiR la(R) = $ _ dR ',R laiR ',R j],andfinally,wmn is the lift
ingof [m,njEH;(V,T) given bywmn = (m,n,mn,n) in the no
tat ion of Ref. 5 (Sec. 9.2) for the elements of Z;(V,T), i.e., 
explicitly 
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P 
T 
PT 

P 

m·n 

m·n 

T 

n 
n 

Now let us define the applications 
W(g',a';g,a):H;( f3,T)----.T, 

PT 

m·n 
n 
m 

(2.2) 

W(g',a';g,a):[M,l,m,nj----.(s[M,l,m,njH g',a';g,a). (2.3) 

The product of the canonical topology on lR and the 
discrete ones on each C2 endows H:; with a locally compact 
topology making continuous all the maps W( g',a';g,a). The 
dual space of H;; ( .'f}, T) is isomorphic to lR ® C2 ® Vand is 
generated by OElR and by A,I1,v given by 

A [O,l,m,n] = I, ,u[O,l,m,n] = m, 

v[O,l,m,nj = n, 0 [M,l,m,nj = e/IJM. (2.4) 
A 

Hence, WEZ 2_ ( f3 ,H ;; ) and the corresponding extension is 
the representation group we are looking for. The action of 
(g,a)E,'f} in fj:; is the identity or the inversion according to 
aEV + oratiV +; explicitly, ({3and yare always of order two), 

(g,a):(O,{3,y)----.(O a,{3,y), OElR, {3EC2, yE V, (2.5) 

and 0 a = e or - 0 according to aE V + or ati V + (i.e., 0 
transforms as time). In order to obtain an intrinsic character
ization of W, the relation (2.3) can be rewritten, using (2.1) 
and (2.4) as follows: 

W( g',a';g,a) 

= (!b"'v'z + v'·R 'a"',E'(R ',R ),W(a',a)), (2.6) 

where E'is the lifting of the nontrivial element of H 2 

[SO(3),W(SO(3),T)] given by 

{
I if $_dR ',R) = 1, 

E'(R ',R) = 1 
/I, if 5'- dR ',R) = - 1, 

(2.7) 

and where W(a',a) is given by a table like (2.2) with the re
placement m----'11 and n----.v. 

Finally, we obtain the representation group ~ defined 
as the set lR X C2 X V X .'9', with composition law 

(0 ',{3',y',g',a')(O,{3,y,g,a) = (0' + Od + ~ba'v'z + v'R 'aa', 

{3'{3E'(R ',R ),y 'yW(a',a),g'~',a'a), (2.8) 

and it is to be endowed with the unique locally compact 
topology making this extension a topological one. Notice 
that with a different choice of the homomorphic section in 
Eq. (2.1) we would get a different representation group where 
the subgroup I (O,O,y, l,all would not be an abelian sub
group, while in the other aspects it seems much the same as 
this group ~. 

Next we analyze more carefully the structure of ~ . 
First of all, the subgroups 1(0, l,y,(b,a,v,l ),a) I and 
I (0,{3, 1,(O,O,O,R ),1) J determine a semidirect structure. ( {3,R ) 
acting on the former via the homomorphism ({3.R )----.R. 
From (2.7) it is clear the I ( {3,R )1 is topologically isomorphic 
to SU(2). Denoting by A the elements of8U(2). and by 
A a,A v .. ·· the images of a, v,",, respecti vel y. under the rotation 
associated to A, and with a little reordering we will rewrite 
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(2.8) in the form 

(0 ',b ',a',v', A ',y',a')(O,b,a,v, A,y,a) 
= (0' + ° a' +! b (t' v'e + v'.A ' aa',b' + b a',a' + A 'aa' 

+ vb a',v' + Ava',A 'A, y'y W(a',a), a'a). (2,9) 

We must remark that the natural appearance ofSU(2) 
instead ofSO(3) is a direct consequence of the construction, 
and not an "a priori" substitution as in Refs. 12 and 14. Next, 
notice that the universal covering group .'16 of [Ij () which is 
identified with the subset! (O,b, a,v, A, 1,1)) is not a sub
group of -g, but it can be identified with a factor group with 
respect to the subgroup 1(0, y, a) I. On the other hand, an 
invariant subgroup of -g, namely ~ () = ! (0, b ,a, v, A, 1, 1) I 
can be canonically identified with the "projective covering 
group" of ,'51 o' The subgroups ~ 0 and V = 1(0,0,0,0,1, y, a) I 
determine a semidirect structure for -g, -g = -g 08 V with 
action [see (2.S)] 

(y, a): (O,b,a,v, A )-(O",b ",au,va,A). 

It is easy to show that Vis isomorphic to C4 ® C4 gener
ated by (I,P) and (I,T), so that if we forget momentarily the 
Galilean structure implying the appearance of 0, we may say 
that with respect to inversions, the transition from [§ to !9 
involves making tetracyclic the inversions (I,P) and (I, T), 
just as the "double group" trick does the linearization of all 
UPR's of the rotation group and its finite subgroups by mak
ing rotations of angle 1T tetracyclic rather than involutive. 
But in general a similar case does not work, as the elements 
appearing in ~ for the Galilean case show. 

3. THE IRREDUCIBLE SEMIUNIT ARY 
REPRESENTATIONS OF (9, ~ +-) 

A. The irreducible unitary representations of "0 -t 

The ISUR's of (!f), !f} +) are to be found from the irre
ducible unitary representations of the subgroup ?9 + (cf. part 
B in this section) and hence the first step is to know the IUR's 
of -g +. In order to find them, it is advisable to "descompose" 
!Ii + as a semidirect product with abelian kernel (in that case 
it is very easy to apply Mackey'S theory) and fortunately 
such a decomposition is possible. Let T4 and K -+ be the fol
lowing subsets of -g + 

T4= I (O,b,a,O,l,I,I)l. K-+ = !(O,O,O,v,A,y,a),a= I,PI· 

Then T4 is an invariant subgroup of !Ii +, the "extended" 
spacetime translations subgroup which is topologically iso
morphic to IRs. The subset K + is also a subg,E,oup, a~d b.9th 

T4 and K + determine a semi direct structure ,cr; + = T8K-+ 
the action of K +- on T4 is given by 

f, A,y, a):(O,b,a)1-+ (0 + ~bv2 + v·Aa",b, Aa" + by) , 

and it is regular in Mackey's meaning. The whole standard 
theory of induced representations22

•
23 may be used. 

The dual space T4 is topologically isomorphic to IRs too, 
Its elements will be denoted (M,E,p) according to 

(M,E,p):(O,b,a)1-+ exp! i(MO + Eb - pal I . 
The natural action of K+ on T4 is 

(v,A,y,a):(M,E,p)I-+(M,E + v"·Ap + !Mv\ Ap" + Mv) , 

and the orbits are naturally classified in three strata, as 
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follows: 

Orbits Zm, I' = ! (M,E,p)1 M = m, 2mE - p2 = pi, 

m,pER, m#O, 

Orbits Zo." = ! (0,E,p)/p2 = pi, pER, p> 0, 

Orbits Zm} = I (O,E,O) I, EER. 

This orbit structure is the same as the one obtained in 
the absence of P; this result was physically foreseeable. Next, 
we must determine for each orbit Z, (a) the little group, and 
(b) the element ,Y'(x) (arbitrarily chosen) of K + mapping a 
fixed point XoEZ in the generic one xu. 

Orbits Zm"" m#O: This orbit is a three-dimensional 
"paraboloid" of revolution, lying in the hyperplane M = m, 
and with its defining equation E = p12m + p212m. Taking 
pER' as the representative of the point (m, (p + pl)12m, pi, 
the invariant measure in Z m, I' goes to the measure d 3p in R'. 
Here, the action is 

(v,A,y,a):p!-+Ap" + mv , 

(v,A,y,a) ':p!-+A -'(p - mv)" . 

A natural choice for Xo is Po = 0, Xo = (m, p/2m, 0) . Then 
the little group is characterized by mv = ° and hence it is 
SU(2) ® V+. Finally, an element Y(p) of K + mapping Po into 
p is naturally selected as the pure Galilei transformation of 
speed plm, that is, ,.:/'(p) = (plm,l,I,I). 

Orbits Zo"., P > 0: This orbit is a "cylinder" with the 
base the sphere of radius p, S ~, (pC = pi, and a~s E. The 
invariant measure is dil p dE and the action of K -+ on Zo." is 
given by 

(v,A,y,a):(E,p)I-+(E,v·Ap", Ap") , 

(v,A,y,a)-':(E,p)I-+(E - V'p, A -'pa). 

For the fixed point Xo in the orbit, we will take Eo = ° 
and for PO' the "north pole" of the sphere S ~, say, 
Po = (V p)uz . This little group is characterized by Auz = U~' 
and uz'v = 0, and then it is: 

Gz = !(vx.-' Az,y,l), (v",,Az§' y,P)) , 
"11,1' - . 

where v denotes a vector v contained in the "equatorial" xv 

Oxy pla~e, A z denotes an element of SU(2) which is canoni-
cally projected on a rotation around Oz, and § is a fixed 
element of SU(2) corresponding to a rotation of angle 1T 

around some axis contained in the Oxy plane. A possible 
choice which we shall take is § = iay • The structure of this 
little group is given in Appendix A, and let us only quote 
here that it also appears in the relativistic case."4 Finally, for 
f(E,p) we will choose 

/(E,p) = (Eplp, L (p),I,I), 
where 

{

I + (a·p/V p) az 

L(p)= [2(I+pJvp)]'/l 

-§ 

for p#(O,O, - Vp), 

for p = (0,0, - Vp), 

(3.1 ) 

is the usual boost ofSU(2) in S:,; the only discontinuity is in 
the "south pole" and the election of - § in that point is in 
order to preserve continuity along the "meridian" qJp = 0. It 
is not possible to select ,Y(p) depending on p continuously 
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over all S ~ .25 
Orbits ZOOE : This orbit reduces to one point, so that the 

little group is K +. 

Now we have all the information needed in order to 
apply Mackey's theory. The irreducible representations of 
every little group are collected in Appendix A. The explicit 
expressions of the operators in a given representation do not 
depend on more choices than the ones previously made. In 
each case we give the operator U(P) = U(O,O,O,l,I,P) an ex
plicit expression which is very relevant for the induction of 
the ISUR's of(~, ~ +) at a later stage. The labelling adopt
ed for the IUR's of ~ + follows the pattern of the notations 
oflnonu and Wigner '7 and Levy-Leblond IX for the IUR's of 
the proper Galilei group. 

IUR'sof~ + associated with the orbit Zm,p: The family 
Dj , <,,<,. < of represen~tions of the little group gives rise to a 
"kind" ofIUR's of fI} + denoted by m[p,j,E I, E2, E], mER, 
m ¥O, pER, 2jEN, EI, E2, EE! 1, - 1]. The carrier space is 
,y2(R\---+C2j + I,d 3p), and the operators themselves are 

[ U(e,b,a,v,A,y,a)¢l(p) 
= exp[i(me + [(p + p2)12ml b - pall 

X !Zij(A ) ..:1'" <, «y,a) ¢(A -I(p - mvt) . (3.2) 

For the parity 
[U(P)¢](p) = E¢( - p) ifE,'E2 = + 1, 

[U(P)¢](p)=iE¢(-p) if€,'E2 = -1. (3.2a) 

fUR 'sof~ + associated with the orbit Zo,p: Correspond-
ing to the three series of IUR's of the little group, I, II, and 
III, we have here three series, which will be denoted II, , lIn' 
and I respectively, 

II, (p, EI, E2' E): pER, p > 0, E" E2, EE [ 1, - I]. The car
rier space is 'y2(R xS ~~C, dE dflp), and the action is 

[U(8,b,a,v,A,y,a) ¢](E, p) 
= exp[ i(Eb - pa)] ..:1"<' «y, a) ¢(E - vp, A -Ipa) (3.3) 

and 

[U(P) ¢l(E,p) = {. E¢(E, - p).ifE"E2 = 1, 
IE¢(E, - p) If EI'E2 = - 1 • 

II" (p, h,EI, E2): pER, p > 0, 2hEN, EI, E2E! 1, - I]. The 
carrier space is 'y2(RxS~_C2, dE dflp) and the represen
tation is 

[U(e,b,a,v, A,y,a) ¢](E,p) = exp[i(Eb - p'a)] 
XDh<, <, (L -I(p) AL (A -Ipa), y, a) ¢(E - vp,A -Ipa). (3.4) 

Particularization for P here is slightly involved, and it gives 
(Appendix B) 

[ ° /Oih'Pp] , 
[U(P)¢](E,p)= (1)2h -2ih'P 

- E I E2 e P 

where ipp is the 'azimuthal" polar angle ofp given in Appen
dix B (see the comments after B). 

I(p, x,1], E I, E2): p,xER, p, X> 0, 1]E [ l,i, - 1, - i], 
EI, E2 ! 1, - I]. These are the most complex because of the 
infinite dimensionality of the representations of the little 
group. Through obvious identifications the carrier space is 
(isometric to) 

'y2(S! X R X S ~ ,dipk dflp dE) 

and the expression for the operators is 
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[U(e,b,a,v, A,y, a) ¢)](k,E,p) 

= exp! ilL (p) k·v + Eb - pa)] 
X..:1'1.,.,('y-'(k)L -'(p)AL(A -I pal 
x,Y([L -'(p)AL (A -'pa)]-'(ka)),y, a) 
X¢([L -'(p)AL (A -Ipa)] -I ka, E _ vp, A -Ipa) , 

(3.5) 

where L is given by (3.1), and ,Y by (A6). Particularization 
for Pis not trivial here, either, because of the intricate nature 
of the element of the little group to be represented. The ex
plicit calculation (Appendix B) gives 

[U (P) ¢ 1 (ip, E,p) = 0'1" <, (ip,ipp) ¢(2tpp - ip, E, - p) , (3.5a) 

where kES! is biunivocally represented by its azimuthal an
gle and the function 0'1"" (ip, ipp) is defined in (B4). 

IUR's of ~ + from the orbits ZOOE: Corresponding to 
the three series of IUR's of the little group, I, II, and III, we 
have here three series, called IV, III" and IlIn' respectively. 

IV(E,j, EI, E2, E): EER, 2jEN, EI,E2,EE! 1, - 1], The car
rier space is C 2j + I and the operators are 

U(e,b,a,v, A,y, a) = eiEb !Zij(A) ..:1., <,«y, a), 

{
E if EI' E2 = 1, 

U(P)= .. 
IE If EI' E2 = - 1. 

(3.6) 

(3.6a) 

III, (E, X,E I, E2, E): EER, XER, x > 0, EI, E2, EE ! 1, - 1]. 
The carrier space is 'y2(S; _C, dflk ) and the action 

[U(e,b,a,v, A,y, a) ¢](k) 
= exp[i(Eb + kv)] ..:1<,.,.(y, a) ¢(A -I ka), (3.7) 

and 

[U(P)¢](k)= {~¢(-k) ~f E
,
'E2 =1, (3.7a) 

IE¢( - k) If EI'E2 = - 1. 
IlIn(E, x, h, E1, E2): EER, O<xER, 2hEN, 

EI, E2 E! 1, - 1], The support space is 'y2(S;_C2, dflk ). 
The operators themselves are 

[U(8, b,a,v, A,y, a) ¢](k) 
= exp[i(Eb + kv)] Dh •• <,(L -'(k) 

X AL (A -I ka), y, a) ¢(A -I ka). (3,8) 

For P, matters are similar to case lIn' and here 

[ U (P) ¢ ](k) = [ ° . e
2

0

ih
'Pk] . 

( - IfhE, E2 e - 2,h'Pk 

These seven kinds of representations given by (3.2)-(3.8) ex
haust all IUR's of ~ +. When restricted to the "projective 
covering" for the connected Galilei group, only types II" 
and III" reduce in a direct sum of two, whereas all others 
remain irreducible, so that an effect of including P is the 
mixing ofhelicities hand - h. 

B. The irreducible semiunitary representations of ~ 

A basis-free version of the well-known Wigner's pro
cess26 of determining the ISUR's of a given group from the 
IUR's of the "unitary" subgroup (of index two) has been 
given by Shaw and Lever,27 and we shall follow this method 
without further comments. Notice that Shaw and Lever 
study the more general problem of obtaining multiplier 
ISUR's; with our method multipliers do not appear because 
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TABLE I. Wigner types of m( p,}, EI , EPI , E) representations of ,'Ii o. 

E I cl'l E, E, [U(TIf [U(PTIl' 

+ + (_)'l (_)'1 ( _)2j (_)2) 

+ - _(_I'l (_)'l (_)') -(-I') 
- + (_)2l _ (_ )21 _(_I'l (_)2j 

_(_)2l _(_)2l _(_)'l _(_)2l 

of the use of a representation group. 
The application of the method consists of, first, the se

lection of a fixed element goE?1 - ?1 +, second, the classifi
cation of IUR's of ?1 + in Wigner types according to the 
relationship of between U and ug· where Ugo(h) 
= U (go~ 1 h go), and third, the construction, for each U, and 

depending on its type, of the associated semiunitary repre
sentation 04' (Ref. 27, Theorem B). We only quote the crite
rion of classification in Wigner types and the expressions for 
the associated SUR, 04', for the elements hE?1 + and the ele
ment goE?1 - ?1 +. Of course, 02-' (hgo) = 04' (h ) 04' (go) in all 
cases. 

Type I: U and ug· are antiunitarily equivalent, and the 
anti unitary operator V, realizing the equivalence, verifies 
V2 = + U ( g6). In this case 02-' (h ) = U (h ) and 04' ( go) = V. 

Type II: U and ugo are antiunitarily equivalent, and 
V2 = - U( g6). Here, 

02-' (h ) = [UO(h ) 0] 
U(h) 

while 

[ 0 yo] . °2-'(go) = _ V 

Type III: U and ugo are antiunitarily inequivalent. 
Now, 

~(h)= [Uo(h) 0 ] 
][( U goth )][( - 1 

and 

[
0 U(g60) ][(-1], 

04' ( go) = ][( 

where ][( is an arbitrary but fixed anti unitary operator. We 
will choose the complex conjugation: in this case ][( = ][( - I. 

Different selections of the arbitrary element 
g E?1 -?1 would lead to equivalent results. There is a () + 

particularly suitable choice, namely 

TABLE II. Wigner types of 1111 (p, h, En EPT , E) representations of !'f +. 

E, CP"l E, E, [u(TIF [U(PTIF V 

Wigner 
U-UI'I V '\/' type Doubling 

(/)§) (_)21 I no 

f- III yes 
f- III yes 

'J}I§) (_)'l II yes 

go = PT = (0,0,0,0,1,1 ,PT). In this case the automorphism 
h~go~ 1 hgo of ?1 + is given by (e,b,a,v, A,y, a) 
~( - e, - b, - a,v, A,y, a), that is to say, PTacts as the inc 
version on T4 and as the identity on K + [for the calculation 
notice that go 1 = (0,0,0,0,1, ,£L,PT)]. Then U and U PT differ 
systematically through a complex conjugation in the charac
ters and coincide in the corresponding little group represen
tation. Each anti unitary operator can be factorized as the 
product of a fixed anti unitary invertible operator Uust we 
take ][() and some unitary operator V, say V = V·][(, so that 
antiunitary equivalence/inequivalence of U and U PI trans
lates to unitary equivalence of U and ][( U PTlK. But U and 
][( U PT][( coincide in the characters as well as in the transfor
mation of the arguments due to our particular choice; the 
investigation about the Wigner type of each U is very easy 
because U and ][(U rr][( differ only in the little group repre
sentation, say, D and lKDlK. Notice that U ... €, £,'" (PTf = CI 

in every representation. 
In order to give a unified form to the following results, 

the substitution of CI' C2' by a new set ofindces cT and CPT 

turns out to be convenient. The relation between both pairs is 
2'[ ]2 2' CT = ( - ).J U'-j£, £,'" (T) = ( - ).J C2 , 

CN = ( - )2j[ U .. j £, £, .. (PT)]2 = ( _ )2J CI , 

where) is the spinlike index of the representation, that is, 
} =} for m representations,} = h in 1111 and IIIII , and} = 0 
otherwise, From now on we shall use cT and C PI as represen
tation indices while CI' c2 will be understood to be auxiliary 
variables, defined in the representation U .. 

J
£, £,'" by 

CI = ( - )2j CPT and c2 = ( - )2j c7" The couple (CI' CPI) will 
be called the type of the corresponding ISUR, 04', of 
(?1, -g +) and it is to not be confused with the Wigner type of 
U. 

Now we shall study each case separately. 
m( p,}, cn CPT' c): Here the representation fiJ j ® .1£, £, < 

and !iJ j ®.1 ~, £, £ are to be compared. They are unitarily 

Wigner 
,\/2 type Doubling 

+ + (_ )'h (_ )2h (_ )'h (_ )2h [( _0)2h ~] ( _ )2h no 

+ _ (-)'" (_ )'h (_ )2h _ (_ )2h L(~)'" ~] _( _ )2h no 

+ (_ )2. _( _ )2. _( _ )2. (- )'. 
[_ (~)'h ~] _ (_ )'h II yes 

_ (_ )2h _ (_ )2h _ (_ )2h _(_)2h 
[( _0)2h ~] (_ )2h II yes 
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TABLE III. Wigner types ofI(p,x, 11, En En) representations of?1 ~. 

Wigner 

1] E[ Ep[ E, E, (U(T)]' (U(PT)l' U~UPT V V' type Doubling 

+1 + + + + + 
+, + + + 
+, + + 
+1 
±i E{ CPl eVI E[ f[ 

equivalentiffE,E2 = ET En = I, with V= 9 j (§), while they 
are inequivalent ifc, c2 = ET EpT = - 1. Thesituationisde
picted in Table I, where - means anti unitary equivalence. 

II, (p, ET , CPT! c): The comparison being between 
,1.,." and ,1 :. e," the results are the same ones as those 
obtained in the m-case with} = 0. 

II,,(p, h, ET , CPT' E): In this case the representations 

D h .,., and D ~., <, are always equivalent; we can take 

[ ° V = 2h 
( -) C1 CPT ~] , 

then y2 = ( - )2h CT CrT' The results are given in Table II. 
I( p, x, 77, ET , CPT): If 77 = + i or 77 = - ithe represen

tations Dx ."., 'PI and lKDx ." <1<PIK are not unitarily equiv
alent; on the other hand, when 77 = + 1 or 77 = - 1 they are 
equivalent with V being the operator fix defined by 
[fix I 1(k) = I( - k). In this case y2 = 1 (see Table III). 

IV( j, ET! Epro c): The results are identical to those ob
tained for the case m(p,j, E T , EpT! E) 

III, (E, X, E1 , E PTo E): The results are the same ones as in 
the case II, (p, EroE PT' E). 

III" (E, x, h, E T , EPT): The results are identical to those 
obtained for the case 1\, (p, h, Ero En). 

C. Explicit form of the irreducible semiunitary 
representations of (g, !1 +) 

With the preceding results we are able to give the uni
tary equivalence ~as~s of the irreducible semiunitary repre
sentations (1/ of(.c9', .c9' +) explicitly. Taking into account the 
relation (B,b,a,v, A,y, a) = (B,b,a,v, A,y, 1)·(0,0,0,0,1, I, a), it 
will be sufficient to give the unitary/antiunitary operators 
ub-'(a) because ua(B, b,a,v, A,y,I) will be given by 

'i'(B,b,a,v, A,y, 1) 

{

U(e,b,a,V' A,y, 1) 

= (Ua:; U)(B,b,a,v,A,y,l) 

(U a:; UPT)(B,b, a,v, A,y,l) 

if U belongs to type I 

if U belongs to type II 

if U belongs to type III 

More details are shown in Table IV. 
Notice that the element (0,0,0,0,1, 1, T) can be factorized 

TABLE IV. Induction ofa ISUR 11 of(,-;, .9 ,) from a IUR U of ,?ij +' 

[U] WignerType ",(PI 

U'k.-U 
, 
v'~ [UIPTI]' 

UIP) 

II 

(~ ~) U(PI U"~Y 'uv v' ~ - [U(PTI]' 

IU.U'''j III (Ubi KU~)J 
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+ 

+ 

CrT 

11', no 

11'x II yes 

11', I no 

11', II yes 

,;., III yes 

as (0,0,0,0,1, I,T) = (0,0,0,0,1, /.lV, P )-(0,0,0,0,1, I,PT) and 
hence w (T) = w!/.lv, P). w (PT). Furthermore, P is in K + 

and then U PT (P) = U (P), so that in the following table we 
have omitted the ineffective PT in W (P) for type III 
representations. 

The application of the process on every representation 
leads to the results displayed inTable V. The operator K is 
the complex conjugation (K/)(x) = I*(x) for the functions 
defined in each orbit. 

Finally we may state our result. All classes of unitary 
equivalence oflSUR's of(~, ~ +) are contained in Table V. 
We refer to all preceding results (3.2)-(3.8) for the explicit 
expression of a representation in each class. 

4. THE SEMIUNITARY PROJECTIVE 
REPRESENTATIONS OF (.c9', .c9' +) 

Each ISUPR of (.~, ~ +) can be lifted to some ISUR of 
(~, ~ +), but two SUR's of (~, ~ +) can give rise to unitari
ly projective equivalent ISUPR's of(~, fY +). So, for a clas
sification of the unitary projective equivalence classes of 
ISUPR's of (fY, ~ +) we must answer to the following ques
tion: when do two ISUR's of(~ ,~) lead to unitarily projec
tive equivalent ISUPR's of (~, ~ +)? 

From the practical viewpoint, the answer to this ques
tion is contained in the following lemma, whose easy verifi
cation is left to the reader. 

Lemma: For the unitary projective equivalence of two 
ISUPR's of (.c9', .c9' +) obtained from two ISUR's wand ua' 
of (?1, ?1 +), a necessary and sufficient condition is the uni
tary equivalence of wand r ® ul/' for some continuous 
crossed homomorphism r. 

The group Z ~ (~, T) of all continuous crossed homo
morphisms ~ -+ T is easily calculated. It is closely related to 
the set of semi unitary one dimensional representations of 
(~, ~ +): it is obtained by removing a complex conjugation 
from the latter. WehaveZ~(~, T)~T®lR®C2' The 

crossed homomorphism (e i
"', E, E) with EER., EE ! I, - I] is 

given by r(B,b,a,v, A,y,l) = e
iEb

, T(P) = E, F(T) = ei(U E, 

"kiTI 

UII'>'IU(PIV 

( 
0 U(v.PI) 

U(l'v) KU(P)K 0 K 

",(PTI 

v 
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TABLE V. The [SUR's of Iii. 'I ,I 

Representation class I U lor! V,V!!,'l 

mpj+ + { 

mpj+ - +: mpj+ 

m(pJ.£ "({'I.EI mpj ~ + + ;mpj - -t-

mpl - - £ 

p+ +€ 

II,(p.E"EPI ,€) p+-+:p+ 

p-++p-+-

p- - f 

ph+ + 

ph + -

IIlIl.p,h,f 1 ,f rr ) 

ph - + 

ph- -

t"" px']+ -

'7~ ± 1 
px']- + 

px']-

IIp,x, .",f T,E PI ) 

p,x,i, + , + ;p,x, - i, + + 

p,x,i, + , - ;p,x, - i, + 

p,x,i, - • + ;p,x, - it - , + 

p,x,t', - , - ;P,X, - I, - , -

"<'IPI 

<11m 

[~ 
[~ 
[~ 
Ell" 

[~ 
[~ 
[~ 

~J[[m 

~Ilillm 
~l,nm 

a ]m" -I 

a ]m" -I 

~]Enll 

[I-I"E, E,+] 

[ _ I _ I"E, E,'] 

E; 
_(_)111£;, 

E,' 

I-)"E, 

']n, 
(~ ~)']S 

']S 

(~ ~)']n, 

(~ ~JiS 
(~ ~ l)iIl, 
(~ ~ ,)m, 
(~ ~ l)iS 

E'] 
-'-Y':.] , 

(_)211£1, It 

IV (EJ,f I ,f PI ,E) 

III, (E,XtE I ,f PI ,f) 

Identical expressions to those of class m IpJ,E7,fpp f) with /I ",-IlIV 
Identical expressions to those of classes 

IIII[ (E,x,h,E r ,En) ([[,IE'X"PE P"')) with (n,:~lT,,:) 
1111 (E,x,h,EpEpT ) E J,- -+F /r" 

'lilT( 

€'/,ISlnmK 

[~ 1~1'}[mK 

[~ 1~1'}lmK 

[~I ~]Ey,ISlnmK 

fIlu K 

[~ ~]ilI"K 
[~ -I] o illilK 

[~I ~]Ell"K 

[E; E, ]I-)"K 

[E ,+ E ,_]1 - )"K 

E/rt 

-EJ," 

-E,,-
E+ , 

-E/r" 
-E/r-

,]n,n,K 

C - I) a ,]sn,K 

- ,]SlI,K 

(~ 1 ~hll,lI,K 

(~I ~)iSK 

(~ ~)m,K 

(~ - I) o in,K 

(~ 1 
-1) 15K 
0 

rl(PT( 

:/,ISIK 

[~ I~)'} 

[~ I~I'} 

[~I ~]Y/ISIK 
K 

[~ ~I]K 

[~ ~]K 
[~I ~]K 

[I_I"I]K 

[_I_)"I]K 

[,. E, 
_1 2hK 

-(-)" 

-I 

['-Y' 
E, 

_)2hK 1-)" 
-I 

lI,K 

(~ 1 
1)1I K 
a ' 

n,K 

(~ 1 ~)lI,K 

(~ ~)K 
(~ -I) a K 

(~ ~)K 
(~ ~I)K 

Observations 

[lim flip) ~ 11- pi 

§~ [~I ~] 

ll"/IE,p) 

~ IIE,-p) 

[E; IlIE,p) 

~ e """ liE, - p) 

'} 
'} 

[II, fll<P.,E,p) 

~ 1(2'1', - <P.,E, - p) 

[IT.fll<P.,E,p) 

~ 11'1'. + 1T,E,p) 

[S/H<P.,E,p) 

~ n(<P.,<P,)/12<P, - '1'., 

E, -pI 

n,v =Id(:lJ" 

[nlll/](k)i~ II -k) 

[F; Ij(k) ~ e",s"/lk) 

'<j' 
L!) 
L!) 

Qj 
-0 c: 
$9 
c 
~ 
~ 
-0 

~ 
CO c: 
~ 

a 
u: 
-i 

.,... 
a> 
a> 

'lii 
j 
Cl 
j 

« 
ctS 

~ 
~ 

~ 

~ 
a.. 

~ 
~ 
-; 

'<j' 
L!) 
L!) 



                                                                                                                                    

r(PT)=e iw . 
The crossed homomorphisms (eiw,O, 1) are principal ho

momorphisms, so that only those of the form (1, E, E) are 
effective in making unitarily projectively equivalent two 
ISUPR's of (fg, fg +) obtained from two unitarily inequiva
lent ISUR's, CZt and CZt' of (~, ~ +). 

All these crossed homomorphisms are generated by 
r E.I and roo _ I ; we will study for each class CZt of ISUR's of 
(~, ~ +) the products r E.I ® CZt and roo _ I ® CZt as well as 
giving the operators W realizing the equivalence r E, E ® CZt 
= W - I uk" W, when CZt' and r E. E ® CZt are equivalent. 

m( p,j, ET , En" E): Here the representation 9) ®.J E , E,' 
and !:iJ t ®.J ~ E, E are to be compared. They are-unitarily 
equivalent iff EIE2 = ET EpT = I, with V = gj(§), while they 
are inequivalent ifEI E2 = ET EpT = - 1. Thesituationisde
picted in Table I, where -a means antiunitary equivalence. 
r o. 1 ®m(p,j,±, ± ,E)=m(p,j, ±, ± ,-E)and 
hence the eventual index E also appears when considering 
projective equivalence. All other indices remain because of 
the relations roo -I ® m(p,j, +, - )-;::::m(p,j, +, -) and 
r o._ I ® m(p,j, -, + )-;::::m(p,j, -, + ); the W's are equal 
to 

_ ( _ )2j] 
o , 

and 

[~ 
( _ )2)] 

o , 
respectively. The corresponding ISUPR's of (fg, fg +) are 
characterized by the indices m(j, ET , EpT ) and will be denot
ed as m(j, ET , EpT ). 

II t (p, ET , En""): Now rE',1 ® IIdp, ET' EPT ,.··) 

-;::::lIdp, E1" EpT,"'), with Wbeing given by [WE' f](E,p) 
= fIE + E', pl· For roo _ I the situation is similar to that of 

the preceding case, withj = O. We obtain the projective re-

presentations labelled as follows: lIt (p ,E 1" E PT). 

lIII (p,h, E1" En.): for r E,O the situation is analogous to 
the case III' Now r o, _ I ® lIn (p,h, Ep E PT) 

-;:::: I\dp,h ,En En') with 

W= [~ 
and 

O. J, aER for E T = + 1 
-fa 

We obtain the projective representations II" (p,h, EnE PT)' 

I(p, x, 1], ET, En.): The operator WE' defined by 

TABLE VI. The irreducible semiunitary projective representations of (,if , .'fJ' t). 

Projective equivalence class 

m(j, £1' E",) 

l(p,X.1/,E/,Ep ,). 7J= l,i 

~(P.El,EI"J 

_!.!.!.!..!p,lr. E" f",) 

.!..!.!.!..Lx,E,t En ) 

..!..!.I" (x, h, E,. £,.,) 

IVIj.E/,f"I'I) 
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[WE'f](lPk' E,p) =f(lPk' E + E',p) realizes the equiv
alence between rE'.1 ® I(p, x, 1], E T , E pT ) and 
I( p, x, 1], ET , EpT ). For remaining crossed homomorphism 
r o, _ I we have the following results: a) when E = 1] = ± i, 
roo _ I ® l(p, x, E, En EpT ) = I( p,x, - E, Er , EpT ), so that 
1] = 1 and 1] = - 1 lead to projectively equivalent ISUR's of 
(fg, fg +); b) when 1] = ± i, then roo _ I ® I( p,x, 1], E1" EN) 

-;::::I(p,x, 1], E T , E pT ) with 

W= [ 0 
a + ib 

- a + ib] o ,a,bERfor EPT = - 1. 

and 

W= [ 0 
ai + b 

- ai + b] o ,a,bERfor EpT = + 1. 

The projective equivalence classes of ISUPR's of (fg, fg +) 
will be denoted l(p,x, 1], En EPT ) with 1] = l,i. 

IV(E,j, En EpT , ••• ): Now rE',1 ® IV(E,j, Er , EpT"") 

= IV(E + E',j, Er , E pT ,.")' For roo -I we obtain the same 
situation as in the case m( p,}, Er , E pp ... ). The ISUPR's ob-

tained will be denoted IV(j, ET , EPT)' 

1111 (E, x, ET , EpT'''') and III" (E, x, h, E T , EPT): The 
product by r E ',I "shifts" by E', as in the preceding case. For 
ro, _ I we have the same results as in case III and lin. The 

corresponding ISUPR's of(fg, fg +) are IlIdx, ET' EpT ) and 

IIlu (x, h, ET , EFT)' 

Finally, we give in Table VI the classes of projective 
equivalence ofISUPR's of(fg ,fg +). However, we must re
mind you that the knowledge of all its irreducible compo
nents up to projective equivalence such as given in the first 
column of Table VI is not sufficient for a complete specifica

tion of a decomposable SUPR 'r of (fg, fg +). The use of a 
representation group permits us to enounce this fact in a 
clear way: let r be a SUR of (~, ~ +) lifting ·Y·. Then r 
(and hence r) can be completely specified (up to equiv
alence) by giving all its irreducible constituents (which are 
given in Table V). Hence in Table VI we have paid attention 
to the disappearing indices which act as "relative phases" 
between the different irreducible constituents of a given de
composable SUPR oft fg, fg +). From this viewpoint the role 
of the internal energy was stressed by Levy-Leblond. 1M We 
point out that when inversions are taken into account there 
are in some cases indices (like E) which appear as relative 
parities and therefore they are physically relevant for nonele
mentary systems. 

5. COMMENTS AND CONCLUSIONS 

First of all, let us remark that in spite of Bargmann's 

Disappearing indices 

p,Ewhen£1 Epi = I 

11 when." is real 

£whenE1 EpI = I 

E. f"when f", f"p( = 1 
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comment (Ref. 2, p. 2) the problem of adjoining the inver
sions to a given kinematical group (either Poincare, Galilei, 
or any other) in order to study its ISUPR's is far from trivial. 
In fact, the first systematic study of this problem in the case 
of Poincare group 9 was carried out by Wigner 10 by a direct 
method which is rather involved (essentially an induction 
from the representations of the connected proper group ;/jJ 0)' 
As Wigner said "the amount of computation that was neces
sary··· (only in order to include P)···is surprising. I do not 
know how this calculation could be simplfied." The same 
problem was later studied using, in all cases, various auxil
iary groups by Shirokov,28 Parthasarath/ll

, and Shaw and 
Lever. 12 The Galilei group plus inversions was also studied 
by Brennich. 14 

The new method we have employed needs only one aux
iliary group (the representation group) and the reduction of 
the projective problem allows a full use of our background 
knowledge of the theory oflinear representations, making 
unnecessary the direct study of the projective or multiplier 
case. The Poincare group has also been studied by us from 
this viewpoint.24 

Brennich's interest was limited to the physical classes, 
m and II representations. We feel it useful to spend a little 
time in comparing his methods and results with ours. Bren
nich's construction of the ISUPR's of(.~, :1 +) proceeds via 
the multiplier representations of an auxiliary ~p~which is 
introduced a priori. This group, called by him FIOO, is arbi
trarily selected to be one of the eight candidates to universal 
covering of .~ (see also Ref. 13 in connection with this for the 
case of .'/j"). The group 'F'iGti is only the factor group of our 
?j by the subgroup [(e, y) I corresponding to only a part of 
the kernel ff!. (.~ , T). Thus, Breenich's method only "weak
ens" the pr~e character ofthe pertinen t representations 
because of FIGG being in some sense an "intermediate 
group" between :1 and ~ . ~ 

The multiplier representations of FIGG have factor 
systems which have lost the part sdR ',R), because of the 

TABLE VII. Pseudoequivalcnce of Brennich's reprc!<.eO[atiom. with our!!. 

rt 1/ U,ero""h V 

m( p. J. ~ , + . €) Im.j.pl. (1-1 

mlp.}. + .-1 Im.j,pl [~ 
mll'.j.· . + I (m.j.pl . , . [~ 
m!p,). --. .<1 (m,j,pl,' 

a. 

a, 

1I,,!p. h. +. + I 10, h,pl' , [~ 

i[~ 

1i"lp. h. +." I 10, h,pl [~ 

I1 l1 (p. h. -, +) 10. h,pl [: 
II"lp.h .... - I (0, h.pl' [: 
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if 

if 

replacement ofSO(3) by SU(2). In our method this replace
ment follows as a natural consequence, and furthermore, it is 
clear that the extension from .(fj to ~ is a minimal one in 
order to make the projective character of the representations 
fully disappear. It has also been shown elsewhere7 that the 
transition from some connected Lie groups to their represen
tation groups does not always reduce to the replacement of 
the group for is universal covering group, although this re
placement works for some splitting groups which are easier 
to handle than representation groups. 

Our intention has been to show how the method of ob
taining all ISUPR's from a representation group works in an 
interesting but not fully studied case. To carry out the com
parison ofthe representations in classes m and II, we intend 

~ 

our representation to be ~lie~representations ofFIGG 
by means of the section FIGG~."fj given by (U,v;a,it; t." t/) 

~(O, a,a,v,U, I, a), where on the left-hand side Brennich's 
notation is used. On the right-hand side we use those of this 
paper; a is the inversion corresponding to the pair (t" t/). 

Then the representation we have denoted 
m(":i, tn tPl"") (resp.Il( ... , h, E T , tPl) is pseudoequivalentX 

to Brennich's one ( ... j); (resp. ( .. ·h )~<, the linking ofthe nota
tions being E+--->( - 1)2j tr, X~trtpr' 

Brennich's multiplier ("',j,."):: is (J)~~I 1"< (see Sec. 18 
and 19 of Ref. 14). Cumbersome but straightforward compu
tations show the already indicated pseudoequivalence 
z...( g, a) = A (g, a) V11 H( g, a) V-I, with A depending 

only on a, and (A, V) is given for each case in Table VII. In 
this table ,1(1) = 1 and A (PT) = A. (P)'A (T). 

Now we shall discuss the structure:;; = :;; 08 V of the 
representation group a little. The reason for the analogy with 
:fj = .'5 08 V is because of H ~ (.'1 ,T) = H 6 (.'9 0 , T) 
® H ~ (V, T), or in more pictorical terms, due to the absence 
of an "interaction part" [as A (g, a) in theorem 5.60fRef. 20] 
in the expression of the factor system of the complete group. 
This structure which also arises in the relativistic case24 ex
plains why the consideration of group Valone, succeeds in 

i(PI ,\(TI 

<=1 
f= 

:;.,0 1~ll 

/(SI1 
if € --= I 

if <~ - I 
1-°1" 1 jf h integer 

° 1 '~ If h half odd 
1- I' 

i! 0 I" 1 I )2h 

0 

"oJ 
il I'" 

1 -I'" 
.. I 

° 

° 

I-"J 
(--I" ( __ 1:'1, 
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giving all "types". But the point to be stressed here is that 
this result could have been different (for instance, when the 
interaction part is not trivial). Even in this case a separate 
consideration of -g 0 and V is not fully satisfactory, because 
there are some ISUPR's of (:§, :§ +) whose projective equiv
alence class is not specified by its restriction to -g 0 and its 
type (viz., class I; index YJ can attain two different values). 

For physical representations, i.e., classes m and II, the 
situation is very similar to the relativistic case?4 The ele
ments of H! (f!j , T) can be interpreted as originating super
selection rules, according to the well-known Bargmann's ar
gument about mass in Galilean quantum mechanics. So, 
now we have mass, univalence, and "type" superselection 
rules. These questions have been discussed by Brennich and 
we do not insist upon them. 

Now we can understand the role of the missing indices 
in the transition from the equivalence classes to pseudoequi
valence classes of ISUR's. For instance, index € which is 
present for some classes is a "relative parity" of a system 
composed of two elementary systems. Everything is very 
similar for the relativistic case. It is also to be remarked that 
relative parity does not appear for massive particles with 
"types" + - or - +. 

Finally, let us indicate that for kinematical groups30 
other than the Poincare or the Galilei group, a representa
tion group for the complete group is found in a very similar 
way. The results obtained are the following ones: if G is a 
"relative time" group, then Gis G ~8 V, just as in the Poin
care case, while if G is an "absolute time" group, then Gis 
Go8 V similarly to the case of the Galilei group, but where 
the M = 1 nontrivial factor system ~bv'2 + v'·R 'a of the Ga
lilei group is replaced by the M = 1 corresponding factor 
system of each group. So, the case of the Newton-Hooke 
group has been studied} I and the results are very similar to 
the Galilei case. A similar study for symmetry groups in one 
and two space dimensions is in course of development. 

APPENDIX A: STRUCTURE AND REPRESENTATIONS 
OF THE LITTLE GROUPS 

_ Orbits Zm.p: This little group is SU(2) ® V +' with 
V + = ! (y, a), a = 1, P ). It is easy to show that 
V+ c::=:::Z4 ® Z2' with generators (I,P) and (,u, 1) respectively. 
Its irreducible representations are called .d with 
€p€2,€E!I,-I) and are given by ',<,< 

.d. ..< ( I,P) = {~ , . I€ 
if 

if 

€I€z=I, 

€I€z=-I, 

.d.,<,< (,u,I)=€I' 

.d<,<,< (y,1)=€2 
(AI) 

_ Orbits Zo.p: This little group is one of the extensions of 
V + by the first cov~ing of the dimensional Euclidean group 
1---+£ (2)---+Gz",.---+ V + ---+ I with the action 

(y, 1) = (v"uy ,Azl---+{ux ,uy,Az), 

(y,P) = (v"uy,Az)(ux , - uy,A z+). 

The factor system relative to the natural section 
(y, 1 )---+(O,J,y, 1), (y,P )---+(O,§,y,P), is w(y',P;y,P) = (0,0, - I) 
while the other values of ware equal to (0,0,1). The subgroup 
Gz" ,. may be written as a semidirect product Gz ().(I 
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'---' 
= T18S0(2)+, where 

T2 = ((u x , uy,I,I,I)J, 
---....J 

SO(2)+ = !(O,O,Az,y,I),(O,O,Az§'y,P)). 
It is regular in Mackey's meaning. We omit the details of the 
construction of the corresponding induced representations 
and quote only the result 

I(€I, €2' €):€I' €2, € E! 1, - 1): Carrier space C. The re-
presentation is given by 

D<, <,«v, Az , y,I) = .d<, ,,«y,I), 

D"" «v, Az, y,P) = .d<, <, ,(y,P) . (A2) 

II(h, €p €2): 2hEN, €I' €2 E! I, - I). Carrier space CZ 

Dh<,<,(v,A,I,I) = [ei~'I' e_o'h'l']' 

Dh<,.<,(O, §, I,P) = [( _ l~h€I€Z ~], 
Dh<,€,(0,1,,u,I)=€I [~ ~], 

Dh,,<,(0,I,y,I)=€2[~ ~], (A3) 

where q; is the rotation angle (mod 41T) of Az(q; ). 
III((x, YJ, €I' €2): XElR, x> 0, YJE! I,i, - 1, - iJ. The car

rierspace is y2(S !-+C, dq;k) and the representation is given 
by 

[Dx. '1. <,. <, (v, A,y, a)f](k) 
= e,1<v.ol1'I<, <, LY- I(k)A.Y'(A -Ika), y, a]f(A -I ka), 

(A4) 

where.d'1<, <, is a representation of the group Z4 ® Z2 ®Zz 
[generated by (§, I,P), (1, ,u, 1), and (1, y, 1)] which is given by 

and 
Y(k) = s aq;k)[COs~q;k - iO'z sin~q;k] . 

(AS) 

(A6) 

The fixed point is ko = (x,O) and the function s is defined by 

s(q;) = {I if q;E[O,1T) (mod21T) 
- 1 if q;E[ 1T,21T) (mod 21T). 

Orbits ZO,O,E: This little group K + admits a regular se
midirect structure Gz""., = T,8(SU(2) ® V +), the action is 
(A, y, a):v---+Av" The representation of K+ are the following 
ones: I(j'€I,€I'€), 2jEN, €1,€2,€E! I, - II. The carrier space is 
c2

j + I. The representation is 

Dj <, <,«v,A, y, a) = jJ(A).d., .,,(y, a). (A7) 

II(x, €p €2' €): xElR, x > 0, €I' €l, €E! 1, - I). The carri
er space is y/2(S; ---+C, dn k ). The representation is given by 

[Dx<, .,.(v, A,y, a)f](k) 
= eikv .d., <,' (y, a)f(A -I k") . (AS) 

III(x, h, €I' €l): xElR, x> 0, 2hEN, €I' €zE! 1, - 11. The 
carrier space is j'2(S; ---+[;2, dflk ). The representation is giv
en by 

[DXh <, <, (v,A, y, a)f] (k) 
= e'''' Dh ., .,(L -I(k) AL (A- 1 k"), y, a)f(A --I ka) , 

where L (k ) is given by (3.1) (with the change p ~ x) and 
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Dh E, <, is the representation (A3). 

APPENDIX 8: PARTICULARIZATION TO P OF THE 
REPRESENTATIONS lin AND IIIn 

1111 : In this case 

[U(P) ¢](E,p) 
= D hE, <, [L -'(p)L ( - p),I,P j ¢(E, - p). (Bl) 

Now we have L - '(p).L ( - p) = Az (ip (p)).§ for an angle ip(p) 
(mod 41T). Then Az(ip (p)) = - L -'(p).L ( - p).§, and by 
making use of (3.1) we obtain 

cos! tp(p) - iuz sin!ip(p) 
= ( - Px + iuz Py)/(p - p;)I/2, 
pi [(O,o,v' p),(O,O, - v' p) I ; 

when we introduce the usual spherical angles 8p , ipp, this 
result reads ip (p) = 2tpp (if 8pi[ O,1Tj. Ifp is on either of the 
poles, the same procedure leads to 

for 8p = 0, 
{

21T 
tp(p) = ° for 8p = 1T. 

In order to avoid particular specifications, we shall take for 
granted that in the poles, where the azimuthal angle is ill 
defined, we take the values ipp = 1T for 8p = ° and ipp = ° for 
8p = 1T in such a way that ip(p) = 2ipp will always be true. 
The final expression is 

[U(P)¢l(E,p) = ( ° -2ih 
~ _ )2hEIE

2
e <{'. 

111 11 : Now, 

[U(P)¢l(E,p) 
=..:i!"E,.Jy-l(k)L -I(p) 

X J([L '(p)L ( - p)l-I( - k)),I,P) 

X¢([L -1(p)L (- p)l-I( - k),E, - p). (B2) 

The azimuthal polar angle of the vector 
[L - l(p).L ( - pI] -I( - k) is 2ipp - ip. The first argument in 
..:i! ',<, <, in (B2) can be calculated by making use of (A6) as 
follows: 

;I' - '(k) ... = s(!ip ) II cos(~tp) I + iuz sin(1tp) I 1 

X [COSipp - iuz sinipp 1 ( - iuy)s(ipp - (~ip h) 
X !cos(ipp - (!tp b) - iuz sin(ipp - (~tp b) 1 , 

where (1ip) I and (!ipb are two arbitrary independent determi
nations of half the angle ip. A straightforward calculation 
leads to 

y - I(k)··· = s((!ip)d stipp - (!ip h) 

X [coS[(!tp)1 - (!ipbl - iu, sin[(!ip)1 - (!ipbl J §, 

which does not depend on the determinations we had pre
viously chosen. In particular when the two determinations 
coincide, 

.Y'- '(k) ... = s(!ip ) stipp - !ip) § . 
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Notice that s(!ip ) has no sense by itself, but the product 
1T(ip, ipp) = s(~ip ),s(ipp - !ip ) is well-defined provided that 
the same determination for !tp be used in both factors. In 
order to simplify the notation let us define 

15"., E, (ip, ipp) =..:i!'] E, E, (1T(ip, ipp) §, I,P) . (B3) 

The final expression is 

[U (P) ¢ ](ip,E,p) = 15'] E, E,(ip, ipp) ¢(2ipp - ip,E, - p) . 
(B4) 

According to the value of 1T(ip, ipp) being either 1 or - I the 
value of 15'] E, E, (ip, ipp) is 1] or 1]3 E I Ez respectively. A check 
for the calculation is [U(P)f = EI E2. 
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An explicit expression is obtained for all the representation functions of SO(n, I), SO(n + I), and 
ISO(n). It is found that the representation functions ofSO(n,l) and SO(n + 11, are basically 
expressible as hypergeometric functions 2F, with arguments 1- e-2t and 1_e2i6, respectively, for 
n > 2, multiplied by Weyl coefficients ofSO(P), p = 3,4, "., n. The representation functions of 
ISO(n) are then obtained from those ofSO(n, I) or SO(n + I) by contraction. They are expressible 
as sums over a confluent hypergeometric function with argument 2iyt, multiplied by Weyl 
coefficients ofSO(P),p = 3,4, .'" n. This provides an interesting alternate form for the 
representation functions of ISO(n) obtained previously by Wong and Yeh as a sum over Bessel 
functions. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

Recently' we have obtained an explicit expression for 
the representation functions of IU(n) through the con
traction of the representation functions of U(n + 1) or 
U(n, 1). In doing so we have demonstrated that there is 
a unified approach for the explicit evaluation of the 
representation functions of the groups U(n, 1), U(n + 1) 
and IU(n). This approach is possible because the rele
vant matrices b(8) for both U(n, 1) and U(n + 1) can be 
written in the form 

(1.1) 

where bo(8) is a diagonal matrix. The explicit expres
sion for the representation functions of b (I +te n,n-l) and 
b(I±fen_"n) have been obtained by Gel'fand and Graev.2 

The representation functions of IU(n) are then obtained 
from those of U(n + 1) or U(n, 1) by contraction. It is 
interesting to note that in the process of contraction all 
terms containing infinity disappear. Thus a unified ap
proach exists for the explicit evaluation of the repre
sentation functions of U(n, 1), U(n + 1), and IU(n). 

A similar question may be asked for the groups 
SO(n,1), SO(n + 1), and ISO(n). In order to answer this 
question, one must start with the explicit evaluation of 
the representation functions of SO(n, 1) which can be 
analytically continued to those of SO(n + 1). Since the 
principal series of SO(n, 1) can be analytically continued 
to the general irreducible representations of SO(n + 1), 
we restrict ourselves to the consideration of the prin
cipal series of SO(n, 1) only, If such an explicit expres
sion exists, then the representation functions of ISO(n) 
can be obtained from it through contraction, provided 
terms containing infinity disappear. Fortunately there 
is a formula for the representation functions of SO(n, 1) 
which can be analytically continued to SO(n + 1). This 
formula was obtained by Wolf3 through the theory of 
induced representationso The corresponding formula 
for SO(n + 1) was obtained earlier by Vilenkin.4 So far, 
however, we know of no explicit evaluation of Wolf's 
formula for n > 3. It is our purpose to show in this 
paper that an explicit evaluation of Wolf's formula can 
be carried out by means of the Weyl coefficients of 
SO(n) discussed by Wong. 5 The result is that all repre
sentation functions of SO(n, 1), n '> 2, can be expressed 

basically as a sum over a hypergeometric function 2F , 
with argument 1 - e- 2~, multiplied by Weyl coefficients 
of 80(P), P =3, 4, •.. , n. The corresponding representa
tion functions of SO(n + 1) can then be obtained imme
diately from those of 80(n, 1) by analytic continuation. 
Finally, the representation functions of I80(n) can be 
obtained from those of 80(n, 1) or SO(n + 1) by contrac
tion. We find that in the contraction process all terms 
containing infinity disappear. The result is that the 
representation functions of ISO(n), n> 2, are express
ible as sums over a confluent hypergeometric function 
IF, with argument 2iy~, multiplied by Weyl coefficients 
of 80(p). This provides an interesting alternate form 
for the representation functions of ISO(n), as obtained 
previously by Wong and Yeh6 in terms of Bessel func
tions with argument y~, multiplied by Clebsch-Gordan 
(CG) coefficients of SO(n) involving the most degenerate 
representation (k, b]. We wish to note that whereas the 
previous expreSSion in terms of Bessel functions is 
quite compact, the explicit evaluation of the CG coef
ficients of 80(n) for the representation [k, 6] has not yet 
been carried out for general n and k, n> 4. Therefore, 
in a sense, our present expression is even more expli
cit, since every term can be written down explicitly. 

Some interesting questions arise from our work. We 
know that the two expressions for the representation 
functions of I80(n), one in terms of Bessel functions 
and the other in terms of confluent hypergeometric 
functions, are equal, However, a direct proof that 
these two expressions are equal is very difficult, even 
in the case of ISO(3) (though an indirect proof exists 
from the work of Smorodinskii and 8hepelev, 7 Wong 
and Yeh,8 or Rashid9

). A solution of this problem for 
general n would mean that an explicit evaluation of the 
CG coefficients of SO(n) for the most degenerate repre
sentation (k, 01 can be carried out. 

In Sec. II, we present our method for a unified treat
ment of the representation functions of SO(n, 1), SO(n + 1), 
and IS0(n). The general theory developed in Sec. II is 
then applied to special cases in Secs. III and IV. In Sec. 
III, we discuss the explicit evaluation of the representa
tion functions of SO(3, 1), SO(4), and IS0(3). In Sec. IV, 
we discuss the explicit evaluation of the representation 
functions of SO(4, 1), SO(5), and 180(4). In Sec. V, we 
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discuss the explicit evaluation of the representation 
functions of SO(n, 1), SO(n + 1), and ISO(n). 

II. UNIFIED APPROACH FOR THE REPRESENTATION 
FUNCTIONS OF SO(n, 1). SO(n + 1). AND ISO(n) 

Before presenting the general theory, we would like to 
establish some notational convention. The representa
tion functions of SO(n, 1), SO(n + 1), and ISO(n) shall be 
denoted by Pd, d, and ld, respectively. The urR label of 
SO(n) will be either written out explicitly or represented 
by Vnn ), where 

The d-functions of SO(n, 1), SO(n + 1), and rSO(n) de
pend on four UIR labels: Vnn+')' (rnn) , Vn~), and Vnn-,). 
We shall write, as an example, the d-functions of 
SO(n + 1) as 

(mn+l1 

d(mn)(m~) , 

(mn-,) 

where it is understood that the d-function, regarded as 
a matrix, is diagonal with respect to the label of Vnn -,). 

Let us now proceed to the theory. 
As we have mentioned in the introduction, a unified 

approach for the explicit evaluation of the representation 
functions of SO(n, 1) SO(n + 1), and ISO(n) must start 
from an explicit evaluation of the representation func
tions of SO(n, 1). This is because one can obtain the 
representation functions of SO(n + 1) from analytiC con
tinuation of those of SO(n, 1), but not necessarily the 
other way round. This point is illustrated by consider
ing the case of SO(4). If one writes the d-function of 
SO(4) as 

x (HI1,~m24) 

x(~Vn14 +m24 ) 

til 

then one cannot directly continue to SO(3, 1), as shown 
by Wong and Yeh, B and also by Rashid,9 since the d
function of SO(3, 1) contains two terms, while (2.2) con
tains only one term. 

For the d-functions of SO(Il, 1) we use the formula 
obtained by Wolf [Ref. 3, Eqs. (5.11) and (5.12)1: 

P \.L ( ) _ (dim nJdim n J,),h r (n/2) 
dJL'J's - d' Ld' L' i/2 '( 1» 1~-1 Im n_, rr r(2n-

x L:dimn _2 M 
M 

f IT. n-2 J (Sine)\. J' , 
x 0 sm e de dLML,(e) sine' dLML,(e), 

where 

Sine/Sine' =coshs -cose sinh s , 

e' cos e cosh s - sinh s cos = 
cosht - cos g sinht 
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(2.4) 

(2.5) 

For the compact group SO(n + 1), one replaces t by 
- i 0 in Eq. (2.3). Therefore 

sine/Sine' = coso + icos i1sino, 

, _ cose coso +i sino 
cos e - ~. .' 

cos v +t cos e smo 

(2.6) 

Also, to continue from SO(n, 1) to SO(n + 1), one should 
multiply by the phase factor WI of Maekawalo to the 
d-functions of SO(n, 1). 

The d-functions on the right-hand side of Eq. (2 0 3) 
are those of SO(n). We write those in terms of the Weyl 
coeffiCients discussed by Wong5 and the d-functions of 
80(3). Thus, for example, if, say, n = 5, then we write 

D45 (e) = W;!W~~W;~ W;! D23 (e) W 34 W 23 W45 W34 , 

where 
Wjj =D iJ (rr/2) and lV~J=Dij(-rr/2). (2.9) 

Thus the e-dependent part in Eq. (2.3) can be explicitly 
taken out and integrated for all SO(n, 1L We show in 
Sec. IV and V that this results in having all the repre
sentation functions of 80(n, 1) expressible as a sum 
over a hypergeometric function 21'~ with argument 1-e2

\., 

multiplied by Weyl coefficients of SO(p), P =3, 4, "', n. 
Note that because of the numerous relations between 
the solutions of the hypergeometric equation, the 2FI 

function can be expressed in different forms, e"g., with 
argument 1 - C -2(. 

The representation functions of SO(n + 1) are imme
diately obtained from those of SO(n, 1) by analytiC con
tinuation. 

The representation functions of 1S0(n) are obtained 
from those of SO(n, 1) or SO(n + 1) by contraction. The 
contraction process goes as follows: 

for SO(n, 1): A - ion, i AS =y t , 

forSO(n+1): m'nH- oe, mln+lo=y~. 

(2.10) 

(2.11 ) 

As a result of the contraction process, we find that 
the representation functions of rSO(n) are expressible 
as a summation over a confluent hypergeometric func
tion ,F, with argument 2iy~, mulitiplied by Weyl coef
fiCients of SO(p), J) =3,4, ."'" n. This is a surprising 
result since, to our knowledge, no one has indicated 
previously that the representation functions of rSO(n) 
are connected with confluent hypergeometric functions. 

In a previous paper,6 we obtained the representation 
functions of IS0(n) in terms of Bessel functions and 
Clebsch-Gordan coefficients of SO(n) involving the 
most degenerate representation [fl, 01 of SO(n). This 
expression, though in a very compact form, is never
theless not completely explicit, because the CG coef
fiCients of SO(Il), for generaln and 1<, have not yet been 
explicitly obtained. In a sense, therefore, our present 
expression is more explicit because every term can 
be explicitly written down. 

III. UNIFIED APPROACH FOR THE RPRESENTATION 
FUNCTIONS OF SO(3, 1). SO(4), AND ISO(3) 

The representation functions of SO(3, 1) have been 
obtained by many authors." We shall use the result 
obtained by Makarov and Shepelev in Ref. 11, Eq. (3). 
Thus the d-function of SO(3, 1) is expressed as 
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x 2FI(k -ii., 1 +m24 +m I2, P +k +2; l_e- 2c), 

where 

, _ r(x)r(y) _ 
B(x,y)- r(x+y) -B(y,x). 

(3,1) 

(3.2) 

The d-function of SO(4) is obtained from (3.1) by the 
following substitution: ~ - - io, iI. -mI4, and multiplica
tion by the phase factor WI of Maekawa.lO 

It has been explicitly demonstrated by Smorodinskii 
and Shepelev,7 Wong and Yeh,8 and Rashid,9 that the 
d-function of SO(4) so obtained is equal to the d-func
tion in Eq. (2.2). 

Barut and Wilsonl2 have shown that the d-function of 
SO(4) with m(3 = In 12 is expressible as a hypergeometric 
function with argument l_e- 2iCi with no sums. They 
obtained this result by solving a second order partial 
differential equation, We show here that this is a di
rect consequence of Eq, (3,1), i.e., the sums over k and 
P can be carried out, resulting in a hypergeometric 
function with no sums. To show this we first observe 
that the sum over k is reduced to one term: k = m 12 • 

Then the hypergeometric function is expanded in terms 
of a summation over r 

2F I(111 12 -ii., 1 +m24 +m I2 ; P + m l2 +2: l_e 2iO) 

"r(m I2 iI. +r)r(l + m 24 + m I2 +r)r(p + m 12 +2)(1- e2ier 
= '7 r(m'2 - iI.)r(1 + m24 + m 12 ) r(p +m 12 + 2 + r)rl . 

(m I2 -i\+r) (3.3) 

The summation over p is contained in the following 
terms: 

m l3 (-l)P(p +m I3)! 

1>~12 (mI3-p)!(p-mI2)I(p+mI2+1-r)! 

m 1.3- m 12 

X L: 
1>=0 

x ____ 1 __ --.,.

(-m I2 -m ls -p'-l)1 

1 

(-1)mI2rl itn l2 +m 13 + 1)1 

(3,4) 

Thus the summation over p and k has been carried out, 
The hypergrometric function so obtained is transformed 
to the form of Barut and Wilson through Euler's iden
tity 

2Fl(a,b;c;z)=(1-z)c-a-~ zl<'1(C -a, c -b; c;z), (3,5) 

Our final result agrees with Barut and Wilson by iden
tifying ° with -Ql. 

Let us now apply the contraction process to Eq. (3.1), 
We have iI. - ioo, iil.!; = yC 

) e-iy~ e C(>.-m24- m I2 - , (3.6) 

(1- ,-21;)"= "r(k -iI. +n)itn I2 +m24 +l)n (2)-)''-'' (m I2 +nl24 +1)" (2iy t)"= F(1n +m +1 p+k +2 2iyt), 
l ~ r(k-il.)(p+k+2)"n! s ~ (p+k+2)"nl S 11 24 12' 'S (3.7) 

Therefore the d-function of ISO(3) can be written as 

(3,8) 

where 

~itn rn' m m) = (_1)2m" (2m + 1)(2m' + 1) itnJ3 - m I2)! itnJ3 - m24)1 itnu - m I2)! itnis - m 24)!) 112 
- IS' 13' 12' 24 13 IS <tn iS 

+m
I2

)! <m
13 

+m24)! itni3 +m I2)! <mi3 +m24)1 (3.9) 

As far as we know, this expression has not been 
found in the literature before, since previously all re
presentation functions of ISO(n) have been expressed in 
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terms of Bessel functions. We shall show in subsequent 
sections that the representation functions of ISO(I1) can 
all be expressed as a summation over a confluent hy-
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pergeometric function with argument 2iy~, multiplied 
by Weyl coefficients of SO(p), p =3, 4, "', n. 

It has been shown previously [Ref. 13, Eq. (6.14)] that 
the d-function of ISO(3) is 

1 d:7:!b (0 =[(2m13 +1)(2m~3 + 1)]1/2 f: iL j L(Y~) 
L=O 

(3.10) 

From the derivation of (3.8) as well as the work of 
the authors in Refs. 7-9, it is clear that (3.8) is equal 
to (3.10). It is tempting to ask whether a direct proof 
of the equality of these two expressions can be attained. 
This is not a trivial problem, since the solution of the 
problem might lead to new results in groups higher 
than ISO(3). 

IV. UNIFIED APPROACH FOR THE REPRESENTATION 
FUNCTIONS OF SO(4, 1), SO(5). AND ISO(4) 

An explicit expression for the representation function 
of SO(5) has been given by Holman14 through the method 
of boson operators and Wong5 through the method of 
Weyl coefficients. Holman15 has also discussed the 
d-function of SO(4, 1) through spinor calculus. Wes 

have obtained an explicit expression for the representa
tion function of ISO(4) in terms of Bessel functions and 
~ symbols of SO(3). 

The representation function of 180(4) should be deriv
able from that of either SO(5) or SO(4, 1) by contraction. 
However, we find it difficult to derive the result of 
ISO(4) from Holman's expression for either SO(5) or 
SO(4, 1) by contraction, because terms containing infin
ity do not disappear. Thus we are led to a further 
search for an explicit expression for the representation 
functions of SO(5) and SO(4, 1) such that they are con
tractable to the representation function of ISO(4). If 
such an expression can be found, then it would lead to 
a unified treatment for the representation functions of 
SO(4, 1), SO(5), and 180(4). In what follows we show 
that this unified treatment is indeed possible. 

As we have mentioned before, this unified treatment 

p ~m 
dm ~ m' m' OJ 

14 24 14 24 

=N L: 
17t 12 .m~2 ,m~2,m1'2 

mf.f. m25 .m¥5 
m'12 mOl 12 

must start with the representation function of SO(4, 1). 
Again we use Wolf's formula as given in Eq. (2.3). For 
the d-functions of SO(4) on the right-hand Side, we use 
the Weyl coefficients of SO(4) as discussed by Wong5 
and the rl-function of SO(3). Thus we write 

(4.1) 

Next we use Vilenkin's formula (Ref. 16, p. 117) for 
the d-function of SO(3) (with a change of phase so as to 
make the d-function real) 

J _ -n,fV-m)!(J-n)!] (1+Z\11/2)(m+n) 
dmn(z)-(-1) l<J+m)l(J+n)! 1-z) 

xL: (-1)'(J+j)! (1-Z)' 
,{J-j)!{j-m)l{j-n)! 2 (4.2) 

where z =cos e. 
For the integration over e, we use the following trans

formation: 

1 + z' = exp(-t) (1 + z){cosh?;-z sinhtt 1, 

1- z' = exp(t) (1- z) (cosht - z sinhtr 1, (4.3) 

. _ . _ (1 + exp( - 2 t) ) - 1 
(cosht-zsmht) l=smh It 1-exp(-2t)-z 

Finally, putting z = - y + 1, we can evaluate the integral 
by Eq. (3.259.2) of Gradshteyn and Ryzhik'7 

i U 

yV~1(u_y)M-l(ym+{3m)~dy={3m~uM+V-1B(/J.,v) 
o 

X m+1 F m(->C, v/m, ••. , (v + m -1)/m; (/J.+ v)/m, 

••• , (p. + v + m -1)/m; (_u/{3)m) 
(4.4) 

Since m = 1 in (4.4), we obtain a hypergeometric func
tion 2F, with argument 1 - e2

1;. This 2F, function can be 
transformed to other 2F 1 functions with different argu
ments. Among other cases, we can obtain a hypergeo
metric function 21\ with argument 1 - c - 21;. 

The explicit expression for the representation func
tion of SO( 4, 1) is as follows 

mltl/ 12 mil" 12 

(4.5) 

r(~ + In' + In" + In'" +m"")r (~ - m' - m" - m'II - mil" + J' + J'1 x p(' _ m'" _ m'"')~ 2 12 12 12 12 2 12 12 12 12 
ex "- 12 12 S r (3 + j + j') 

(4.6) 
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where 

N=-[(m'4+m24+1)(mI4-m2~+1]1/2r(m' +m' +1)(m' -111' +1)11/ 2 

(2m
13 

+1)(2m
25 

+1)r()1T tl2 14 24 14 24 
(4.7) 

I 
and W;i' W;/ are the Weyl coefficients discussed by 
Wong.5 For W34' e,g., see Eq. (4.1) of Ref. 5. 

representation functions of 80(5) and 180(4). The pro
cedure is as follows. 

Let us now make an important observation with re
gard to (4.6). The only terms containing A, which will 
go to infinity in the contraction process, are found in 
the exponential function and the first term of the ~1 
function, Thus the contraction process will give mean
ingful results. 

For the representation function of 80(5): Replace A 
by Jll 15 , ?: by -iii, and multiply (4,6) by WI' i.e., 

From (4.6) we obtain an explicit evaluation of the The explicit expression for the d-function of 80(5) is 

d: 15
:

25 
m' m' (Ii) =- N 

14 24 14 24 

m 13 

where 

W, lVM expl- i~n'5 - In;'; - m~n]1i 
m 12 , mb, m?2' mfd. 

m~2' t mZ5 ' m~5 

( )
m13 

H'23 m""m , 
12 12 

For the representation function of 180(4): Replace exp(A - In ;'2' - m rt)1; by exp(-iyO, and replace 2Fl (j' - A, 
3 U, I II m,/1 m 1111 ). 3 . ., 1 -2() b F (3 '(' II I '"') 3 . ., 2' t) . . 2'+2\lh 1,,+m ,2 + 12+ ,2, +J+J; -e - Yl'IZ+,,1Il12+mI2+1Il12+mj2; +J+J; lYs. TheexplIcltex-
pression for the d-function of 180(4) is as follows: 

WMexp(-iy~) r C + '1/12 +m;'2 +m~;+m~;')r(1- JII!2 -111)'2 - m;';- m;';'+j +j') 
m12 ,mb,m 12 ,mi'i. r(3 + j +j') 

mt'z",m 25 .m25 

If one compares the results for 80(4, 1), 80(5), and 
180(4) with those of 80(3, 1), 80(4), and 180(3) obtained 
in the previous section, one finds already a certain 
regularity in all the expressions. That is, the ii-func
tions of 80(3, 1) and 80(4, 1) are expressible as a 
summation over 2Fl functions with argument 1 - (' -21;, 

The rl-functions of 80(4) and 80(5) are expressible as 
a summation over 2Fj functions with argument 1 _(,2;,\, 

Finally the d-functions of 180(3) and 180(4) are ex
pressible as a summation over 1}~ functions with argu
ment 2iri;. We shall show in the following section that 
this result can be generalized to all 80(n, 1), 80(1l + 1), 
and 180(n). 

We showed in a previous paper6 that the d-function of 
180(4) can be written as 

1563 J. Math. Phys., Vol. 22, No.8, August 1981 

t 
n::O 

x J (t) (~(1Il!4 - 11I~4) ~n+1Y'-, ) 

I ~(1/l14 +m24) 

x ~ ~ (m14 - 111~4) 

i ~ ~n 14 + 11124 ) 

~~llj4 - m21 ) n/21 

~ ~1l;4 + 1I1~4) 111 25 ) 

n/2l. 

m 13 ~ 
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Again we can ask the question: How can one show di
rectly that (4.11) is equal to (4.12)? This seems to be 
quite a difficult problem. So far we have not been able 
to find a direct proof. 

V. GENERALIZATION TO SOln,1), SO(n + 1), AND 
ISO(n) 

We shall now generalize the procedures used in the 
previous sections to obtain an explicit expression for 
the representation functions of all SO(n, 1), SO(n + 1), 
and ISO(n). 

We start with the d-function of SO(n, 1) as given in 
Eq. (2.3). For the two d-functions of SO(n) on the right
hand side, we use the Weyl coefficients of SO( p), I> 

For 80(4, 1) 

22 

rG +a)rG+b) 
r(3 +j +j') 

= 3,4, co', fl, and the d-functions of SO(3). Thus 

In terms of state labels, it is understood that each 
term on the right-hand side of Eq. (5.1) is a matrix, 
and the multiplication of these matrices follows the 
standard procedure of matrix multiplication, As an 
example, see Eq. (406) or Eqo (4.8) and (4.9). 

(5.1) 

For the integration over e, we find that the case treat
ed in Sec. IV for 80(4, 1) is already general enough to 
be directly applicable for all SO(n, 1), II ~. 4, The only 
minor modification one has to make is the following: 

For SO(n, 1) 

2"-2 

rH(n -l)+a) rG (n -1) +b) 
r(1I -1 +i +j') 

2F,(j' -1\, ~ + a/2; 3 +j +j'; l_e-Z
,) 

N 

2F,(j'->c, ~(n-l)+a/2; n-l+j+j'; l-e-2() 

appropriate normalization factor in accordance with 
(2.3), Le., the factor in front of the summation sign on 
the right-hand side of (2.3) 

With the replacement given in (5.2), we find that the 
explicit expreSSion for the representation functions of 
80(n, 1) are baSically of the same form as (4.6). The 
evaluation of the representation function of SO(n, 1) 
can then be achieved by an iteration process as follows: 
We assume that the representation function of SO(fl -1, 1) 
is known. From it we obtain the representation function 
of SO(IlL Therefore the Weyl coefficients of 80(p), 
p =3, 4, o •• , n are all known. This is all the informa
tion we need to evaluate Eq. (2.3). But we certainly 
know the representation function of SO(3, 1), i.e., Eq. 
(3.1L Therefore the iteration process can be started 
and carried through for all n. 

After the representation function of SO(n, 1) has been 
obtained, the representation function of SO(II + 1) is 
obtained from it by analytic continuation. Finally, the 
representation function of I80(n) is obtained from either 

of the two above by contraction. This contraction pro
cesS is meaningful only if terms containing infinity 
disappear. We find that this is indeed the case in the 
present situation. Thus we have obtained a unified 
treatment for an explicit evaluation of the representa
tion functions of all SO(n, 1), 80(n + 1), and ISO(IlL We 
summarize our results as follows: 

(1). The representation functions of SO(n, 1) are ex
pressible as a sum over hypergeometric functions with 
argument 1 _c- 2(, multiplied by Weyl coefficients of 
SO( Ii), p = 3, 4, ... , n. The explicit expression is given 
in (4,6) with modification given in (5.2). 

(2). The representation functions of SO(n + 1) are ob
tained from those of SO(n, 1) by the replacement 

I;-io, I\-In ,nH , and multiplication of WI' Le., 
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J)"-I,n(O) as in (5.1). (5.2) 

(3). The representation functions of IS0(1l) are ob
tained from those of 80(11, 1) by the replacement 

exp (>c - III;'; - il1~n I; - exp(-iy n 
and 
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Tensor products of positive energy representations of SO(3,2) and 80(4,2) 
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The Clebsch-Gordan series of the tensor product of a wide class of unitary irreducible positive 
energy representations of the universal covering groups ofSO(3,2) and SO(4,2) are calculated by 
comparing weight diagrams. 

PACS numbers: 02.20.Qs, 02.20.Rt 

I. INTRODUCTION 

The assignment of elementary particles to representa
tions of the Poincare group is generally accepted. In con
trast, proposals to describe the space-time behavior of parti
cles with representations of the universal covering of the de 
Sitter group SO(3,2) or the conformal group SO(4,2) are less 
well known. 

To obtain experimentally-testable predictions on, for 
example, the S-matrix of a theory with one of these invari
ance groups, one needs the Clebsch-Gordan (CG) series of 
the tensor product of the physically relevant representa
tions. Only very few cases are known explicitly. 1-3 This paper 
attempts to close the gap. 

To achieve this I use the method of comparing weight 
diagrams. In order to illustrate it I will consider the simple 
case of the group SU(2). The third component of the "angu
lar momentum" generates a U( I) subgroup of SU(2). Any 
representation D 1 ofSU(2) can be decomposed into a sum of 
U( 1) representations eirtm

, abbreviated by the weight (m), 
which has multiplicity one in this case: 

+1 

D( -1):== L (m). 
In = - I 

The lowest weight ( - I) labels the representations uniquely. 
The weight diagram of the tensor product of two representa
tions is 

+1 +1' 

D(-lj®D(-I'):== I (m)® I (m') 
m -=- -I m' = -I' 

+ I +1' 

I I (m +m'j, 
m-c-= -/ ,n'= - [' 

where the CG series ofU(l) is used: (m) ® (m') = (m + m'). 
The lowest weight ( - I - I 'j must be the lowest weight of a 
representation of the CG series. Taking away all weights of 
this representation and looking for the lowest weight of the 
rest, one gets successively the whole CG series. That is an 
easy way to calculate particular cases. 

The general formula can be obtained by changing the 
sum-indices 

j I 4 I' I ~ I' + l-

I I (m+m')= I I (m+m'). 
,-Im'---I' L~-I/-I'lm+m'---L 

So ~ Ii 1'1. ~ II I': D I. has the same weight diagram as 
DIXDI'. 

The above step-by-step construction shows that the re
duction of the weight diagram is unique; therefore it must be 
the CG series. In the following the notation will not distin-

guish between representation D I and weight diagram 
D( -I). 

Preconditions for this method are the existence of a 
unique lowest weight for representations of a certain type, 
and the knowledge of all weights and their multiplicities of 
all those representations which can occur in the CG series. If 
unknown representations occur in the direct product, the 
method will exhibit this fact. 

The finiteness of the representations is not a precondi
tion. For the unitary irreducible representations with posi
tive energy of SO(3,2) and SO(4,2) these conditions are ful
filled. Positive energy here means positive eigenvalues of the 
SO(2) generator in the maximal essentially compact sub
group. These include the candidates for physical 
interpretations. ".4 

The rest of the paper is organized as follows: 
In Sec. IIA all weights of these representations of 

SO(3,2) will be quoted in a form which is adjusted to the 
present problem. 

In Sec. lIB and IIC more and more complex tensor 
products will be reduced. 

I try to sketch the graphical method which in all cases 
lead to a guess for the reduction, which is proved algebraical
ly. I don't believe that the algebraic proof is much help for 
finding the solutions. 

In Sec. III the same scheme is followed for SO(4,2). 

II. TENSOR PRODUCTS OF 50(3,2)
REPRESENTATIONS 
A. All unitary irreducible representations with positive 
energy 

Evans' lists all representations of this type. I repeat 
them here in a form which is adapted to the present pur
poses. (E,! ) symbolizes the (21 + 1 I-dim space of a 
SO(2) X SU(2) representation; D (E,!) is the space ofa SO(3,l) 
representation with the lowest weight (E,!). Lowest weight 
here means the SOIl) X SU(2) representation which contains 
the lowest weight (E, /1 = - I). In analogy to SO(4,2), I call 
t = E - I the twist of the representation. 

The twist 1/2 representations are the Dirac 
singletonsf>. 7: 

D (!,O) = :t (! + S,S ). 
s~ 0 

D(q) = :t (1 +S,! + S). 
s 0 

(1 ) 
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x 

E 

FIG. I. Weights of D(l.!). 

For the other weight diagrams I use the abbreviations 

t:,.(E,l) = I L(E +s,/ +S) = I I (E +s+ n,/ +S), 
s~·o S~O n~O 

S(E,/) = I L '(E + S,/ + S) (2) 
S~O 

= I I' (E + S + n,/ + S), 
S~O n~O 

where 

n=c n=c 

Now the twist-I representations have the following weights: 

D(I,O)=t:,.'(I,O), D(l+ 1,/) = t:,.(l+ 1'/) (l=,p,k')' 

For I = 0,1/2 and t> 1/2 Evans gets: 

D (E,O) = t:,.'(E,O), D (E,~) = t:,.(E,~), 
and for I = 1,3/2,.·., t> 1 he has for 

l~ ! 

(3) 

(4) 

I integer, D (E,/) = I t:,.(E + S,/ - S) Ell t:,.'(E + 1,0), 
S~O 

l~l 

I half-integer, D (E,l ) = I t:,.(E + S,/ - S). (5) 
S~O 

For two typical weight diagrams see Figs. 1 and 2, where the 
lowest weights are given by crosses (X), whereas the rest of 
the weights are given by dots (.) or circles (0), classified by 
their triangle (t:,.) structure [see Eq. (5)]. 

B. Tensor products with Dirac singletons 

I use one of these cases to demonstrate how the method 
works for infinite representations. Using the CG series of 
SU(2), one gets 

00 co S+S' 

D(!,O)®D(!,O) = I I I (S+S' + 1,/).(6) 
S~O s' ~O l~ IS~S'I 

X ® 

4 5 E 

FIG. 2. Weights of D (4, I). 
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. 
~. 

E 

FIG. 3. Weights of D I!,O) ® D 11,0). 

Some of the weights are shown in Fig. 3. The critical reader is 
invited to check how the first few terms of the CG series are 
obtained. The lowest weight must be the lowest weight of the 
first term, Take away all weights of this representation and 
start again. The lowest weights of the representations ob
tained (crosses in Fig. 3) lie on the line with twist 1. The full 
series of the tensor product of two twist 1/2 representations 
is described by the following 

Theorem 1: 

D(!,O)®D(!,O) = I D(S+ I,S), 
S~O 

00 

D (I,!) ® D (!,O) = I D (S + ~,S + !), 
S~O 

D(q)®D(q) =D(2,0)EIl I D(S+ I,S). 
S~! 

This is the result of Flato and Fronsdal. 2 

Proof(by induction): 
For D (!,O) ® D (!,O). 

(7) 

The starting values E = 1,2 are already proved graphi
cally in Fig. 3. 

Left-hand side (lhs): 

D (!,O) ® D (!,O) 
co +NI' lV 

= I I I (N+ 1,})withN=S+S'. 
N~O S~S'~ ~N J~IS~S'I 

In going from E to E + 2 (N to N + 2) the following weights 
in} and their multiplicities also occur: 

(N + I)(N + 3,N + 1) Ell (N + 3)(N + 3,N + 2). 

Right-hand side (rhs): 

ID(S+ I,S) 
S~O 

= f ! '(j + n + I,}) Ell! f f (j + n + I,}) 
j=OIl=O S=lj=Sn-o-O 

= eto' Jto Ell N~~~O JtJ(N + I,}) Ell Nt! Jt!(N + I,}). 
From this one gets for the additional terms in} the same 
terms as for the lhs. 
The other cases are proved similarly. 

To reduce the tensor product of a Dirac singleton and 
any other representation I found it most convenient to de
compose the latter into triangles t:,., and lines L, as was done 
in Sec. IIA. 

Lemma 2: The tensor product of a Dirac singleton and a 
line has the weight diagram 

W. Heidenreich 1567 



                                                                                                                                    

D(!,O)®L (E,I) =D(E + V)ffiD(E +V), 

D(!,O)®L '(E,I) = D(E + V), (8) 

D(q)®L (E,/) = D(E + 1,1 +!) ffiD(E + 1,1- !), 

D (q) ® L '(E,I) = lJ.'(E + 1,1 + !) ffi D (E + 1,1- !). 

If the SU(2) eigenvalue of a term is smaller than 0 omit it. 
A more general formula will be proved in Sec. IIC. 

From Lemma 2 one gets easily 
Theorem 3: The CG series of the tensor product of a 

twist 1/2 and a twist-I representation is for I> 0, 

D (~,O) ® D (I + I,/) 

= fID(I+S+V+S)ffiD(l+S+V+S)), 
s~o 

D(l,!)®D(I+ 1,1) 

= f {D(I+S+2,I+S+!)ffiD(I+S+2,1+S-!)}, 
s~o 

(9) 

and for E = 1, 

D (!,O) ® D (E,O) = f D (E + S + !,S), 
s~o 

D (q) ® D (E,O) = f D (E + S + I,S + !). (10) 
s~o 

The CG series includes in the case I = 0 only twist 3/2 repre
sentations, in the other cases twist 3/2 and twist 5/2. 

Proof The first three formulas are straightforward, e.g., 
the first, 

D (!,O) ® lJ.(E,I) = f {D (!,O) ® L (E + S,I + S)} 
s~o 

00 

= I ID(E+S+ V+S)ffiD(E+S+V+S)). 
s~o 

Just put E = I + 1. 
The last formula needs some rearranging of /:,.' 

D(q)® fL'(E+S,S)= f {lJ.'(E+S+ I,S+~) 
s~o s~o 

s-\ 
ffi I [lJ.'(E+S+j+ I,S-j-!) 
j~O 

ffi lJ.'(E + S + j + 2,S - j - !) l} 
= f D (E + S + l,S + !). 
s~o 

Substituting E = 1 by E > 1/2 in Eq. (10), one gets the gener
al product of a Dirac singleton, and a spinless representa
tion. A similar shift of the energy in Eq. (9) yields the result 
for I = 1/2. For higher spins one has to use the decomposi
tion [Eq. (5)] into traiangles. A straightforward calculation 
gives for l;;d,E>I+ 1, 

I 00 I ~ 0 00 ffi D (E + I + S + ,;,S ) 
I_I} , 

D(!,O)®D(E,I)=~_l I [D(E+j+S+V-j+S)ffiD(E+j+S+V-j+S)){ s~o - , 

I s~o ffiO 
j~O 

D(q)®D(E,I) 

~;~;} f {D(E +j +S + 1,/ -j + S - ~)ffiD(E +j +S + I,l-j +S + 1)}{ffi stoD(E + I +S + l,S+!) I' s~o 2, 

j~O ffiO 

(11 ) 

where the upper part of each formula holds for I integer, the 
lower for I half-integer. 

The CG series contains twists between t = E - I + 1/2 
and t = E + I + 1/2. Fig. 4 shows a typical example of this 
type. The tensor product of three Dirac singletons can be 
reduced by combining Eq. (7) with Eqs. (9) and (10). Again 
only representations with twist 3/2 and 5/2 occur, most of 
them more than once. 

[D(~,O)]' = f [(S + I)D(S + ~,S) ffi (S + I)D(S + ~,s)) , 
s~o 

[D (!,0)j2 ® D (q) 

= f {IS + I)D(S + 2,S +!) ffi(S + I)D(S + 3,S + !)}, 
s~o 

D(~,O)® (D(I,m 2 

= f!lS + l)D (S + ~,S ) ffi (S + I)D (S + ~,S + 1)) , 
s~o 

(12) 

[D(q)F 

= f((S+ I)D(S+3,S+!)ffi(S+2)D(S+3,S+~)). 
s~o 
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I 
The CG series for the tensor product offour Dirac singletons 
can be obtained from Eq. (12) and Eq. (11). The first few 
terms in one case are shown in Fig. 5. All twists;;;. 2 occur. 
The multiplicity of the representations diverges for E--oo 
for both t or I fixed. 

C. The tensor product of twist > 1/2 representations 

To reduce the tensor product of two twist 1 representa
tions, decompose one into lines, as was done in Sec. II A, the 
other one into diagonals 

x 

x x 

x x x 

FIG. 4. Lowest weights in Dil,O) ® Di3,l). 
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5 

4 9 

FIG. 5. Multiplicity of the lowest weights in the product [D (t,0)]' ® [D (I,lll'· 

S(E,/) = I (E + S,! + S), 
s=o 

that is for 

1>0, D(/+ I,/) = IS(l+ 1 +n,n,!), 
1'l=o 

D(I,O) = f 'S(I + 1 + n,!). 
n=O 

For the tensor product of a diagonal and a line I found 

Lemma 4: 
1+-1' 

S(E,I) ®L (E',!') = j~~ /::,(E + E',}) for!> I', 

1+1' 2. 6(E+E',)) 
j _ I' _. 1,2 

ffiD(E+E',l'-I+ l)ffiD(E+E',!'-/) for 

(13) 

0<1<,1', (14) 

=D(E+E''!')ffiD(E+E'+ 1,1') for/=O; 
I + I' 

S(E,I)®L'(E',!')= 2. 6'(E+E',}) for!>I', 
j ~ I - I' 

6'(E + E',}) ffiD(E + E',I' -I) 

for 1<)'. (15) 

The special cases with S (!,O) and S (1 d) were used in Sec. lIB. 
Proof It consists in writing down the sum of weights for 

both sides and changing the sum indices to make the expres
sions identical. 

lhs: 
00 00 S-+-/+/' 

S(E,I) ®L '(E',I') = 2.' 2. 2. (E + E' + S + nJ). 
,,~os=o j- S+I-I' 

rhs: 
I, I' ,YO '" S+I+I' 

2. 6'(E + E' J) = 2.' 2. 2. (E + E' + S + nJ) 
j-I.I· ,,~OS--Oj~S+I·-I' 

for!> I " 

and for 1<1' 

I' + I 
2. 6'(E+E',})ffjD(E+E',!'-1) A. 

j . I' I + I 

If I - I' is half-integer, the sum means 
I, I' I + I' - 1/2 

L G n == 2. aft + 1/2· 
I I' ,,-.1·1'-1/2 

Decomposing 6' and D into weights (E,/) (distinguishing be
tween I' - I integer or half-integer), rearranging them, using 
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00 a 00 s+) 

I I = I I' 
S~O j~O j+S~O S-j~ IS 'j-al 

and in the case I' - I half-integer 
S+a-1/2 S + a + 1/2 S+a+-l12 

I' ffj I I fora;;'O 
j~ IS- a + 1/21 j ~ IS - a - 1121 j~ IS -a! -1/2 

one gets finally, 
00 00 S'+/'+I 

A = I' 2. I (E + E' + S' + n,j'), 
n ~ 0 S' = 0 j' ~ IS' - I' + I I 

So lhs = rhs. 

S ® L is obtained from this, using L (E,I) = L '(E,I) 
ffi L '(E + 1,1), 6(E,/) = 6'(E,/) ffj 6'(E + 1,1), and 
6(E,I) ffjD (E + 1,/- 1) = D (E,I). 

Graphically I got from Lemma 4 the CG series of the 
tensor product of two twist one representations very easily. 
The algebraic proof is somewhat lengthy, 

Theorem 5: For 1,1' > 0, 

D (I + 1,1) ® D (I' + 1,1 ') = I r i- I f D (I + I' + 2 + nJ) 
j -. !I - 1'1 n = 0 

ffj I {D (I + I' + 2 + S,I + I' + S) 
S~O 

ffj n~12D(1 + I' + 2 + S + n,l + I' + S)}; for/'>O, (16) 

D(I,O)®D(l'+ 1,1')= I ID(/'+2+S+n,l'+S), 
S=On~O 

D(I,O)®D(I,O)= I I'D(2+S+n,S). 
S-:--:: 0 11--= 0 

The representations have multiplicities 1 or 2, and all twists 
;;;.2 occur (Fig. 6). 

Proof I prove a more general formula, with the energy 
shifted, by substituting E' for (I' + 1) and 6 for the D on the 
left side. It can always be achieved that I<j '. As a first step I 
calculate the product of a diagonal and a 6: 

S (E,I) ® 6(E ',I ') 

= t {S +~ - 26(E + E' + S,l' - I +} + 2) 
s._o J-S 

ffj D (E + E' + S,I - I' + S + 1) 
ffj D (E + E' + S,I' - 1+ S )}. 

Changing the sum indices of the first term into} + s (odd or 
even) and} - s, and using formulas of the type 

n 

I 6(E + S,l - S) ffj D (E + n + 1,1 - n - 1) = D (E,/ ), 
s--o 

FIG. 6. Multiplicity of the lowest weights in the product D (3,21 ® D (2,1). 
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one gets 
2/ 

(S®6)= ID(E+E',l'-I+}) 
j~O 

EI1 f {D(E+E' +S+ 1,1' +I+S+ 1) 
S~O 

EI1D(E+E'+S+ l,1'+I+S)}. 

Using the decomposition of 6 into diagonals 
6(E,I) = L: ~ oS(E + n,l) one obtains for 0 < 1<1 " 

2/- I 

6(E,I) ® 6(E ',I ') = I f D(E + E' + n,l' -I +}) 
j~O n=O 

EI1 f {D (E + E' + S,I + I' + S) 
S~O 

EI1 ntI2D(E+E' +S+n,l+I' +S)}. 

So the first case in the theorem is proved. 

(17) 

The two others are straightforward applications ofEqs. 
(14) and (15). 

The general product D (E,I ) ® D (E ',I ') can easily be ob
tained from Eq. (16) shifted in E [see Eq. (17)] and Eq. (5). 

III. TENSOR PRODUCTS OF 80(4,2) 
REPRESENTATIONS 
A. All unitary irreducible representations with positive 
energy 

All lowest weights (E,11,12) of the representations dis
cussed here with respect to the maximal essentially compact 
subgroup U(I)X SU(2) X SU(2) have been given by Mack.x 

Again lowest weight here means the U(1) X SU(2) X SU(2) 
representation which contains the lowest weight 
(E,l i = - 1 1,1 ~ = - 12)' All weights and their multiplic
ities of most of the representations were calculated by Yao. 9 

However, he missed the representations with twist 2 and 
1 1,12 = 0, where the twist is defined as t = E - (11 + 12)' 
The weights of these "limit-representations" can be guessed 
from Mack's analysis of their Poincare content and from 
analogy to the 50(3,2) case; this guess will be confirmed by 
the tensor product calculations (see Sec. IIIB), A similar rea
soning yields the weights of representations with noninteger 
twist, which do not occur in Yao's discussion, as he restricts 
himself to the spin-covering group SU(2,2) ofSO(4,2). Com
bining all these informations, the weight diagrams are 

for twist 1, 

D(1 +lJI'O) = f (1 +11 +S,11 + ~,~), 
s~o 2 2 

D(I+12,0,12)= sto(I+12+S, ~,12+ ~). 
and for twist 2, 

D (11 + 12 + 2,lJ2) = 6(11 + 12 + 2,h12)' 
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(18) 

p .---. 
3 '-'- '---. 

x--· . 
2 -. -. -. 

2 
q 

I I I -4 5 E 

FIG. 7. Weights of D (4,~,t) in a three-dimensional weight diagram, where 

p = i, + i" q = i, - i,· 

For a typical example of this type see Fig. 7. 
All other representations can be built up easily from the 

6(E,11,12), For t> 1 and 1 1,12 = 0 they are 

D (E,lJ2) = 6(E,11,12), (20) 

and for t>2, 11,12=1=0, 

2mi~,.J,1 ( S S) 
D (E,11,12) = 2.. 6 E + S,ll - -,12 - - . 

s=o 2 2 
(21) 

The 6-structure of D (6,2,1) can be seen in Fig. 8. 
In the limit t-2 only the highest 6 survives; all weights get 
the multiplicity 1. The spin spectrum vanishes. X 

B. The tensor product of two twist 1 representations 

The CG series for these products were already given by 
Castelli: 

Theorem 6: 

D(11 + 1,11,0)®D(12 + 1,0,12) 

= I D (11 + 12 + 2 + S,11 + ~,12 + ~), 
.'>'-0 2 2 

D(11 + 1,11,0)®D(12 + 1,12,0) 
J, + J, I 

= I D(11 +12 + 2,S,0) 
s~ IJ, - J,) 

oc ( S S) EI1 I D 11 + 12 + 2 + S,11 + 12 + -, - . 
s~o 2 2 

(22) 

In order to obtain D (11 + 1,0,11) ® D (12 + 1,0,12) exchange 
the two SU(2) eigenvalues. 

The proof of this theorem, using the weight diagrams 
for t = 2, 1I,ld'=-0, yields a confirmation for the latter. 

Proo/(hy induction): I demonstrate the proof of the 
(more difficult) second Eq. of (22). As in the case of Theorem 
1 it is shown that the same new weights in the SU(2) eigenval
ues occur, when going from E to E + 2 on both sides of the 

p 

6 1 E 

FIG. 8. Some features of D (6,2,1). 
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equation. Using Eq. (18) and the SU(2) CG series one gets the 
weights of the left side: 
D(JI + I,J I ,O)®D(JI + I,J2,0) 

00 00 J, + J, + Ii + 11!2 

=I I I 
i~Oj~O r~ IJ, -J, +Ii-j)l21 

Ii~/2 
2... (JI + J2 + 2 + i + j,r,S), 

s= IIi-jl!21 

and using Eqs. (20) and (21) those of the right side: 

n~o'jtJ:~~t ~;'I r~o(JI + J2 + 2 + j + r + n, 

S + i - r i + r) 
2 ' 2 

oc 21J, +~) + S( 
EI1 s'i;o r~~s J I +J2 +2+S+j+ Irl +n, 

J + J + S + j - r S + i + r)}. 
I 2 2' 2 

It's easy to show lhs = rhs for the starting values 
E = J I + J2 + 2, J I + J2 + 3. Changing the sum indices to 
i' = i + j,j' = i - j, the left-hand side becomes 

oc +,.. J , +J,+-i'/2 1'12 

I I' I I (JI +J2 +2+i',r,S). 
i'--Of~ i' r-J,-J.+),!2IS=ij'121 

Now the new weights which occur in the step from i' to i' + 2 
can be given: 

i' 
+ i' 2 ., 

I' I (J I+J2+4+i',JI+J2+ ~+I,S) 
j' c - i' S _ U'/21 2 

i'+2 J,+J,ti'12+I( i' ) 
EI1 f __ ~, 2 r~ IJ, 2;, +//21 J I + J2 + 4 + t,r, 2 + 1 . 

- (23) 

In the expression for the right-hand side, the new 
weights are just those with n = O. After some changing of 
indices I get for the new weights at i' + 2, 

i' t 2 i'12 + J~ J. + I ( i' ) I L J I + J2 + 4 + i',r, - + 1 
k --0 r_li'/2 __ J, J. -k+ II 2 

EI1i'f I - (J I +Jo+4+i',JI +Jo+ ~+ l,S). 
k--OS-li'/2--k+1 - - 2 

(24) 

Equation (23) and Eq. (24) can be shown to be equal by distin
guishing all the cases, where the expression whose absolute 
values occur, are positive respectively negative. The first Eq. 
in Theorem 6 is proved analogously. The last step, the equa
lity of the sums at the level ofEqs. (23) and (24) is much easier 
in this case. 

c. The tensor product of twist 1 and twist 2 
representation 

As in the case ofS0(3,2) I found it convenient to split 
the calculation and to first look for an expression for an ex
pression for the product of a Twist 1 representation and an 
arbitrary line L '(E,jP)2)' 

See Fig. 9 for an example to the following 
Lemma 7: 

D(A. + 1,A.,0)®L '(E')I')2) 

for A.<JI 
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p 

2 
q 

x.___x 

x ________ x 

--..x 

5 6 E 

FIG, 9, The reduction of D i),j,O) ® L '(~, I,jl, 

= S~o r~~:±: + 1
6'(E + A. + 1 + S,r + ~ ,i2 - ~) 

EI1D(E+A. + 1')1 -A.,iJ, 

and for A. »1 

= ~ j't' S(E + A. + S + l,r + ~,j2 - ~). 
S ~ 0 r = Ii, .! I 2 2 

(25) 
Proof It consists in comparing the weights and their 

multiplicities. Using Eqs. (18) and (19) and the CG series of 
SU(2), the weights of the left side are 

D(A. + 1,A.,0)®L'(E,jl,j2) 
00 00 .! +j~S!2 S!2+j. 

= I' I L I - (E + A. + 1 + S + n,r,t ). 
n~OS~O r=I.!+S!2-j,1 1~IS/2-1,1 

The right side is for A. »1: 

I'I t .!f' (E + A. + 1 + S + t + n, 
n = 0 t = 0 S = 0 r = A -)1 S + t. t - S) r+ --,}o+ --. 

2 - 2 

First, changing the sum indices to s' = s + t,t ' = t - s, one 
gets 

nto' s~o I' ~ Is,tj,l- 2j, r~tj,( E + A. + 1 + S' + n, 

S' (') 
r+ 2,j2+ 2' 

then shifting to r' = r + !S', t = )2 + ~t " one obtains for the 
right-hand side 

00 x S'/2+), 

I'I _ I-
n~OS'-=O 1=IS'/2 j. 

.! +j +S'/2 I (E+A.+1+S'+n,r',t). 
r' -=.! oj, + S'/2 

This is obviously equal to the left-hand side. 
The other case A.<JI is more space consuming, but 

straightforward. One decomposes the 6' and D in the right
hand side ofEq. (25) into a sum of weights, and changes the 
sum indices to bring the weights into the form 
(E + A. + 1 + s + n, r, t ). Then the sums can be seen to be 
equal to those of the left-hand side. 

Now, by decomposing the twist 2 representations into 
lines as in Sec. IlIA and using Lemma 7, the CG series of the 
tensor product of a twist 1 and a twist 2 representation can be 
found. 

Theorem 8: 

D (A. + 1 ,A. ,0) ® D (JI + J2 + 2,JI,J2 ) 

= r~1 j _ _ ~nlr.2.! ID (E + ) + r,JI + A. + ) ~ r,J2 + i: r) 

EI1 I ! D (E + j + r,JI + A. + i + r,J2 + j - r) (26) 
r-Oj~O 2 2 

with E = (A. + J I + J 2 + 3). 
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p 

2 
q 

5 6 E 

FIG. 10. The first terms in the CG series of D 1]'1,0) ® D Ii, I,ll. Ix) are the 
lowest weights. 

In order to obtain D (A + 1,0,,,1, ) ® D (J, + J2 + 2,J2,J,) ex
change the two SU(2) eigenvalues. An important feature of 
this formula is, that the twist in the CG series can only have 
values between 

(27) 

For an easy example see Fig, 10. 
The spin 0 case has been treated by solving differential 

equation. 3 For a proof see the appendix. 

D. General tensor products 

Putting E = A + 1 + E' in the right side ofEq. (26), one 

I 

APPENDIX 

obtains the reduction of the weight diagram of 

D(A + 1,A,0)®6(E',J"J2 ). 

The CG series for the tensor product of a twist 1 and at> 1, 
J"J2 = ° representation can be obtained from this directly, 
using Eq. (20). For the tensor product of a twist 1 and at> 2, 
J "J2 i= ° representation it's a straightforward calculation 
from Theorem 8 to the CG series, using Eq. (21). In this case 
representations with twist t ' occur, 

(28) 

The general tensor product of representations with twist> 1 
can in principle be reduced with the present method. As in 
the case of SO(3,2) one has to decompose the triangles 6 of 
one representation into diagonals S, the others into lines L '. 
Then a generalized form of Lemma 7 for S ® L ' is needed. 
From the physical point of view these CG series are less 
interesting, as from spin ° calculations, and from the analogy 
to SO(3,2) one expects that all twists occur. 

Some physical applications of the CG series found here 
will be published together with L. Castell, '0 with whom 
many discussions are acknowledged. He suggested the 
graphical method for the reduction in the above noncom pact 
cases. 

Proof of Theorem 8: Using Lemma 7 and Eqs. (19) and (21), both sides can be decomposed into sums of 6'. The left side is 
for J < 2(,,1, - Jd + r _a, 

r I21 ~~(: 2J~)t() '21t~()' '6'(E + J + Irl + t, ,,1,- J, + 

withE=A +J, +J2 + 3, 

and forJ>a 

r-J+t J+r-t) 
2 + S,J2 + 2 ' 

I
2Jj 

'~(I).J)~1)'2Jt~)+'6'(E+J+lrl+t,J,-A+ J-;+t +1+S,J2+ r+;-t) 

Ell I' I 6' E+J+lrl+S+lti,J,-A+J-r- - ,J2 +J r- . 
IlllllU <I.21.j/", j-S a ( . S t '+ S+t)} 

S () (2J"'+j 5) 2 2 
The decomposition of the right side yields 
2J, y; 21ll1lllJ, t I\. + (J \ r)/2. J +- (j rJ/21 

II I 
, 0, 0 S () 

x 
2(J I I A) t j t- r 

I 
21J· \ V ' 

S 6'(E + J + r + S + It I, J, + ,,1,+ J + r - S - t,J2 + J -- r - S + t) 
S121 2 2 

2m11l1J , j A f Ij rl/2. J, t V t r)/2j 

I 
Y. 

I 
nllll(r,2"{ I S I) 

2(J \ t A I t j r 

X I 
(2J , t j t r 

Next all 6' shall be arranged into structures of the form 

I6' E+lrl+S'+t',J,+A+i -r ,J2 + ( 
., + t' 

" 2 
For Eqs. (AI) and (A2) this is achieved by changing the sum indices appropriately: 

I 
21. J 

<I I ' ,\ I 'J 6'(E + Irl + S + t, J, + ,,1,+ t - r + J , J, + r +; -t ), 
S /2 lil2, t V S 112 2 -
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1-~+2A I 

I I 2 I 
2J, } rna:\(O.a) ~ I 2A .')' 12 I) max.(O,a) 1/2 ~ I max(O,a) 1/2 

2J ~ " ( ) + t - r ) + r - t ) (A2 ) 
X 2.. 6.' E + Irl + S + t), J 1 + A + ,J2 + 2 . a 

I v S)/2 2 
In Eqs. (A3)-(AS), terms of the type LI(E' + It 1.11 - t /2')2 + t /2) must be rearranged. To demonstrate the necessary steps 
for Eq. (A3) I introduce), =) - s, s' =) + s and get 

I21 J n"'\I~ 2J J~.~ c2JI~() f '6.'( E + Irl + S' + t, J I - A + )' -; + t, J2 + )' +; - t) 
j" - a 00 ( )' - r - t )' + r + t)} (A3 ) 

Ell I~I s.k~ c6.' E + Irl + S' + t, J 1 - A + 2 ,J2 + 2 ' a 

with 

c = 1j'/2 - max(0,a)/21 + max(0,a)/2. 

After changing the sum-indices of the second term in braces I J to t' = - t, S = s' + 2t, the two terms can be formulated in a 
single expression 

{ } = 2J. t I, _ 

,I f."; 
I 6.'( E + Irl + S + t " J I - A + )' - ; + t, J2 + ) + ; - t). 

(' min(O.,') 

Reversing the t' and S-sums and shifting )" t', and ( - S) by 2A one gets the required form, 

I I ! 2J'I+' 6.'(E+ Irl +S+t,JI +A 
21. f 2)1 .r 21J. + ). 1 S /2 c· f i. 

l ~ l11a:":' f r j' - 2(J I t- A). - f + c' - A J 

)-r+t J )+r-t) 
+ 2 '2+ 2 ' 

where c' = V'/2 - max(O,a)12 + A I + max(O,a)/2. 

Similar calculations give for Eqs. (A4) and (AS) 
2J. 

I ! I 
r () /' Illax(r 2}" r 2(J , + ). ) S'/2 -- ~i'/21, [ 

I -- max. -- r 

J o + , )'-r-t') 
- 2 

I 00 

r~ \ j' ~ maxlr - 2(t:+ rI. -- r - 2J,) 

J + )' + r - t ') 2
2

, 

where 

d = I ~ + min(;,2A) I _ min(;,2A). 

2J· I -" ., 6.'(E+ Irl +S'+(',J\ +A+ ),+r+(' 

)' - 2(J, f i,). - c"_ + 'LI] 2 
2 2 

(A3b) 

(A4a) 

(A5a) 

Now Ihs = rhs can be seen almost by inspection for), > 0, which corresponds toil +)2> J 1 + J2 + A in Fig. 10. For)',;;;O the r
sums have to be included into the rearrangement. Exchanging the r and), sums in Eq. (A4a) and (ASa) yields for the right side 

)' Ill .. X) 

! minV'I
J,·21,)! 2J. I -- r _, . 6.'( ), 

2J .. - IJ, " J. -j A)I ,~maxID. --)' - 21J, f-,{)I SI2 -- [i/2) , [ .. , I J, .s] 
I -0-_ max - r --J -- 2(J I + /\.), 21 - "2 

j' maxi 

f min(2J,J'i 21J, + A) ! 2J. I -+ r 6.'( ). 

21J,-+J.).I- 2IJ,-+Ar.--IJ,+J.-+A)J r--maxl\' -)' -2J.) £--d ('---maxlr-), 2(J, j,{l.d- S'/2J 

2 

In the expressions for the Ihs, in addition to this, the sum indices have to be shifted by 

r = r' - 2A, t = (' - 2A, S = S' - Ir' - 2A I + Ir'l + 2A 

for)<; - 2A. 
Equations (Ala) and (A2a) do not contribute and Eq. (A3b) gives 

j -+ 2I -+), I 

IJ,+J.-+'{rl r __ oj 2J. S'/2-~ 
f 

jl2 -+ Ir'/2 - A I - 102! - A 

t' -- maxrr' 
2J, I+' 

S' _ 1. 1 
2 2 

1573 

(A4b) 

(ASb) 
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6'(£ + [r[ + S + t', J, +). + i + t' - r, Jo + i - t' + r). 
2 - 2 

(A3c) 

Again Ihs = rhs can be seen directly. 
For - 2), <i<,O the necessary shifts are: 

r = r' + i, t = t' + i, S = S' - [r' + i[ + [r'[ - j. 

In this case all three terms of the Ihs, coming from Eqs. (Ala), (A2a), and (A3b) have to be collected, and compared with Eqs. 
(A4b) and (ASb), which is a lengthy but straightforward calculation. 
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Sturm-Liouville eigenproblems with an interior pole 
John P. Boyd 
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(Received 17 September 1979; accepted for publication 18 March 1981) 

The eigenvalues and eigenfunctions of self-adjoint Sturm-Liouville problems with a simple pole 
on the interior of the interval [A, B] are investigated. Three general theorems are proved and it is 
shown that as n- 00, the eigenfunctions more and more closely resemble those of an ordinary 
Sturm-Liouville problem and An - - m 2r?/(B - A f, just as if there were no singularity. The 
low-order modes, however, differ drastically from those of a nonsingular eigenproblem in that (i) 
both eigenvalues and eigenfunctions are complex (despite the fact the problem is self-adjoint), (ii) 
the real and imaginary parts of the nth eigenfunction may both have ever-increasing numbers of 
interior zeros as B_ 00 , instead of just (n - 1) zeros, and (iii) as B_ 00, the eigenvalues for all small 
n may cluster about a common value in contrast to the widely separated eigenvalues of the 
corresponding nonsingular problem. These results are general, but in order to present 
quantitative solutions for the low-order modes, too, special attention is given to the particular case 

u" + (11 x - A )u = 0, ( I) 

with utA ) = u(B) = 0 where A is the eigenvalue and A and B are of opposite signs. For small n, one 
can obtain the approximation 

An -exp[(1 + 31
/
2i)dn/(2B 1/3)]/B, (2) 

where dn is the nth root of the Airy function Ai( - z). The imaginary part of (2) shows explicitly 
how profoundly the interior pole has modified the structure of the eigenproblem. 
The WKB method, which was used to derive (2), is shown to be accurate for all n. The WKB 
analysis is of some interest in and of itself. Although the number ofWKB "transition" points is 
the same as for the half-century old quantum harmonic oscillator (two), the substitution of the 
interior pole for one of the turning points has a profound (and fascinating) impact on both the 
WKB formalism and the numerical results. Thus, although this problem was motivated by the 
physics of hydrodynamic waves, it is also an extension to both classical Sturm-Liouville theory 
and to the WKB treatment of eigenvalue problems. 

PACS numbers: 02.30.Hq 

1. INTRODUCTION 

Normal self-adjoint Sturm-Liouville (SL) eigenprob
lems on an interval [A, B] fall into two classes: those whose 
equations have no singularities on [A, B] and those which are 
singular only on the boundaries. The theory of the diurnal 
ocean tide introduced a third class: equations which would 
otherwise be described by the classical SL theory except for 
having so-called "apparent" singularities in the interior of 
the domain. Although the tidal equation was derived by La
place in the eighteenth century and despite the fact that the 
eigenfunctions themselves are analytic everywhere in the in
terior of the domain, the mathematical problems of this ex
ample of the third class were not resolved until 1970, ending 
a long history of confusion, controversy, and many pub
lished blunders. 1.2 The goal of the present work is to study 
the simplest example of a fourth class ofSL eigenproblems in 
which the eigenfunctions themselves, as well as the differen
tial equation, are singular in the interior of the interval. 

"critical surfaces" arise as naturally in fluid waves as kittens 
from cats. Physically, the singularity is removed by friction, 
which shifts it into the complex plane. In the real world, 
there is always at least a little friction, so the actual fluid 
waves are always finite and well-behaved, as one would ex
pect. Because the dissipation is so weak, however, it is a good 
approximation to take the in viscid limit so as to eliminate the 
friction as an explicit parameter, and this will be done in 
most of the paper. In the next two sections, however, the 
friction is temporarily restored to a finite value to show how 
the singularity should be interpreted when making this ap
proximation. (In brief, the conclusion is that the eigenfunc
tions should be made single-valued by a branch cut in the 
upper half-plane.) 

Up to now, this fourth class of self-adjoint SL problems 
has been completely ignored, and small wonder. Such prob
lems seem bizarre and outrageous: what physical theory 
could lead to equations whose solutions are singular inside 
the physical domain? In reality, such interior singularities or 

Although some attention will be given to a general class 
of problems, for simplicity and for the sake of giving explicit 
results instead of vague generalizations, most of our atten
tion will be focused on the particular example 

uxx + (lIx -A)U = 0, 

utA ) = u(B ) = 0, 

(1.1) 

(1.2) 

where A is the eigenvalue. If A and B are of the same sign, 
then (1.1) and (1.2) are merely a normal, self-adjoint Sturm-
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Liouville problem of the first kind with no singularities on 
[A, B]. Here, however, A and B will be of opposite signs so 
that both (1.1) and the eigenfunctions are singular in the inte
rior of the interval [A, B]. None of the usual theorems of 
conventional SL theory apply because the interior singular
ity violates the conditions of the theorems, and most are no 
longer true. In particular, the eigenfunctions and eigenval
ues are complex. 

Thus, one has no choice but to regard (1.1) and (1.2) as a 
new species, a "Sturm-Liouville eigenproblem of the fourth 
kind," when the singularity is in the interior. The problem is 
not a lack of self-adjointness (it is well known that non-self
adjoint equations may have complex eigenvalues); actually, 
(1.1) is self-adjoint. The rub is solely that the differential 
equation has a pole on the interior of the domain. 

In several years of searching, it has not been possible to 
locate a single paper other than this one which attempts a 
systematic attack on such "fourth kind" eigenproblems, but 
there have been three precursors. Dickinson" and Tung4

.
5 

analyzed waves with "critical latitudes" using the continu
ous spectrum approach discussed in Appendix B. This work 
is complementary to that reported here, and some of Dick in
son's WKB analysis can be carried over. Simmons6

.
7 is the 

only author besides BoydX to have previously computed dis
crete, singular eigenfunctions, but his calculations are strict
ly numerical and limited to more complicated equations 
than (1.1). 

This present work has three principal goals: (i) to prove 
some simple theorems about the general SL problem of the 
fourth kind, (ii) to obtain analytic approximations to the 
high- and low-order eigenvalues of (1.1) in particular, and 
(iii) to describe the WKB treatment of an eigenvalue problem 
with a turning point and a simple pole. The reasons for inves
tigating "fourth kind" SL problems have already been ex
plained above and also in Boyd. x The purpose of studying 
(1.1) is to understand the general class by thoroughly exam
ining a particular example. 

The WKB analysis has several motives. First, it is a 
straightforward and familiar method for obtaining asymp
totic approximations to the solution of (1.1). In addition, 
however, the WKB analysis is of interest in itself. Genera
tions of budding physicists have studied the quantum me
chanical harmonic oscillator from a WKB viewpoint. Here, 
however, although the number of WKB "transition points" 
is the same (two), the replacement of a turning point by a 
simple pole profoundly alters the solution, and it is fascinat
ing to see how the application of such familiar ideas can lead 
to such radically different conclusions. 

The plan of the paper is as follows. The next section 
proves three theorems for general Sturm-Liouville problems 
of the fourth kind. Section 3 gives the exact analytic solution 
of ( 1.1) in terms of Whittaker functions and also the rather 
unorthodox choice of branch cut which is physically appro
priate for making the eigenfunctions single-valued. The next 
two sections discuss the eigenvalues and eigenfunctions in 
the limits n--'>oo and n--'>O, respectively. Sections 6 and 7 
analyze the WKB method and its accuracy. The eighth sec
tion is a case study of the complete spectrum for a particular 
choice of parameters, paying particular attention to modes 
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of intermediate n. The final section summarizes the similari
ties and differences between normal Sturm-Liouville eigen
problems and those of the singular fourth kind discussed 
here. The three appendices discuss the Whittaker functions, 
discrete versus continuous eigenvalues, and Chebyshev ap
proximations for the eigenvalues, respectively. 

The theorems of Sec. 2 and the asymptotic n--'> 00 ap
proximations of Sec. 4 [Eqs. (4.6) and (4.10)] are applicable to 
general Sturm-Liouville eigenproblems of the fourth kind. 
Most of the remaining results are quantitatively applicable 
only to the particular example (1.1), but the methods used to 
derive them are general also. 

2. THREE THEOREMS 

In this section, some simple results will be proved for an 
equation more general than (1.1). To interpret the singularity 
of (2.1), the friction E is explicitly included. As noted in the 
introduction, E is normally so small that it is good approxi
mation to take the limit E--'>O, which reduces the number of 
parameters from three (E, A, B) to two (A and B). 

Theorems 

Let um (x) and un (x) be eigenfunctions of the differential 
equation 

Uu + [r(x)/(x - iE) + pIx) - A lu = 0, (2.1 ) 

with 

u(A) = u(B), (2.2) 

where pIx) and r(x) are real and analytic on [A, B], A is the 
eigenvalue, A and B are of opposite signs, and E> 0 is a real 
constant. Then in the limit E--'>O, one can prove 

Theorem 1: If Am #A n, the eigenfunctions are orthogo
nal, i. e., 

IB U m Un dx = O. (2.3) 

Theorem 2: Letting Im(A n ) denote the imaginary part of 
the eigenvalue, 

Im(An) IB IUn I dx = 1Tlu n (0) 1
2r(0). (2.4) 

Theorem 3: The eigenvalue A is always in the upper 
half-plane, i. e., 

Im(An »0 for all n, 

if r(x) > O. 

Proofs 

(2.S) 

The demonstration of Theorem 1 is identical with the 
proof of orthogonality for orthodox Sturm-Liouville prob
lems as given in Morse and Feshbach, 2 for example. Let 

q(x) r(x)/(x - iE) + pIx). (2.6) 

Writing the differential equations satisfied by U m (x) and 
un (x) after multiplication by the other mode gives (letting 
primes denote differentiation) 

Urn (u~ + qU n - AnUn) = 0, 

Un (U;n + qU rn - Am Urn) = O. 

John P. Boyd 

(2.7) 

(2.8) 
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Subtracting (2.8) from (2.7) gives 

Urn U: - Un U~ + (Am - An )Urn Un = 0. (2.9) 

The offending singular term q(x) has already disappeared 
through subtraction, and the remaining steps-rewriting the 
first two terms in (2.9) as a perfect derivative, integrating 
from A to B, and invoking the homogeneous boundary con
ditions-give 

(Am - An) f: Urn (x)Un (x) dx = 0, (2.10) 

from which (2.3) is obvious. 

The steps in the proof of the second theorem are formal
ly identical to those for the first except that Urn (x) is replaced 
by u" (x)* where the asterisk denotes the complex conjugate. 
Since UtI (x) cannot be orthogonal to its own complex conju
gate, this argument is used in formal Sturm-Liouville theory 
to show that A: = An' i. e., all the eigenvalues are real. For 
the singular class examined here, the rub is that because of 
the pole (and the friction E), q(x) #q(x)*, so the singular terms 
do not cancel out and the equivalent of(2.9) is 

unu:' -u:u: + (A" -A:)lunI
2

= (q-q*)lunI
2

• 

(2.11) 

Following through the remaining steps gives 

i
B iB lu 122i€r(x) 

(A." -A.:) lu l1 1
2dx= -'..-n"';"2--2- dx. (2.12) 

,.j A x + € 

Carrier, Krook, and Pearson9 show that 

lim _€- = m5(x). 
< .0 x 2 + €2 

(2.13) 

Substituting this into (2.12) and performing the integration 
on the right-hand side gives (2.4). 

The third theorem follows trivially from the second. 
Since all the other quantities in (2.4) are absolute values and 
therefore positive semidefinite, it follows that Im(An) must 
be as well. 

A few remarks are in order. First, only Theorem 2 actu
ally requires €~; the third theorem can be proved directly 
from (2.12). 

Second, Theorem I shows that the eigenfunctions are 
mutually orthogonal among themselves. The orthogonality 
relation (2.3) does not involve the complex conjugates of the 
eigenfunctions nor is (2.3) a biorthogonality equation involv
ing inner products of the eigenfunctions paired with those of 
the adjoint. Despite its complex eigenvalues, (l.l) with (1.2) 
is self-adjoint and the form of the orthogonality relation, 
Theorem 1, reflects this. 

The second theorem shows that Im(An) = 0 only when 

(2.14) 

i. e., in the very special case that Un (x) is nonsingular. When 
pix) = 0 this means un (x) is proportional to M _ K,t-( - X/K), 

which always has a zero at x = 0. Since (2.14) plus (2.2) are 
equivalent to imposing three boundary conditions on a sec
ond order differential equation, Theorem 2 implies that A" is 
real on a set of measure zero. In other words, there are cer
tain sets of values of (A, B, n) for which An is real, but if one 
chooses A and B at random, the odds are infinitesimally 
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small that any of the modes will have a real eigenvalue (al
though the imaginary parts of some may be very small). 

Theorem 3 states what will be assumed in later sections 
in working out the WKB formalism: that A. is always in the 
upper half-plane and K [defined by (3.4) below] therefore, 
always in the fourth quadrant. The physical significance 
(and necessity!) of this are discussed in Boyd.8 The condition 
that r(x) be positive is equivalent to satisfying the well-known 
Rayleigh-Kuo criterion for barotropic stability, and is al
most always true in the upper atmosphere. It is automatical
ly satisfied by the linear wind shear model [r(x) = const] that 
will be considered in the rest of this paper. 

3. THE EXACT SOLUTION OF THE MODEL PROBLEM 

The general problem 

Uzz + (a/z - A ')u = 0, 

utA ') = u(B ') = 0, 

(3.1) 

(3.2) 

can be reduced to the canonical form (1.1) and (1.2) through 
the substitutions 

x =az, (3.3a) 

A =aA', (3.3b) 

B=aB', (3.3c) 

,.1=,.1 '/a2
• (3.3d) 

Equation (1.1) is a special case of Whittaker's equation, 
which in turn is merely a transformed version of the conflu
ent hypergeometric equation. Defining (principal branch) 

K== 1/2,.1 1/2, 

the linearly independent solutions may be taken as 

ul(x, A) = M -K.f( - X/K), 

U2(X, A.) = F(l + K)W -K.l( - X/K). 

(3.4) 

(3.5) 

(3.6) 

The power series for these Whittaker functions and their 
relations to the usual M and U confluent hypergeometric 
functions are given in Appendix A. The minus signs in (3.5) 
and (3.6) are a convention introduced by Dickinson to ensure 
that the Whittaker functions have different asymptotic be-

Branch 
Point 

Principal 
Branch 

~Chcsen 
Branch 

FIG. I. Two possible branch cuts for the solution of Eq. (2.7) with friction 
coefficient E and complex eigenvalueA. The principal branch of the Whitta
ker function cuts the real axis between the boundaries A and B. which 
would make the solution discontinuous. The chosen branch is convenient 
and avoids this discontinuity, Any other branch cut which avoids the real 
axis would be acceptable, however, 

John P. Boyd 1577 



                                                                                                                                    

havior (M _ K,} blows up and W K,} decays) as x_ - 00, 

With this convention, the lowest few eigenfunctions are ap
proximately proportional to the W function alone, as ex
plained in the next section, which is a great simplification, 

M K,i ty) is an entire function, but W _ K,i-ty) has a 
branch point aty = 0, The obvious choice is to take the prin
cipal branch of the function, but this is not physically al
lowed, If one inserts a small amount of dissipation with fric
tion coefficient € (with the understanding that €-+O in the 
end), (1.1) becomes 

uxx + [l!(x - i€) - A lu = 0, (3,7) 

and the singularity is shifted into the upper half-plane, If one 
uses the fact that K lies always in the fourth quadrant (proved 
in Sec, 2), then the branch cut for the principal branch of 
W K,j ( - X/K) would cross the real x axis as shown sche
matically in Fig, 1, which is absurd, The simplest allowable 
choice is to place the branch cut along the ray 

argy = - 1T /2, 

where (note the sign difference betweeny and x) 

W(P~'l (Y), 

W . I (y) = 
- ." W(!'~ I (y) + 

(3,8) 

y= -X/K, (3,9) 

Dickinson' made the same choice. Any branch cut which 
lies above the real x axis is permitted, however, and in fact 
the different choice argx = 1T /2 is made in Fig. 5 for the sake 
of clarity, Since there is always (weak) damping in a real 
fluid, such frictional arguments have been used to choose the 
proper branch in fluid mechanics for a very long time, 

Unfortunately, this nonstandard choice of branch im
plies that the usual textbook asymptotic formulas for 
W .. K I ty) cannot be directly applied to our Whittaker func-

" 

tion wheny is in the third quadrant. However, it is a property 
of logarithmic solutions to linear, second-order differential 
equations that the coefficient of the logarithm is always pro
portional to that solution of the equation-in this case, 
M _ K I ty)-which is analytic at y = 0, If one defines lnty) to 

'2 

be the logarithm with branch cut at argy = - 1T/2 and 
IniPlty) to be the principal branch of the logarithm, then 

In(P)(y) - 1T/2<argy<1T 
In(y) = ' (3,10) 

In(P)(y) + 21Ti, 1T<argy<31T/2 

From this it follows that 

(3,11) 

The most efficient way to evaluate the Whittaker functions is by numerical integration oft 1.1), using the power series for 
M _ K I ty) and W _ K lty) to initialize the calculation for small y. Even though (1,1) is "stiff" in the parlance of numerical 

'2 '2 

analysis, an ordinary fourth-order Runge-Kutta program gave high accuracy even for large x, and was used to compute the 
"exact" results presented in later sections, 

Letting 

U(X,A) = au dX,A ) + (3U 2(X,A ), (3,12) 

the boundary conditions (1,2) can be written in the form of a 2 X 2 matrix equation whose determinant is 

Ll (X,A) = uM,,-l, )u2(B,A) - u,(B,,-l, )u 2(A,,-l,), 

The eigenrelation is then 

Ll (A) = 0, 

(3.13) 

(3,14) 

Once the eigenvalues have been determined from (3,14), it is trivial to solve the matrix equation for a and (3 in (3.12) to obtain 
the eigenfunctions. 

4. HIGH-ORDER MODES 

In the limit IYI- 00 with K fixed, the Whittaker functions have the familiar asymptotic approximations 

M _ K,! (Y) = S [sin (K1T)/K1T]r (1 + K) W(!'~'l (y) 

+ eY!2yK (1 _ K(1 - K) _ K(1 - K) (1 - K)(2 - K) + ___ ), 
r (1 + K) Y y2 

+ K(1+K)(\~K)(2+K) ___ } 

where ~e obtained from (4,1) and (4.2) via (3,11). 

(4,1) 

(4,2) 

s= 
_ eirrK 

_ e--irrl( 

Im(y) > 0, 

Im(y) < 0, 
(4,3) 

In the limit A_ 00 , K -0 along the negative imaginary 
axis, and (4.1) and (4.2) simplify to 

and where the superscript (P) denotes the principal branch of 
the Whittaker function as before, The asymptotic approxi
mation to our Whittaker function of unorthodox branch can 
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M -K ,( -X/K);::::: - 2isin( IA IlX) , 
'2 
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for fixed x (at either sign) with relative error 0 (1/4AX) where 
the Whittaker function has a branch cut at argy = - rr/2. 
Substituting (4.4) and (4.5) into (3.14) gives 

An = - -rrm 2/(B - A f, n-+ 00. (4.6) 

Several features of this eigenrelation deserve comment. 
First, the integer m that appears in (4.6) is not necessar

ily equal to the mode number n when the modes are ordered 
according to IA I. A counterexample where m = n + 2 is giv
en in Table IV of Sec. 8. 

Second, (4.6) implies that as was assumed in obtaining 
it, An -+ - 00 as n-+ 00. Thus, the derivation of (4.4) through 
(4.6) is consistent. 

Third, if we generalize (1.1) to 

U xx + [1/x - A + p(x)]u = 0, (4.7) 

as done in the theorems of Sec. 2, where pix) is analytic on 
[A,B], then 

p(x)..(A (4.8) 

uniformly on [A,B] in the limit that A is large. Thus, the 
functionp(x) is only a small perturbation to the eigenmodes 
of (1.1) for sufficiently large n. Therefore,"(4.6) is a valid ap
proximation to the large eigenvalues of (4.7) for general 
bounded pIx i-though of course the approximation is more 
accurate (for a given n) whenp(x) = ° than when it is nonze
ro. One could presumably correct for p(x)¥o along the lines 
of the usual Rayleigh-Schrodinger perturbation theory, but 
(4.6) will suffice for the present. 

Fourth, (4.6) is identical with the eigenrelation of the 
same problem with the pole removed, i. e., 

(4.9) 

with the usual boundary conditions (1.2). Further, the eigen
functions of (4.9) are given by a linear combination of the 
trigonometric eigenfunctions of (4.4) and (4.5), 

Un (x) - sin(mrrx/ [B - A ]). (4.10) 

Thus, for the high n modes of an equation with an interior 
pole, the singularity is essentially irrelevant. The solutions 
differ from those of (4.9) only in two small ways. 

First, An always has a small imaginary part Aim which 
appears to decrease roughly as 0 (1/n).lo Second, the ap
proximation (4.10) breaks down in an internal boundary lay
er of width 0 (1/ A ) about the singularity at x = 0, where the 
full Whittaker functions must be used. Since both Aim and 
the width of the internal boundary layer decrease as n-+ 00, 

however, it still remains true that the singularity has little 
effect on the higher-order modes. 

5. LOW-ORDER MODES 

When A is small, the internal boundary layer in which 
the asymptotic series (4.1) and (4.2) are inaccurate includes 
the whole of [A ,B], and more powerful, (and alas, more com
plicated) methods are needed. There is, however, one power
ful simplification that we can make before applying them. 

When n is large, A hugs the negative real axis and the 
eigenfunctions are sinusoidal as shown explicitly by (4.4) and 
(4.5). For the low-order modes, however, A is complex with 
either a large imaginary part or a positive real part; and then 
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the eigenfunction must decay exponentially on [A,O] away 
from the pole. 

The reason for this decay is most easily seen by assum
ing A is real and positive (as it is in the limiting case) and 
looking at the equation to which (1.1) reduces for large Ixl: 

Uxx -AU=O. (5.1) 

In order to satisfy the boundary condition of vanishing at 
x = A where A is negative, u(x) must be of the form 

( ···'!'''Ixl -2,('··',A' A"'lxl) u = (const) e - e . 'e , (5.2) 

which is approximately 

u(x);::: (const)e- A' "!xl (5.3) 

everywhere on [A,B] except in a narrow boundary layer of 
j 

width 0 (1/ A ') near x = A where the growing exponential is 
significant. In this boundary layer, however, u(x) is exponen
tially small in comparison to its value at x = ° (by a factor of 
e- A "'IA I), so the absolute error in replacing the exact solu
tion (5.2) by the approximation (5.3) is exponentially small 
everywhere on [A,B]. 

In general, of course A is complex rather than real and 
we want to solve (1.1) rather than (5.1), but these complica
tions do not affect the basic argument in the least. The sign of 
1!x, like that of - A, is negative for x < 0, so the pole merely 
makes the two linearly independent solutions grow or decay 
faster. The complexity of A will cause oscillatory growth or 
decay, but the growth or decay is still there unless A is nega
tive real-as is approximately true for the high order modes 
discussed in the previous section. 

Thus, the qualitative behavior of the solutions of(5.1) is 
identical with that of the low order eigenfunctions of (1.1). 
From the asymptotic approximations (4. I) and (4.2), one sees 
that M _ K,f ( - X/K) is analogous to the positive exponential 

in (5,2) while W _ K.1 ( - X/K) decays exponentially away 

from the pole, (These asymptotic approximations may not be 
numerically accurate for the small A we are interested in 
here, but they do indicate the correct exponential growth
/decay behavior as one can verify from the more powerful 
WKB approximations of the next section), Thus, it must be 
approximately true, in analogue to (5,3), that 

u(x)- W K,j ( - X/K) (5.4) 

-in words, that the low order eigenfunction is proportional 
to the W-function alone, 

This approximation, which is equivalent to setting 

A = - 00 

since (5.3) and (5.4) are exact in this limit, is justified 
provided 

e 2,( "'-4«1. 

(5,5) 

(5.6) 

In the next section, we will assume (5,5) and then check a 

posteriori that (5.6) is in fact satisfied for small nand not-too
small A and B, 

This assumption (5,5) and the reasoning behind it is im
portant both physically and mathematically, Physically, the 
argument is important because it tells us that the low-order 
eigenfunction has nothing except an exponentially decaying 
tail to the left of x = O-in startling contrast to the high n 
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modes, which are oscillatory on both sides of x = O. Figure 2 
compares the amplitudes for a typical low-order and a typi
cal high-order mode. (To avoid repeating "small n modes" 
and "large n modes" ad nauseam, it is convenient to intro
duce the terms "monokeric,"-literally, "one-sided"-for a 
model which has only an exponentially decaying tail to the 
left of x = 0 as in the top of Fig. 2, and "dikeric"-"two
sided"-for a mode which is sinusoidal on both sides of 
x = 0 as in the bottom of Fig. 2.) Mathematically (5.5) is 
significant because it reduces the number of parameters from 
two (A and B ) down to one (B alone). 

Turning to the eigenvalues, we show in the next section 
that for small n and moderate or large A and B, i. e., a "mon
okeric" small A mode 

A" ~ (lIB )exp[CI + 31/2i)Jdn J/(2B 1/3)], 

where 

d" = l ~1T(4n - 1)]213 

(5.7) 

(5.8) 

is the nth root of Airy's function Ai( - x). The hodograph of 
the product of B with the exact A I (as determined by numeri
cal integration) in the complex plane is shown in Fig. 3. The 
approximation (5.7) is a good qualitative description of the 
entire graph. 

As B-+oo, (5.7) becomes exact and 

)'n ~ liB (5.9) 

independently of n. This clustering of eigenvalues for large B 
is in sharp contrast to ordinary SL theory, where for the 
boundary conditions (1.2), one can prove that the eigenval
ues must always be distinct and well-separated. 

For finite B, (5.7) and the hodograph show that the ei
genvalue is complex even though the differential equation 
(1.1) is both real and self-adjoint. This again would be prov
ably impossible for a real, self-adjoint Sturm-Liouville prob
lem of the usual classes. 

The hodograph of A is shown only for the lowest mode 
because one can prove from (5.7) that 

AII(B)= 9 AI[ 9B]. (5.10) 
(4n - 1)2 (4n - 1)2 

-10 o 10 

FIG. 2. A comparison of the absolute valueofa low order, smalllA I, mono
keric mode with that of a high order, large IA I, dikeric mode. 
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FIG. 3. The hodograph in the complex plane of the lowest eigenvalue for 
A = - a:;. The numbers labelling the curve give the values of B. Note that 
BA, rather than A itself, is the quantity plotted. 

Thus, to within the accuracy of (5.7), the hodograph for Al 
will apply to all the low-order modes with appropriate res
caling of the axes and tic-marks. 

As B-+O, or equivalently as n-+ 00 for fixed B, one can 
see from Fig. 2 that A is tending towards the negative imagi
nary axis. This, of course, is what has been already been 
shown by (4.6). Thus, the high n and low n modes blend 
smoothly into one another. 

For intermediate values of n neither (4.6) nor (5.7) is a 
good approximation, and the eigenfunctions are hybrids of 
the two extreme forms shown in Fig. 2. Nonetheless, enough 
has been obtained to give a good qualitative picture of the 
whole spectrum. In the next section, we will explore the bi
zarre behavior of the low-order modes via WKB, derive 
(5.7), and discuss its accuracy. 

6.WKB 

A. The method of matched asymptotic expansions 

The grand strategy of this section is to derive asymptot
ic approximations by combining the WKB method with the 
method of matched asymptotic expansions (MMAE). 

Although the WKB method itself is of ancient lineage, 
this pairing with the MMAE technique has been widely used 
only in the last decade. Historically, the WKB "connection 
formulas" were derived through a variety of coordinate 
transformations, integral representations, and other argu
ments. The books by Heading, 11 Dingle, 12 and Olver 13 de
scribe this line ofWKB development and extensions to high
er order. After the MMAE method had been developed to a 
high art for boundary layer problems in fluid mechanics, 
however, it was recognized that it could be applied to a huge 
variety of other problems including WKB. The recent books 
by Bender and Orszag l4 and Nayfeh 15 present this "revision
ist" derivation ofWKB as well as a thorough treatment of 
the method of matched asymptotic expansions and its many 
uses. Because of its versatility and its familiarity to fluid dyn
amicists the WKB/MMAE approach is adopted here. 
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B. "Transition" paints 

Over most of the complex plane, Dickinson3 showed 
that the WKB approximation to the general solution of (1.1) 
is given by an arbitrary linear combination of W _(x) and 
W +(x), where 

W_(x) = - iQ(X)-1/4exp[ - 2KiI,h(Ax) + i1T/4], (6.1) 

W +(x) = Q -114(x)exp[2Kic,h (Ax) - i1T/4], (6.2) 

where, as defined in (3.4), K = ¥t -112 and 

Q(x) = 1/x - A, 

r( 1 )'/J c,h (y) = Jo -; - 1 dx 

(6.3) 

(6.4) 

= sin- ly l12 + l12(1 - y)I12. (6.5) 

The exceptional regions are the neighborhoods of the "tran
sition points," which are defined to be the points where Q (x) 
is either 0 or oo-both make the WKB approximation 
singular. 

The transition points thus playa central role in the anal
ysis. Indeed, one can classify WKB problems according to 
the number and type of transition points in the same spirit in 
which one can classify a linear differential equation accord
ing to the number and type of its singularities. 

The Whittaker equation (1.1) has two transition points: 
a simple pole at x = 0 and a "turning point" at 

X, = 1/ A. (6.6) 

The quantum harmonic oscillator, which is used as an exam
ple by most physics texts also has two transition points, but 
both are turning points. 

In the parlance of matched asymptotics, the neighbor
hoods of the transition points constitute internal boundary 
layers. The WKB approximation using (6.1) and (6.2) is the 
"outer" solution; in the "inner" regions surrounding the 
transition points, u(x) must be approximated using transcen
dentals more complicated than the exponentials appearing 
in (6.1) and (6.2). By matching the inner and outer solutions 
together and using the boundary conditions, one obtains a 
complete approximation to the problem. 

When the differential equation has two transition 
points, however, there are two ways to carry out this recipe. 
The first is to define the inner region so that it simultaneous
ly encloses both transition points. In this case, the inner ap
proximation involves a sum of Whittaker functions (one 
turning point and one pole) or parabolic cylinder functions 
(two turning points), since these are the simplest functions 
with the required number of transition points. This would 
seem to send us round in circles when we attempt to solve 
(Ll) itself, but to apply asymptotic matching to fully deter
mine the outer (WKB) solution of (1.1) and the eigenvalue, 
we need only the asymptotic expansions of the Whittaker 
functions given by (4.1) and (4.2) above, not the Whittaker 
functions themselves. Requiring that the WKB (outer) solu
tion vanish at x = B (and at A = - 00) then gives the eigen
relation (7.1) below. 

The alternative is to define two separate inner regions, 
one around each transition point. In this case, the inner solu
tions both involve Bessel functions of different orders--or-
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der one near the pole and order one-third (Airy functions) 
near the turning point. Though seemingly more complicated 
than the jointly matched or "Whittaker" matching de
scribed above, this separate or "double Bessel" matching has 
powerful advantages. First, because Bessel functions are 
simpler transcendentals than Whittaker functions, the dou
ble-inner-region method gives a simpler eigenrelation (7.1 is 
a function of two parameters, 7.4 only of one). Second, the 
use of separate inner approximations permits deeper and 
more precise insight into u(x) instead oflumping Loth near
the-pole and near-the-turning point behavior together and 
hiding them behind the mysterious, inscrutable veil of a 
Whittaker function. Consequently, it is upon this "double 
Bessel" matching that our discussion will center. 

Since the local analysis and the matching of inner and 
outer solutions has already been done-for the pole, by 
Dickinson,3 and for the turning point by a number of inde
pendent workers more than a half a century ago-we shall 
merely quote their results. The challenge is to fit these two 
local analyses together with the boundary conditions to ob
tain a global description of the solution. The principle obsta
cle in completing this jigsaw puzzle is that while the "outer," 
WKB solution is always a sum of W +(x) and W _(x), the 
coefficients of the sum are different in different portions of 
the complex plane-Stokes' phenomenon. Thus, in order to 
make the final answer intelligible, it is necessary to digress 
briefly and explain this. 

C. Stokes' phenomenon 

If the WKB solutions W +(x) and W _(x) are written in 
the symbolic form 

W(x) = Q --1/4(x)eP (X), (6.7) 

then the Stokes lines are defined by,16 

Im[P(x)] = const, 

and the anti-Stokes lines by 

Re[P(x)] = const. 

(6.8) 

(6.9) 

On the Stokes lines, which will be indicated on the 
graphs below by solid lines, the WKB solutions grow or de
cay exponentially without change of phase. The anti-Stokes 
lines are curves of purely sinusoidal behavior: W (x) oscillates 
without change of amplitude. To emphasize the oscillatory 
character of the WKB solutions upon them, the anti-Stokes 
curves will be graphed as wavy lines. 

The heart of Stokes' phenomenon is that while u(x) can 
always be represented as 

(6.10) 

(except near a transition point), the coefficients must be dif
ferent in different sectors of the complex plane. Within the 
sector bounded by adjoining anti-Stokes lines A I and A 2 , one 
WKB solution (let it be W _ (x) for definiteness) will be expon
entially large ("dominant") in comparison to the other, 
which is said to be "subdominant" in that sector. It then 
follows that b in (6.10), because of the smallness of W +(x), 
can be arbitrary without violating the formal asymptotic 
equality because exponentially small quantities are com-
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FIG. 4. The Stokes lines (solid) and anti-Stokes lines (wavy) for A = 1/100. 
The branch line is marked with crosscuts. Black dots mark the zeros of the 
Whittaker function. 

pletely ignored in Poincare's definition of asymptotic rela
tions. On the anti-Stokes lines, however, b must assume defi
nite (and usually different) values because W + is the same 
magnitude as W _ upon them. Stokes established the con
vention 17 that the coefficient of the subdominant solution 
jumps from b (A 1) to b (A z) as one crosses the Stokes line be
tween them. This convention ensures that (6.10) will be nu
merically accurate near, as well as on, A I and A z, and also, 
since W + is smallest in comparison to W _ on the Stokes line, 
that when b jumps, the corresponding jump in u(x) is as small 
as possible. 

The Stokes and anti-Stokes lines for the solutions of 
(1.1) for A positive and real are shown in Fig. 4. Three Stokes 
and three anti-Stokes lines radiate from the turning point, 
but one of each ends on the branch line, so only two Stokes 
and two anti-Stokes lines radiate to infinity. Their number 
(two of each) is consistent with what one would have de
duced directly from 

uxx - Au = 0, (6.11) 

which approximates (1.1) as Ixl--+ao; parenthetically, we 
note that only these surviving pairs are relevant when per
forming the joint or "Whittaker" matching described above. 

Making the simplifying assumption A = - ao, justi
fied previously, let us look first at the Stokes line radiating 
from the pole leftward to x = - ao. Since W + (x) blows up 
exponentially along this Stokes line, b in (6.10) must be zero 
and u(x) proportional to W _ alone, so that the boundary 
condition at x = - ao can be satisfied. 

Since the coefficient of W +(x) can only jump to a nonze
ro value on a Stokes line, it follows that 

(6.12) 

which is the anti-Stokes line connecting the two points. The 
argument of the exponential in (6.1) is now pure imaginary, 
implying sinusoidal behavior. Dickinson3 shows that, phys
ically, (6.12) correponds to a Rossby wave propagating to
wards the pole and being absorbed there. So far so good, but 
(6.12) brings us face to face with an apparent paradox: how 
can a single complex exponential ever satisfy the boundary 
condition? 

The answer is that it cannot; Stokes' phenomenon saves 
the day by forcing b to jump to a new nonzero value on the 
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Stokes line S in Fig. 4. The new value of b is determined in 
two steps. First, the proper Airy function approximation to 
u(x) in the vicinity of the turning point is found by demand
ing that it asympototically match to (6.12) along the anti
Stokes line A I. Then, b (A 2) is determined by matching the 
"inner" Airy approximation to the "outer" WKB solution 
along the anti-Stokes line A z. 

The matching is routine, but the result is not. The Airy 
functions Ai(x) and Bi(x) are both standing waves for x nega
tive and real. This is fine for the quantum harmonic oscilla
tor problem in which the other transition point is also a turn
ing point; the two turning points reflect the wave back and 
forth between them to create the standing wave. Here, how
ever, as shown by Dickinson,' the transition point atx = 0 is 
a perfect absorber. 

The function that correctly matches to (6.12) is 
Ai(ze21T1

/
3

) where Z==A 2/
3(x - x,), which has the asymptotic 

approximations 

. eiw/ 12 

Ai (zeZmI3 ) _ /!Izl '" argz = rr [on A I l, 
2rrlfZlzll/4 ' 

1/21 1/4 cost ~lzI3/Z - rr/4] , 
rr Izl 

rr 
argz = - [on Azl. (6.13) 

3 

The reader can easily verify that these large Ixllimits of the 
"inner" solution are identical with the Ix - x, 1--+0 limits of 
the WKB approximations along A I and Az, where the former 
is given by (6.12) and the latter is found by matching with 
(6.l3) to be 

u(x)_Q(X)-1/4e - I1TKcos[2K~ (Ax) - K1T" - rr/4l.(6.14) 

This plainly has an infinite number of zeros along the anti
Stokes lineA 2 which are schematically denoted by the black 
dots in Fig. 4. 

Unfortunately, when A is real (as assumed for clarity 
above), all theses zeros are in the upper half-plane and are 
perfectly useless for satisfying the boundary condition at 
x = B on the real axis. One can see now why the eigenvalue 
must be complex: when A is moved into the upper half-plane 
(as consistent with Theorem 3 above), the turning point x, is 
moved into the lower half-plane. It is then possible to make 
one of the zeros along A z coincide with the real axis. 

Figure 5 shows the Stokes and anti-Stokes hnes of the 
fourth mode for B = 100. The Whittaker function has three 
roots below the real axis, an infinite number above, and its 
fourth root alongA z is real and satisfies the boundary condi
tion atx = B. 

We will see in the next section that "double Bessel" 
matching gives extremely accurate approximations to the 
low-order eigenvalues and eigenfunctions, but (6.14) must 
fail as n--+ ao for fixed B, because as we have already seen 
IA 1-+00 in this limit. In turn, this implies that lx, 1--+0, and 
when the turning point and the pole become too close togeth
er, it is no longer sensible-either physically or mathemat
ically-to separate near-the-pole behavior from near-the
turning point behavior. The "Whittaker" matching is free 
from this defect and can in fact reproduce all the results of 
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FIG. 5. The Stokes lines (solidI and anti-Stokes lines (wavyl for the fourth 
mode for B = 100 (A = 0.0050 + 0.02081/. As in Fig. 4, the branch line is 
marked with crosscuts, and the zeros of the Whittaker function with black 
dots. The fourth root is on the real axis at x = B so that the boundary 
condition is satisfied. 

Sec. 4 on high-order modes if one relaxes the assumption 
A = - 00. In practice, however, as shall be seen in the next 
section, the "double Bessel" matching gives acceptable accu
racy when IA I < 1, which turns out to include the range of n 
and B which is of primary physical interest. 

D. Simplification of the "double Bessel" eigenrelation 

The vanishing of (6.13) at x = B is equivalent to the 
eigenrelation 

(6.15) 

where n is a positive integer, the mode number. One can 
eliminate the sin -I implicit in if> (y) by letting 

A = sin2T/B, (6.16) 

which transforms (6.14) to 

T + sinTcosT -!11" = [ ( n -!) IB 112j1TSinT. (6.17) 

What is striking about (6.16) is T is not a function of B or n 
alone, but is rather a function of the single parameter 

q=(n-!)IB I12
• (6.18) 

This implies that, just as with (5.7), the solutions of(6.17) are 
identical for all modes with appropriate rescaling of axes, 
i. e., 

A (B) - 9 A [ 9B] (6 19) 
n - (4n-l)2 I (4n-l)2 . . 

E. The" Airy" approximation 

Equation (6.17) has the drawback that it is only an im
plicit equation for A. When the parameter 

u==efTi/3dnIB 113 (6.20) 

is small, however, where 

(6.21) 

one can solve (6.17) by a power series in (T to obtain 

A = (lIB)(1 + (T + ... ), (6.22) 
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or in exponential form 

A=euIB. (6.23) 

Equation (6.23) is the "Airy approximation" given in (5.7) 
and the abstract; empirically (not systematically) it was 
found that the exponential form was much more accurate 
than the power series (6.22) for moderate (T, but both are 
exact in the limit B~ 00 for fixed n, i. e., the limit (T~. 

The reason for the name "Airy approximation" is that 
in the limit B~oo (5.7) shows thatA~, implying that 
lx, I~ 00. Thus, the turning point and the pole move away 
from each other in this limit, and the radius over which the 
inner approximation, i. e., 

u(x) _ Ai(ze2fTi/3), 

where 

z =..1. 21
3(x - x,), 

(6.24) 

(6.25) 

is valid, becomes larger and larger (in terms of Izll. Thus, the 
first few zeros of (6.13) are really the first few zeros of the 
Airy function (6.24). These are known constants, however, 
and the dn given by (6.21) are in fact the nth roots of 
Ai( - Z).IB The approximation (6.22) is precisely what one 
would obtain by determining A so as to make x = B coincide 
with the nth root of the Airy function (6.24)-hence the 
name "Airy approximation" for (6.22) and (6.23), the latter 
being the form we shall actually use. 

7. ACCURACY OF WKB 

Much of the books on asymptotic approximations by 
Dingle and Olver is almost morbidly concerned with formal 
error terms and bounds, but this elaborate machinery is not 
useful here. The error in our approximate eigenmodes is not 
merely due to truncating an asymptotic series at lowest order 
but also depends on the accuracy of the value of A which is 
used to evaluate the WKB expression. In tum, the error in A 
may be large or small in comparison to the accuracy of the 
WKB approximation at the boundaries. Thus, the simplest 
and most reliable way to see how well WKB works is to 
compare the approximate results with the exact answers ob
tained by brute force numerical solution of (1.1). 

The three eigenvalue approximations compared are 

T + sinTcosT - !11" 

where 
!J(K) = (211")1/2KI!2+ Ke - KIF(1 +K); 

, sin2r 
/1.=-7' 

B ' 

r + sinrcosr _ 1211" = { (n - !) } ""'l'n~ 
B 1/2 .".. 

with A again related to T through (7.3); and 

A = ( liB )eU (Airy approximation), 
e71"i/3 

(T = -- [111"( 4n - 1)]213 B 1/3 8 • 

[Whitt~ker] , matchmg 
(7.1) 

(7.2) 

(7.3) 

[ ~:::~; 1 
matching 

(7.4) 

(7.5) 

(7.6) 
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TABLE L A comparison of the exact and approximate eigenvalues A for the lowest mode with A = - 00 and various B. "Whittaker" refers to the WKB 
approximation with coefficients determined by matching with the asymptotics of the Whittaker function; "Double Bessel" is the WKB determined through 
matching the two local Bessel function approximations. 

Re(A I Im(A) I'" 1 

B= 100 lal =0.50 
Exact 0.011 58 0.005 50 0.012 81 
Whittaker 0.011 56 0.005 46 0.012 78 
Double Bessel 0.011 61 0.005 47 0.012 83 
Airy 0.011 66 0.005 39 0.012 84 
B=40 lal =0.68 
Exact 0.028 75 0.019 89 0.034 96 
Whittaker 0.028 69 0.019 73 0.034 82 
Double Bessel 0.028 92 0.019 83 0.035 07 
Airy 0.029 21 0.0[9 45 0.035 10 
B= 10 lal = 1.08 
Exact 0.095 96 0.1400 0.1696 
Whittaker 0.095 21 0.1389 0.1684 
Double Bessel 0.097 62 0.1420 0.1723 
Airy 0.1021 0.\376 0.1713 
B=4 lal = 1.46 
Exact 0.1218 0.4960 0.5107 
Whittaker 0.1200 0.4919 0.5063 
Double Bessel 0.1252 0.5200 0.5349 
Airy 0.1559 0.4952 0.5192 
B=I lal = 2.32 
Exact - 1.691 2.675 3.164 
Whittaker - 1.712 2.644 3.150 
Double Bessel - 2.269 3.311 4.014 
Airy - 1.355 2.888 3.190 
B=04 lal = 3.15 
Exact - 12.46 3.241 12.88 
Whittaker - 12.59 3.146 12.98 
Double Bessel - 22.73 8.838 24.39 
Airy - 11.05 4.861 12.07 

The first two approximations are implicit and (7.1) and (7.4) 
must be solved analytically or by perturbation theory; the 
Airy approximation is explicit. The Whittaker matching ei
genrelation differs from that from double Bessel matching 
by only a single term, but that term causes the solution of 
(7.1) to depend on n andB independently instead of through a 
single parameter formed of Band n. Thus, (5.10) is true of the 
second and third approximations above (7.4) and (7.6) but 
not the first (7.1). 

Physically, one is primarily interested in n<3 and B>4 
since smaller values of B would correspond to unrealistically 
large (supersonic) winds, and n> 3 is rarely observed in the 
stratosphere. Dickinson3 thoroughly discusses the physics of 
the atmospheric wave problem that motivated this work. 
Some controversies have arisen and it has been argued that 
Dickinson's WKB reasoning is rubbish because WKB is not 
sufficiently accurate to handle such singular SL problems of 
the fourth kind. It is thus a matter of physics-not merely 
numerical analysis-to examine the accuracy of our 
approximations. 

Tables I through III compare the exact and approxi
mate eigenvalues for the lowest three modes. The Whittaker
matched eigenrelation is the numerical star; the relative er
ror is no worse than 1.1 % for any of the values tabulated. 
The price is greater complexity (a r function of complex 
argument) and loss of insight because the near-turning-point 
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Relative Errors 
Phase I'" 1 Phase 

25.407 
25.270 0.26% 0.54% 
25.231 0.14% 0.69% 
24.804 0.[9% 24 % 

34.674 
34.525 040% 0.43% 
34.444 0.31% 0.66% 
33.664 0.40% 2.9 % 

55.660 
55.571 0.68% 0.16% 
55.494 1.6 % 0.29% 
53.439 1.1% 4.0 % 

76.203 
76.288 0.86% 0.11% 
76.465 4.7 % 0.34% 
72.527 1.7% 4.8 % 

122.311 
122.927 0.46% 1.1% 
124426 27. % 37% 
115.130 0.82% 12. % 

165.420 
165.966 0.77% 0.33% 
158.753 89. % 45. % 
156.255 6.2 % 63. % 

and near-the-pole behaviors are lumped together into a sin
gle inner solution, and also because of the loss of (5.10) which 
shows that the curves A. n (B ) all have similar shape for small 
n. 

The double Bessel-matched approximation, though 
poorer, is still quite acceptable. In the range of physical in
terest, n<3 and B>4, the error is no worse than 10% in 
absolute value and 5% in phase. Both this and the Airy ap
proximation-but not (7. I)-lose accuracy as a (and there
fore 1..1. \) increase where a is defined by (6.20). For fixed B, a 
increases as n increases as noted in the tables; so the tables for 
n = 2 and n = 3 are shorter than that for n = 1 to remind us 
that (7.4) and (7.5) are useful for an ever narrower range of B 
as the mode number becomes larger. 

The Airy approximation (7.5) is the crudest of all, but it 
is still amazing that an explicit approximation of this sim
plicity can work so well for a problem whose differential 
equation is singular. For n = 1, the errors are less than 12% 
even for B = 1, so (7.5) is a good description of the entire 
hodograph in Fig. 3. 

The approximate and exact eigenfunctions for the low
est mode are compared in Figs. 6, 7, and 8. Again, accuracy 
improves as B increases just as for A., but the agreement is still 
remarkable. 

Why does WKB work sO well? The method of mUltiple 
scales,14,J5 which is one of many alternative ways of justify-
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TABLE II. A comparison of the exact and approximate eigenvalues A for the second mode with A = - 00 and various B. 

Re(A I Im(A I 1,1 I 

B= 100 lerl = 0.88 
Exact 0.010 97 0.010 99 0.Ql5 52 
Whittaker 0.010 95 0.010 95 0.015 49 
Double Bessel 0.010 99 0.010 98 0.015 33 
Airy 0.011 23 0.010 71 0.015 52 
B= 40 lerl = 1.19 
Exact 0.021 59 0.040 24 0.045 66 
Whittaker 0.021 56 0.040 18 0.045 60 
Double Bessel 0.021 70 0.040 42 0.045 88 
Airy 0.023 23 0.039 01 0.045 41 
B= 10 lerl = 1.89 
Exact - 0.050 09 0.2729 0.2775 
Whittaker - 0.050 33 0.2725 0.2771 
Double Bessel - 0.052 92 0.2789 0.2839 
Airy - 0.018 03 0.2572 0.2579 
B=4 lerl = 2.57 
Exact - 0.8611 0.8200 1.189 
Whittaker - 0.8625 0.8183 1.189 
Double Bessel - 0.9428 0.8704 1.283 
Airy - 0.5516 0.7165 0.9043 
B=I lerl = 4.08 
Exact - 19.37 0.1890 19.37 
Whittaker -19.38 0.1870 19.38 
Double Bessel - 24.44 3.376 24.68 
Airy -7.11 - 2.950 7.698 

ing WKB (away from transition points), provides an amus
ing and ironic answer. 

In brief, the multiple scale argument states that the fas
ter the eigenfunction oscillates, i. e., the greater the ratio of 
the "slow" scale on which the coefficients of the differential 
equation vary to the "fast" scale on which u(x) itself is oscil
lating, the better the accuracy of the WKB approximation. 
The WKB eigencondition for a normal SL problem is that 
the total phase change on [A,B] is ntT, so the eigenfunction 
obviously oscillates more rapidly as n increases. In practice, 

Relative Errors 
Phase 1,1. I Phase 

45.047 
45.001 0.24% 0.10% 
44.972 0.04% 0.17% 
43.635 0.00% 3.1 % 

61.785 
61. 789 0.14% 0.34% 
61.769 0.47% 0.02% 
59.222 0.56% 4.1 % 

100.400 
100.466 0.15% 0.08% 
100.743 2.3 % 0.43% 
94.010 7.1 % 8.0 % 

136.398 
136.507 0.01% 0.25% 
137.286 7.9 % 2.0 % 
127.590 24. % 20. % 

179.441 
179.447 0.05% 1.1% 
172. 136 27. % 1300. % 

- 157.463 60. % Hopeless 

this means that WKB is poor for the lowest mode, fair for 
moderate n, and superb for large n. 

For the lowest mode of a singular SL problem of the 
fourth kind, however, the total phase change is usually great
er than 11' and increases steadily with B. Figures 6 through 9 
show that the real part of the lowest mode has no interior 
zeros for B = 1, one for B = 5, two for B = 20, and no fewer 
than four for B = 100. (The imaginary part oscillates simi
larly, but its roots coincide with those of the real part only at 
x = B). Because the eigenfunction graphed in Fig. 9 oscil-

TABLE III. A comparison of the exact and approximate eigenvalues A for the third mode with A = - 00 and various B. 

Re(A) Im(A) 

B= 100 lerl = 1.19 
Exact 0.008 63 0.016 00 
Whittaker 0.008 70 0.016 04 
Double Bessel 0.008 73 0.016 08 
Airy 0.009 34 0.015 53 
B=40 lerl = 1.61 
Exact 0.005 20 0.058 13 
Whittaker 0.005 22 0.058 II 
Double Bessel 0.005 22 O.os8 48 
Airy 0.009 68 0.055 16 
B= 10 lerl = 2.56 
Exact - 0.3559 0.3401 
Whittaker - 0.3562 0.3398 
Double Bessel - 0.3698 0.3477 
Airy - 0.2169 0.2871 
B=4 lerl = 3.48 
Exact - 3.086 0.7583 
Whittaker - 3.087 0.7579 
Double Bessel - 3.365 0.8694 
Airy - 1.409 0.1866 
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1,11 Phase 

0.Ql8 18 61.661 
0.018 25 61.525 
0.018 29 61.500 
0.018 12 58.980 

0.058 36 84.886 
0.058 35 84.867 
0.058 71 84.904 
0.056 01 80.048 

0.4923 136.300 
0.4923 136.344 
0.5076 136.766 
0.3598 127.068 

3.178 166.194 
3.179 166.206 
3.475 165.513 
1.421 172.457 

Relative 

1,1.1 

0.41% 
0.64% 
0.33% 

0.03% 
0.60% 
4.0 % 

0.01% 
3.1 % 

27. % 

0.03% 
9.4 % 

55. % 

Errors 
Phase 

0.22% 
0.26% 
4.3 % 

0.02% 
0.02% 
5.7 % 

0.03% 
1.1% 

21. % 

0.01% 
4.9 % 

45. % 
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FIG. 6. A comparison of the exact (solid line), jointly (Whittaker) matched 
WKB (dashed line), and separately matched (double Bessel) WKB (dotted 
line) graphs for the real part of the lowest mode for A = - 00, B = 1. 

lates as rapidly as the fifth mode (four interior zeros) of a 
normal SL problem, the WKB approximation to it has the 
same accuracy as for the fifth mode of a nonsingular equa
tion-but it is the lowest mode nonetheless. 

This increasing phase variation with B can be seen by 
nQting that as B_ 00 and ,.1,-0 prQPortiQnal to. 1/ B (frQm 
7.5), Qne can apprQximate (Ll) Qver an increasingly large 
interval by 

uxx + (l/x)u = 0, (7.7) 

whQse asymptQtic apprQximatiQn [matching to (6.12)] is prQ
PQrtiQnal to. 

1/4 _2ix U2 
X e . (7.8) 

The scale Qf the QscillatiQn thus varies with x, but the tQtal 
phase change Qn [O,B ] is Qbviously 0 (2B 1/2). [Using (6.1), Qne 
can shQW mQre precisely that the tQtal phase change is 
(1T/2)B 1/2 plus terms vanishing asB-oo.] Thus, WKBmust 
inevitably imprQve for a given mode as B increases. 

The Whittaker matched WKB, seen frQm the tables to. 
be very gQQd fQr small n, dQes but improve for large n; as 
nQted earlier, it can-if we relax the restrictiQn A = - 00 

inherent in (7.l)-reprQduce all the results QfSec. 4 fQr high
er-Qrder mQdes as well. The double Bessel and Airy apprQxi
matiQns fail fQr large n, but this is nQt the fault Qfthe WKB 
per se. Rather, we have obtained (7.4) from (7.1) by replacing 

12 -....: ...... . 

0.9 

0.6 8=5 
0.3 

oo.)~-------'~------------------,j 

-0.3 

-0.6 

o 0.5 10 15 20. 2.5 3.0 3.5 4.0 4.5 50. 

FIG. 7. A comparison of the exact (solid line), Whittaker-matched WKB 
(dashed line), and double Bessel-matched WKB (dotted line) graphs for the 
real part of the lowest mode for A = - 00, B = 5. 
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FIG. 8. A comparison of the exact (solid line), Whittaker-matched WKB 
(dashed line), and double Bessel-matched WKB (dotted line) graphs for the 
real part of the lowest mode for A = - 00, B = 20.. 

the cQmplex gamma function by its approximatiQn for large 
argument, and (7.5) from (7.4) by applying TaylQr expan
sions in O'-both nQn-WKB simplifications. 

Thus, the Whittaker-matched WKB works for all n 
here whereas WKB is successful Qnly fQr large n for a Type I 
problem. Thus, we are led to an amusing and irQnic cQnclu
sion: WKB actually works better fQr singular eigenprQblems 
Qf Type IV than fQr the cQnventiQnal nonsingular Sturm
LiQuville equatiQns Qfthe classes so. thQrQughly studied in 
the past. 

8. THE COMPLETE SPECTRUM 

So. far, we have IQQked at the small n and large n mQdes 
separately, the fQrmer with the additiQnal assumptiQn that 
A = - 00. It is nQW apprQpriate to. tie these ideas together 
by IQo.king at a dQzen chQsen mQdes fQr a typical case 
(A = - 6, B = 6). The eigenvalues are listed in Table 4, and 
Fig. 10 shQWS the IQwest nine values Qf A 1/2, which is 
graphed instead of A itselffor visual clarity. The mQdes can 
be grQuped into. three categories. 

First, the four mQdes marked by ·'s in the secQnd CQI
umn Qf the table (and by triangles in Fig. 10) are shining 
examples Qfthe IQw-Qrder mQdes discussed in Sec. 5. The 
ratio. Qf the cQefficient Qf W _ K J. to that Qf M _ K J., tabulated 

'2 '2 

in the third column, is very large. The exact eigenvalues fQr 

30. 

20. 

10. 

0.01~+----+----+-·-------

-20. 8=100 

-30. 

o 10 20 30 40 50 60 70 80 90 100 

FIG. 9. The real part of the lowest mode for B = 100. 
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FIG. 10. The square root of A Inot A itself) is shown for the lowest nine 
modes on [ - 6,6). The four modes marked with triangles are well approxi
mated by the corresponding eigenvalues for [ - 00,6]. The two eigenvalues 
marked by circles are well approximated by (4.5). The crosses represent 
intermediate modes for which no simple approximation is known. 

A = - 6 are well approximated (to within 4%) by those for 
A = - 00, which are given on the second line of each entry 
for these four asterisked modes. 

The last five modes in the table (circles in Fig. 10) are 
examples of the large n dikeric modes discussed in Sec. 4. 
The second line of each entry for these five gives the approxi
mate eigenvalues computed via (4.5) with that value of m 
which is given in the second column. Note that in this case 
m = n + 2, where n is the mode number determined by or
dering the modes according to [A. [. For a normal SL prob
lem, of course, m = n. Since (4.6) gives a purely real answer, 
the relative error in Im(A. ) is infinite, but the absolute errors 
in both the real and imaginary parts are small in comparison 
to lA. n - A. n + 1 I and decrease algebraically [as does Im(A. ) 
itself as n-+ 00 ]. 

The three modes marked "Intermediate" in the table 
(crosses in Fig. 10) are hybrids of the two classes above. 
Whittaker-matched WKB would give an eigenrelation for 
them, but it would be both implicit and messy. As noted in 
the table, no simple explicit approximation is available for 
these modes. 

Mode 4 is interesting because (i) it interrupts the pattern 
of the low-order monokeric modes which are well approxi
mated by their counterparts for A = - 00 and (ii) Im(A.4 ) is 
almost zero. As noted in Sec. 2, Theorem 3 shows that 
Im(A. ) = 0 is possible only when u(x) in effect satisfies three 
boundary conditions which can occur only on a set of mea
sure zero in (A, B, n) parameter space. Here, the fourth 
mode-through sheer luck-happens to be close to one of 
these cases. 

Modes 6 and 7 are interesting because, although they 
are nearly degenerate (i. e., A.o ::::;A.7 ) here-in contrast to the 
widely spaced eigenvalues of a normal one-dimensional SL 
eigenproblem with nonperiodic boundary conditions-they 
diverge wildly as the parameters are changed. For example, 
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when [A [ is increased (with B fixed), the seventh mode-the 
one with the higher n and smaller ratio of WI M initially
rapidly becomes a pure monokeric mode like that illustrated 
in Fig. 12 (top). [AtA = 7, W 1M = 13.4andA.7 = ( - 4.855, 
.5060), which differs little from its asymptotic (A = - 00) 

valueof( - 4.931, .4375).] The sixth mode, which is closer to 
a monokeric mode initially, behaves in a completely opposite 
fashion: the ratio W 1M decreases very rapidly until it falls to 
zero atA = - 7.008 whereA.o = ( - 3.743,0). Thus, (n = 6, 
A = - 7.008, B = 6) is one of the members of that set of 
measure zero, where A. is real and the eigenfunction, being 
proportional to M _ K.r alone, is an entire function. 

Thus, these intermediate modes show that there is not a 
monotonic transition from the limiting behavior for small n 
to the limiting behavior for large n; rather, there can be some 
interleaving of the two. It is for this reason that the terms 
"monokeric" and "dikeric" were introduced earlier. Al
though the n = 1 mode is monokeric, i. e., exponentially de
caying for x < 0 (unless A and B are both too small to be 
relevant to the original physical problem), and although one 
can prove that as n-+ 00 the modes must be dikeric, i. e., 
oscillatory on both sides of x = 0, modes of moderate n may 
resemble either graph in Fig. 2 or some hybrid of the two. 

9. SUMMARY: A COMPARISON OF NORMAL AND 
SINGULAR STURM-LIOUVILLE EIGENPROBLEMS 

The principal provable similarities between the first and 
fourth classes of Sturm-Liouville problems are the follow
ing. First, the eigenfunctions are orthogonal. Second, in the 
limit n-+ 00, the eigenfunctions and eigenvalues are essen
tially the same with or without the l/x term in the differen
tial equation. For finite n, there is (i) a small boundary layer 
aboutx = 0 and (ii) a nonzero imaginary part of the eigenval
ue if the pole is present, but these disappear in the limit. 

The principal differences are the following. First, the 
eigenvalues and eigenfunctions of a nonsingular, self-adjoint 
Sturm-Liouville eigenproblem are always real. Here, how
ever, in spite of the fact that the problem is still self-adjoint, 
the eigenvalues and eigenfunctions are both complex. 

Second, the modes of a Sturm-Liouville eigenproblem 
of the first kind can be characterized by their nodes: the nth 
mode has exactly (n - 1) zeros on the interior of [A,B]. 2 

Here, however, the real and imaginary parts of the low-order 
eigenfunctions have an ever increasing number of zeros as 
B-+ 00 with n fixed. The real part of the lowest mode for 
B = 100, illustrated in Fig. 9, has no fewer than four interior 
zeros, for example. Nor do the higher modes escape. The 
integer m which appears in the asymptotic (n-+oo 1 eigenval
ue formula (4.5) is generally different from the mode number 
n, where the latter is determined by ordering the eigenvalues 
according to [A. [. Thus, the n = 8 mode of Table IV has nine 
interior zeros instead of the expected seven. As explained in 
Sec. 7, this tendency of the singular modes ofa given n to 
oscillate more rapidly than their counterparts for a nonsin
gular equation makes the WKB method actually work bet
ter, sometimes much better, for Sturm-Liouville problems 
of the fourth kind than for the nonsingular and seemingly 
more amenable equations of the first kind. 
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TABLE IV. The eigenvalues for A = - 6, B = 6. The mode number n, the integer m which appears in (7.7) (if applicable), the absolute value of the ratio of the 
coefficIent of W ,.J to that of M _ "." the approximate eigenvalues obtained by either setting A = - 00 (for the purely singular modes) or using (4.5) for large 

n modes, and the relative errors of the approximations are also shown. Monokeric modes are indicated by asterisk in the second column. 

II m 

2 * 

3 * 

4 

W/M 

1.06E5 
(A = -- 00) 
2.34E4 
(A = - 00) 
141.4 
(A = - x) 
0.402 

Re(A) 

0.1251 
0.1251 
-- 0.2<)67 
- 0.2971 
-- 1.218 
-- 1.225 
- 1.602 

Im!/,) 

0.2850 
O.28S0 
0.5203 
0.5204 
0.5634 
0.5626 
0.0078 

Relative Errors 
Re(.-t ) 

0.0% 

0.2% 

0.7% 

ImIA) 

0.0% 

0.02% 

0.12% 

Intermediate-No Simple Approximation) 

* 18.6 - 2.726 0.4900 

6 
(A = - 00; 
4.61 

-2.781 
- 4.717 

0.5101 
0.3324 

2.0% 4.1% 

Intermediate-No Simple Approximation) 
7 2.48 - 5.224 0.2186 

Intermediate-No Simple Approximation) 
8 10 2.40 -7.156 0.2323 

Eq. (4.5)-- 6.85 0.0000 4.3% 00 

9 II 

10 12 

38 40 

98 100 

3.20 

1.74 

0.517 

0.241 

- 7.9<)6 

Eq. (4.5) - 8.29 
- 10.14 

Eq. (4.5) -- 9.87 
- 109.791 

Eq. (4.5) - 109.662 
- 685.454 

Eg. (4.5) - 685.389 

Third, the eigenvalues-all eigenvalues-of a normal 
one-dimensional Sturm-Liouville equation with nonperio
dic boundary conditions are well separated. Here, however, 
limB .", A" = 1/ B for all fixed n (see Sec. 5) so that the eigen
values of the lowest few modes cluster about a common value 
and become quasidegenerate. Furthermore, the proportion
ality to 1/ B is different from the liB 2 [!ttrictly, lI(B - A )2] 
for a given A" of a first kind eigenproblem in this same limit. 

These differences and similarities are provocative, but a 
number of important questions remain for future research. 
First, completeness. It is plausible, especially in view of their 
asymptotic identity with ordinary sine functions, to suppose 
that the modes are complete at least for the original partial 
differential equation which gave rise to this problem. The 
possibility of expanding an arbitrary analytic function, how
ever, in terms of a series of singular functions like the modes 
of (1.1) raises fascinating questions that I will not attempt to 
answer here. 

Second, one may ask: would the conclusions given 
above all hold if the first-order pole in (1.1) were replaced by 
a second-order pole or some other species of singularity? 
(Olver '9 has made a start on this). Clearly, a rich harvest 
awaits the future in these Sturm-Liouville eigenproblems of 
the fourth kind. 

0.3123 
0.0000 
0.1813 
0.0000 
0.0333 
0.0000 
0.0076 
0.0000 

3.7% 

2.7% 

0.11% 

0.01% 
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APPENDIX A: CONFLUENT HYPERGEOMETRIC 
FUNCTIONS 

The Whittaker functions of Sec. 2 are related to the 
standard confluent hypergeometric functions by the 
identities 

M _ ,,!lv) = e -YI2yM(1 + K,2,y), 

W _ '.1 Lv) = e yl2y U{l + K,2,y), 

which have the power series representations 

(AI) 

(A2) 

~ (1 + K) m ym 1 + K (1 + K)( 2 + K) 2 
M(l +K,2,y) = I = 1 + --y+ 12 Y + ''', (A3) 

m~O (2),n m! 2 

(A4) 
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where 

(x)m = x(x + 1)···(x + m - 1), (AS) 

and !fIx) is the logarithmic derivative of the gamma function 
("digamma" function). The reason for the factor of r (1 + K) 
in (3.6) is to eliminate the corresponding factor in (A4). 

The corresponding asymptotic approximations for 
fixed K,y-oo, are given by (4.1) and (4.2) above. 

As a final note, the formulas of the paper require com
puting two transcendental functions-sin - I(Z) and r (z)-for 
complex argument. For the former, however, identity 4.4.37 
of Abramowitz and Stegun20 reduces the task to evaluating 
(i) the complex logarithm, which is a built-in library function 
on most computers and (ii) the arcsine function for a real 
argument between 0 and 1, which can be done via the poly
nomial approximation 4.4.46 of Abramowitz and Stegun. 20 

The complex gamma function can be evaluated by using its 
well-known recursion relationr (z + 1) = zr (z) tomarchout 
to large z, using its known asymptotic expansion, and then 
marching back the same way. A FORTRAN program to do 
this is given by Lucas and Terril. 21 

APPENDIX B: THE DISCRETE AND CONTINUOUS 
SPECTRUM 

There are two fundamentally different ways of analyz
ing the inviscid limit. The first, adopted by Dickinson3 is the 
continuum modes approach. This has the great advantage 
that all the arithmetic is real, but it has the disadvantage that 
any physically realizable solution is an integral over the real 
eigenvalue A. For the special case of a o-function lower 
boundary forcing, he was able to perform the integrals via 
stationary phase. 

Unfortunately, the need for A integration implies that a 
continuum mode-i. e., a Whittaker function for some par
ticular real value of A-is never a legitimate solution of the 
original problem. [To put it another way, there is no sum of 
M _ K.! ( - xl K) and W _ "-.i ( - xl K) which can satisfy both 
boundary conditions (1.2) with K and A real.] It is therefore 
exceedingly dangerous to infer the behavior of the integrated 
solution from that of a single continuum mode, and this has 
led to some confusion. For example, Dickinson proved that 

the momentum flux ( u'v' in meteorological parlance) is ev
erywhere constant except for ajump at the singularity, and is 

therefore nonzero on at least one boundary for a single con
tinuum mode. Physically, however, this quantity must vary 
with latitude so as to vanish (like the wave itself) on both 
boundaries. Although this variability has been described6 as 
"contrary to a conclusion of Dickinson," such criticism is a 
comparison of apples and oranges. When theA integration is 
performed, mutual cancellation of different values of A per-

mits u'v' to vary and the integrated wave to satisfy the 
boundary conditions. Since the A integration cannot be per
formed analytically, however, this need for integration limits 
the amount of insight that can be obtained from the contin
uum modes. 

With friction, as in (2.7), be it ever so small, the contin
uum spectrum breaks up into discrete normal modes which 
have well-defined limits as the friction tends to zero. The two 
advantages of this second approach are first, each mode is an 
independent solution of the original problem so that no inte
gration over A is necessary. Second, numerical calculations 
normally incorporate weak dissipation to survive the singu
larity, so discrete normal modes are what the computer pro
grams actually calculate as in Simmons7 and Boyd.9 The 
disadvantages are that now both the eigenvalues and eigen
functions are complex and one must wrestle with Stokes' 
phenomenon. 

If no additional approximations or assumptions are 
made, both approaches-in spite of their great dissimilarity 
in form-give the same numerical answer. Dickinson (pri
vate communication) has suggested a more familiar example 
that makes this numerical equality more plausible. The 
Fourier integral 

f
oc eiAX dA 

J(x)= _ .. _ _ cosh(Ax) 
(Bl) 

can be numerically evaluated by direct integration along the 
real A axis via the trapezoidal rule. Alternatively, one can 
complete the contour via a semicircle of infinite radius in the 
upper half-plane and evaluate the integral as an infinite sum 
of the residues at the poles of the integrand on the positive 
imaginary A axis. These two options are the same as for the 
singular eigenproblem: the integral over real A or the infinite 
sum of discrete complex values of A, and both give the same 
result. 

This point, too, has caused confusion. Physically, verti-

TABLE V. The coefficients of the Chebyshev series for BAn for the lowest three eigenvalues with A = - Cl). The argument of the polynomials is 
x = 2'1 'I B II' - I. The approximations are accurate for BE[4, 00]. 

Degree Mode Number 
of 
Poly- n=1 n=2 n=3 
nomial 

Real part Imag. part Real part Imag. part Real part Imag. part 

0 1.881 41 1.867 98 - 0.444 47 3.436 86 - 5.638 86 4.006 26 
I -- .237 46 1.011 37 - 2.067 50 1.769 41 - 6.114 44 1.767 83 
2 - .197 85 0.060 24 - 0.989 17 - 0.063 30 - 2.806 82 - 0.507 14 
3 - .019 13 - 0.019 37 -- 0.152 78 - 0.\30 97 - 0.567 80 - 0.273 23 
4 0.000 41 - 0.002 26 - 0.010 63 - 0.015 90 - 0.053 98 0.022 34 
5 0.000 60 - 0.000 15 - 0.001 99 0.001 28 0.006 91 0.030 18 
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cally propagating waves must decay exponentially with 
height because of absorption at the latitude of the singular
ity. In the discrete modes procedure, the decay rate is depen
dent upon the imaginary part of An' This might seem worri
some because Dickinson's formalism involves only real A, 
but in fact his A integrated solution3 decays with height as it 
should. 

Nonetheless, it is obviously desirable to incorporate this 
decay rate and other properties explicitly in the modes rather 
than in a A integration which cannot be analytically per
formed. For this reason, the discrete modes approach has 
been adopted here. Because of its greater complexity (literal
ly and figuratively), this procedure is complementary rather 
than competitive with the continuum modes approach of 
Dickinson3 and others. 

APPENDIX C: CHEBYSHEV EXPANSIONS FOR THE 
EIGENVALUES 

Although the eigenvalue relation-even when simpli
fied via the WKB method-cannot be solved in terms of any 
known transcendental, it is nonetheless possible to provide 
analytic exact solutions in the form of Chebyshev series in 
the parameters. The method is thoroughly explained in 
Boyd,22 so it will not be repeated here. To provide a spring
board for future work and a sample of the usefulness of the 
Chebyshev technique, Table V gives the first six expansion 
coefficients for the lowest three modes with A = - 00. 

The form of the approximation is 

An (B) = ~ ( + a6n
) + mt la~I)Tm (X)). (CI) 

where 

x = 25/3/B 1/.1 - 1. (C2) 

On the interval BE[4, 00], the error in (CI) is at most one part 
in 4000 for n = I, one part in 700 for n = 2, and one part in 
200 for n = 3. 

One can equally well obtain expansions accurate for 
small B. Accuracy for a given number of polynomials can be 
improved by choosing a meeting point between the large and 
small B approximations which increases with n, instead of 
taking B = 4 as the lower limit for all n as done here. 

IThe myth that as in a normal SL problem all the eigenvalues were of one 
sign persisted until about 1965, when it was discovered that there was in 
fact an infinite number of eigenvalues of the opposite sign. The eigenfunc
tions themselves fall into two classes: one class which is oscillatory be
tween the apparent singularities and exponentially small at higher lati
tudes, and a second class which is oscillatory between the poles and 
apparent singularities and exponentially small near the equator. Because 
half the spectrum was left out, all atmospheric tidal calculations up to 
1965 were completely wrong. Even then, doubts persisted about the com-
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pleteness of the eigenfunctions that were not resolved until a rigorous 
completeness proof was given in 1970. The whole sordid mess is reviewed 
by R. S. Lindzen, Lect. Appl. Math. 14, 293-362 (1971). 

This history of confusion and error in such recent times for a relatively easy 
problem should convince the reader that the subject of the present work is 
far from trivial; because the eigenfunctions are analytic and the eigenvalues 
are real, an SL problem of the third kind like the tidal equation is much 
closer to normal SL problems of the first two classes than the singular fourth 
kind studied here. 
'A compact and highly readable treatment of normal Sturm-Liouville 
theory is given in Chap. 6 of P. M. Morse and H. Feshbach, Methods 0/ 
Theoretical Physics (McGraw-Hili, New York, 1953). 

JR. E. Dickinson, J. Atmos. Sci. 25, 984 (1968). 
4K. K. Tung, "Stationary Atmospheric Long Waves and the Phenomena of 
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lowest order result [to 0 (KIl, obtained via the algebraic manipulation lan
guage REDUCE2, contained no fewer than 37 terms-too many to be 
practical. The difficulty is too many parameters: A, D,ln(A ),In(D), K,ln(K), 
1T, and Euler's constant r all appear in the equation J (K) = O. [The loga
rithms come from the y + K terms in (4.1) and (4.2).] There is little one can 
do to simplify the mess because the terms are oscillatory. It can be seen in 
Table IV that the imaginary part of A in fact fluctuates irregularly from 
mode to mode. 

IIJ. Heading, An Introduction to Phase-Integral Methods (Wiley, New York, 
1962). 

12R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation 
(Academic, New York, 1973). 
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"A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973). 
"'There is much confusion in the literature about these definitions. Bender 

and Orszag (Ref. 14) reverse the terminology without even noting that 
there is a controversy. The definitions (6.8) and (6.9) are in accord with 
Stokes' own as discussed in F. W. J. Olver (Ref. 13, p. 518) and also agree 
with those of J. Heading (Ref. II) and R. B. Dingle (Ref. 12). 

171 use the word "convention" because under Poincan!'s rather forgiving 
definition ofasymptoticity, any way of varying b across the sector is legiti
mate so long as b (AI) and b (A 2 ) take their proper values. One could, for 
example, vary b linearly with argx. However, W K. ~ (y) has an exact inte
gral representation, valid for O<argy< 1T, which upon expansion gives 
WI(x) alone as its first term. Though one cannot be entirely comfortable 
with jumps in the representations of functions which may themselves be 
smooth or even entire, varying b linearly with argy or otherwise using a 
convention different from Stokes' will generally only make the numerical 
error greater. 

"Strictly speaking, (6.21) gives the large n asymptotic approximation to the 
roofs of Ai( - z) rather than the exact zeros, but since the error is only one 
part in 200 even for n = I, I have ignored this largely irrelevant distinction 
in the body of the paper. 

I<IF. W. J. Olver, Philos. Trans. R. Soc. London, Ser. A 289,501 (19781. 
"1M. Abramowitz and I. Stegun, Handbook 0/ Mathematical Functions 

(Dover, New York, 1965), pp. 80--81. 
"c. W. Lucas, Jr. and C. W. Terril, Commun. ACM 14,48 (1971). 
"J. P. Boyd, J. Math. Phys. 19, 1445 (1978). 
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Theequationy" + Aa(xlYU(x) = 0, 0 <x < I,y(D) = y(I) = D,a > D, arises in the study of nonlinear 
diffusion equations connected with crossfield diffusion in plasmas. We show that for a particular 
choice of starting iterate, the computational method which Berryman developed for this equation 
does converge, and furnishes upper and lower bounds for y(x). 

PACS numbers: 02.30.Hq 

I. INTRODUCTION 

In a sequence of papers 1-3 Berryman, and Berryman 
and Holland consider the nonlinear diffusion equation 
(d Idx)[D (n)(dnldx)] = fix) (dnldx) for O<x< 1, where n is 
particle density, x is the spatial variable in one dimension, tis 
time, and D (n), which is proportional to nil (tS> - 1), is the 
diffusion coefficient. By looking for separable solutions, 
those authors were led to an investigation of the eigenvalue 
problem (EVP) 

y"(x) + Aa(xlYU(x) = D, 0 <x < 1, a> 0, 

y(O) =y(I) = O. (1) 

We note that if a solution pair (A,y) exists for (1), then for any 
c > 0, (AC I 

- a,cy) is also a solution pair. Thus, in order to 
specify a solution, some normalization must be chosen. We 
also note by means of the transformation f = A 'y, where 
s = lI(a - 1), that problem (I) is equivalent to the boundary 
value problem (BVP) 

f"(x) + a(x)Ya(x) = 0, ° <x < 1, a> 0, 

flO) = f(l) = O. (2) 

Problem (2) has been extensively studied and, under certain 
conditions, uniqueness of the positive solution has been 
proved. 4

,5 Thus if (2) has a unique solution, the shape of any 
solution to (I) is known within a multiplicative factor. 

In this paper, the term "solution" as applied to the EVP 
(I) shaH be used in the context of a particular specified nor
malization. In Refs. 1-3, Berryman chose the normalization 
max ro, I .v(x) = I. In Ref. 1, Berryman developed a numerical 
method for finding an approximation to the solution of (I). 
The method consists of a Picard type iteration, but conver
gence of the iteration to an actual solution is not proved. The 
iteration may be described as follows: 

(a) select as a starting iterate any continuous function 
So(x) with So(x);;;.O, O<x< 1, and max ro.1 J So(x) = 1; 

(b) solve for vdx), k = 1,2,3· .. 

u~(x) = - a(x)Sk _ dx), 

udO) = vdl) = 0; 

(c) set f.tk = max ro.1 I(udx))-I 

Sk(X) = f.tkVk(X), D<x<1. 

We will refer to this method as Berryman's scheme. In the 
Refs. 1-3, Berryman and Holland have applied Berryman's 
scheme to problems with various choices for a and a(x). 
From their numerical results it appears that for some choices 
of a, a(x), and So(x), the Berryman iteration scheme is stable, 
convergent, and in some cases monotonically convergent. 
However, the proof of convergence and monotonicity are 
left as open questions. Another question left open is upper 
and lower bounds for the solutiony(x) in the important case 
when a(x) is symmetric about x = ! and is nondecreasing on 
(0, !). 

In this paper we provide some answers to these ques
tions. We show that for certain So(x) the sequence {Sdx)} is 
uniformly convergent to a solution of (1); that depending on 
the choice of So(x), the sequence {Sk (x)} may converge mon
otonically upward or monotonicaHy downward to the solu
tion; and finally we prove that in the symmetric case 

2T(x).;;;y(x)<4x(1 -x), 

where 

T(x) = { x 
I-x 

(3) 

The iteration we use to prove these results is a Picard type 
iteration. However, it is different from the iteration in Berry
man's scheme in that we use a different normalization. We 
do show the relationship between the two iterations. 

II. ITERATIVE METHOD 

We assume that a(x);;;.O, a(x)=i=O, is continuous on (0, I), 
that a > - I and that Sb t Ua(t) dt < <Xl. Let uo(x) = x and 
define the sequences {un (x)}, {An}, n = 1,2,3, .. · by 

u:(x) = - Ana(x)u~ _ I (x), 

untO) = un(l) = 0, 

An = lIf(l-s)a(s)u~-ds)dg. (4) 

By considering the Green's function for the operator 
Lu = u", ufO) = 0, u(l) = 0, it follows that the definition of 
An in (4) forces the initial condition u~ (0) = 1, n = 1,2,3, .. ·, 
which is the normalization that we use. In Ref. 6 we proved 
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that the sequences {An}' {Un} defined by (4) converge to a 
solution pair (A,y I of (1). For the case a > 1, another iter
ation scheme is proved in Ref. 7 to converge, however it is 
computationally significantly slower than the correspond
ing scheme in Ref. 6. The theorems proved in Ref. 6 are: 

Theorem 1: Ifuo(x) = x, ifa(x) is as above, if a > 0, and if 
{un}: = I' {An }:= I are defined as in (4), then 

O<un+dx)<un(x), O<x<l, n=O,1,2,···, 

° <An <An + I' n = 1,2, .. ·. (5) 

Moreover, there is a positive solution pair l A,y J of (1) such 
that limn~oo Xn = Xand limn~co un(x)= y(x) uniformly on 
[0,1 J . 

Theorem 2: If a(x) is as above, if - 1 < a < 0, and if 
{un (x)}: ~ I' {An};; = I are defined as in (4), then for n> 1, 

0< U 2n .. I (x) < U2n + I (x) < U 2n (x) < U2n _ Z (x), ° < x < 1, 

(6) 

Moreover, there is a positive solution (A,y) of (1) such that 
limn ..... co Xn = X and limn~co un(x)= y(x) uniformly on [O,IJ . 

In order to show the convergence of Berryman's 
scheme, we give a simple relationship between our sequence 
{un (x)}and his sequence {Sn (x)}in the case whereSo(x) = x. 
Since v;'(x) + a(x)Sg(x) = ° and u;'(x) + Ala(x)ug(x) = 0, it 
follows that (A I-lUll" + a(x)ug(x) = O. Since uo(x) = So(x) 
and A 1- I U I and v I satisfy the same boundary conditions, we 
have VI =,.1. I-lUI' Thus, 

f.1 = l/maxo <x< I vI(x) = A/maxo<x< 1 ul(x), 

SI(X) = f.1IVl(X) = u1(x)lmaxo<x< I ul(x). (7) 

In the same manner it can be shown that 

Sk(X) = udx)/maxo <x < I Uk (x), k = 2,3,4, .. ·. (8) 

From Theorem 1 and Theorem 2 there is a solution pair 
(A,y) of (1) such that Un (x)..-y(x) uniformly on [0,1] and 
An ..-,1. From (8) it now follows that there is a function S (x) 
such that Sk(X)"-S (x) uniformly on [0,1]. Moreover, there is 
a real number C > ° such that S (x) = cy(x), and thus 
(Ac l 

fl, S (x)) is also a solution pair oft 1). We thus have that 
if a(x) is as above, if - 1 < a, and if So(x) = x, then Berry
man's iterative sequence converges to a solution of (1). Un
less more is known about a(x), we can not infer monotonicity 
of the sequence {Sk (x)} from the monotonicity of the se
quence {Uk (x)}. We also note that in general the convergence 
of Berryman's iteration for other choices of So(x) is still an 
open question. 

III. THE SYMMETRIC CASE 

We now consider the case where at! - x) = a(1 + x), 
a(x) is nondecreasing on (O,!), and a > 0. In this section we 
consider the two starting iterates uo(x) = x( 1 - x) and 
11 (x) = T(x). The corresponding iterative sequences defined 
b~ (4) are denoted by {lk}' {Uk (xl} and {ik}J {udx)}, re
spectively. Before analyzing the sequences {A k }, {udx)}, 
{lk}' and {Uk (xl}, we give a lemma which will be used 
repeatedly. 

Lemma 1: Iff(x),J'(x),J" (x) are continuous on (0, 1 ),J(x) 
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is symmetric about x = !,f(0) = 1'(0) = O,J" (x) > ° on some 
interval (O,~), andj" (x) changes sign at most once on (O,!), 
thenf(x) > ° on (0,1) and/(x) is nondecreasing on (O,!). 

The proof of Lemma 1 is straightfoward and is omitted. 
We point out that/" (x) changes sign exactly once on ° < x <! 
in order to maintain the continuity ofF (x) atx = !. However 
this is not used in any of the arguments. 

Theorem 3: The sequence {Uk (x)} is monotone increas
ing for each x, and {l k } is monotone decreasing. Moreover, 
there is a positive solution pair {l, u(x)} such that uk(x) 
..-u(x) uniformly on [0,1] andlk..-l. 

Proof For the sequence {Uk (x)} we have from (4) 

-N( ) _ -"( ) _ - a(x)ug(x) + 2 
U I X Uo X - I . i (1 - S- )a(S-)ug(S-) dS-

(9) 

Clearly u;'(x) - u;(x) is symmetric about x = 1, and since 
a(x) is bounded, u;'(x) - u;(x) is positive for x near zero. 
Since a(x)ug(x) is nondecreasing on ° < x < l' u;'(x) - u;(x) 
can change sign at most once on ° < x <!. Also 
u tlO) - uo(O) = 0, u; (0) - u~ (0) = 0. Thus by Lemma 1, 
u 1(X) - uo(x) is positive on (0,1) and is nondecreasing on (O,!). 
It now follows from the definition of Ak in (4) thatlz <11, Of 
course U 1 (x) is symmetric about x = !. We also claim that if 
o <C I <co, thengl(x) = - CIUI(X) + couo(x) can change sign 
at most once on 0 < x < l' To see this we have 
g;'(x) = C 1,.1. la(x)u~(x) - 2co. Thus g;'(x) < ° for x near zero, 
and since a(x)ug(x) is nondecreasing for 0 <x <!, g;'(x) can 
change sign at most once on (O,!). Thus, in order to satisfy the 
boundary conditions g I (0) = 0, g; (0) > O,g; (!) = ° we con
clude gl(x) can change sign at most once on (O,!). 

We now proceeed by induction. We assume udx) and 
Uk _ 1 (x) are symmetric about x =!, udx) - Uk _ 1 (xl is posi
tive and nondecreasing on (O,!), and for any ° <Ck <Ck --1' gk(X) = - ckudx) + Ck _ I Uk .. I (x) changes 
sign at most once on (0, 1). We have by (4) thatl, + 1 <1,. We 
now consider gk + I (x) = - C, + I Uk + \ (x) + Ck udx}, with 
0<C k ,1<Ck , 

gZ + I (x) = a(x)(c" + 1 1" + 1 u~(x) - CAl" u~ 1 (x)). (10) 

Thus gZ + 1 (x) < ° for x near zero, and by the induction hy
pothesis,gZ + I (x) changes sign at most once on (0, ~). Thus in 
order to satisfy the boundary conditions 
gk + 1 (0) = 0, g~ + 1 (0) > 0, g~ ~ 1 (!) = 0, we conclude 
gA 4 I (x) can change sign at most once on (0, !). Now 

u;: + I - u;:(x) = - Ak + I a(x)u~ + 1 (xl + lka(x}uZ j J (x).(I1) 

Thefunction/(x) = Uk + 1 (x) - Uk (x) is seen to satisfy the hy
potheses of Lemma 1; that/" (x) changes sign at most once on 
(O,!) is a consequence of the fact thatgk ~ I (x) changes sign at 
most once on (0, 1)' Thus by Lemma 1, we have the desired 
result that Uk " I (x) > udx). ° <x < 1, and from (4), 

A"kl 2 <1" I 1 . 

We observe that since u~(x) <0, ° <x < 1, u~(O) = I, 
and Un (x) is symmetric about x = 1, the sequence {un (x)} is 
bounded above by T (x). By considering the integral equation 
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Un + I (X) = in + I {(l - X)fsa(s )u~(s) ds + X 

X f(l - 5 )a(s )u~(s) ds } (12) 

equivalent to (4), it follows from equicontinuity and domi
nated convergence theorems that the sequence {un (X)} con
verges uniformly to a solution u(x) of (1) with eigenvalue 
i = limn .ooin. 

Theorem 4: The sequence {Uk (X)} is monotone decreas
ing for each x, and {ik } is monotone increasing. Moreover, 

there is a positive solution pair! i, u(x) I of (I) such that 
udx)-u(x) uniformly on [0,1] and ik-i. 

Proof: Since UI(O) = ul(l) = 0, 
u; (0) = -u; (1) = 1, ui'(x) <0, ° <X < I, and ut(x) is symmet
ric about X = i, it follows that U dx) < x, 0 < x< 1/2, and 
ul(x) < I -X, !<x< I; that is, ul(x) <uo(x), o<x< 1, and by 
(4) we conclude i l <i2• An induction argument similar to 
that in the proof of Theorem 3 can be used to show 

starting iterate 
uo(x) = x(I - x) 
uo(x) = T(x) 

convergence to a solution 
{un} monotone increasing, 
{Un} monotone decreasing, 

Bounds on {Sn (x)}: Using the fact that u~(x) < 0 along 
with the symmetry and boundary conditions, we have 

x(I - x) = uo(x) < UnIx) < T(x), 0 <x < 1. (14). 

In fact these same bounds also apply to unix). We already 
have unix) < T(x), ° <x < I, so we only need to show 
unix) >x(1 - x), 0 <x < 1. If we letf(x) = Unix) - x(I - x), 
we have foundf(O) = O,j'(O) = O,j(x) is symmetric about 
x = i, andf"(x) = 2 - ina(x)u~ _ I (x). Since Un _ 1(0) = a 
and a(x)u~(x) is nondecreasing on (O,H, we conclude that 
f"(x) > 0 in an interval (O,€) andf"(x) changes sign at most 
once in (0, i). Thus by Lemma 1 and symmetry we conclude 
Un (x) >x(l - x), 0 <x < I. Thus, for either Un (x) or Un (x), we 
have 

! < Un(!) = maXo<x<I Un (x) <! (15) 

We now consider Berryman's sequences {Sn(x)} and 
{Sn (x)} which were shown in Eq. (8) to be given by 

Sn(x) = Un (x)lmaXo<x< I unIx) = Un (x)lun ( i), 

Sn(x) = Un (x)lmaxo<x < I unix) = un(x)lunW. (16) 

By combining (IS) and (16) we have the bounds ony(x) stated 
in inequality (3). For either Sn or Sn we claim 

2T(x)<Sn(x)<4x(I - x). (17) 

The lower bound is easily established sinceSN(x) is a concave 
down function for which Sn (0) = Sn (I) = 0 and for which 
maxO<X<ISn(X)=Sn(!J = 1. ThusSn(x) must be above the 
triangle function 2T(x). For the upper bound we consider 

fix) = Sn(x) - 4x(1 - x) = Un (x)lunW - 4x + 4x2, 

and by using Eq. (12) we have 

f"(x) = u~(x)/un m + 8 = 
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Un+ I (x) < unix), 0 <x < I, and in + I <in + 2' Since {Un (X)} 
is a decreasing sequence which is bounded below (see Ref. 7), 
it has a limit u(x). By the arguments in Ref. 7, it follows that 
u(x) > 0, 0 <x < I, and there isai > 0 such thatin-i. As in 
the proof of Theorem 3, we conclude Un (x)-u(x) uniformly 
on [0,1 J and (i,u(x) I is a solution pair of (1). 

We note that by using the symmetry of a(x) and of Un (x) 
or un(x) along with the integral equation 

Un + I (x) = An + I {(I - x)fsa(s)u~(s) ds + x 

X f(l-s)a(S)U~(s)ds}, (13) 

which is valid for both {ik,udx)} and {ik,uk(x)}, that 
u~(x» 0,0 <x <! and u~(x) <0, i <x < 1. Thus u'(x»O, 
o <x <! and u'(x) < O,! <x < I, where Un,U can be Un' U, or 

u", U. 
What we have shown can so far can be summarized: 

normalized by u'(O) = 1 
{in} monotone decreasing 
{in} monotone increasing 

1 

= 8 - a(x)u~ _ I (X)/ {sa(s )U~ _ I (s) ds· (18) 

Since a(x) and Un _ I (x) are increasing on (0, !), we conclude 
f"(x) > Don some interval (a,S ) andf" (x) changes sign at most 
once on (0, !). Thus in order to satisfy the boundary condi
tionsf(O) = O,j'(O) <O,fW = 0, we must havef(x) <0, 
o <x < l' By also considering symmetry, we conclude 
Sn(x)<4x(1 -x), O<x< 1. 

Thus we have 

4G(x,!) = 2T(x)<Sn(x)<4x(1 -x), O<x<I, (19) 

where 

G (x,s ) = x( 1 - 5) x < 5 
5(1 - x) x>S' 

proving the graphical result of Berryman. I 
We now show the monotonicity of the sequence {S } 

Y A n 
for either Sn or Sn. 

Lemma 2: uI(x)/UO(x) is an increasing function on (0, 1), 
U I (X)/Uo(X) is a decreasing function on (0, !). 

Proof: Using the integral representation of U I(X) from 
Eq. (13) we have for ° <x <!, 

~I(X) =il[~ ra(s)s"+ Ids _ (Xa(s)s" + Ids 
u()(x) x Jo Jo 

+ 1\1 -s)a(s)sa ds + fa(s)(1 -S)'>1-1 ds ]. 

(20) 

and thus 

( UI(X))' = _i~ra(s)sa+lds<O, O<x<!. (21) 
uo(x) x Jo 
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Similarly, 

~I{X) =il[~ rs "+ l(l-sTa(t)ds, 
uo(x) x Jo 

+ 1 2 (\I-s)"+ls"a(s)ds ], (22) 
(I-x) L 

( ~'(X))' =il[ _ -\- (Xt "+I(I-s)"a(s)dt 
uo(x) x Jo 

+ 1 t (l-st+1t"a(s)dtJ 
(1- X)2 J. . 

By using the symmetry of a(x) and uo(x), we have 

(~I(X))'=il[ 1 2 ('-Xta + I(I-t)aa(t)ds 
uo(x) (1 - x) L 

I 2x (X ] 
- x2(1-_xfJosa+I(I-t)"a(s)dt .(23) 

Thus uI(x)/UO(x) is increasing on 0 <x <! if and only if 

X2i' - x s " + '( 1 - S )aa(s ) dt 

> (1 - 2xlLXta+ 1(1 - sl"a(s) ds, O<x <!. (24) 

Since a(x) and uo(x) = x(I - x) are increasing on (O,!) and 
symmetric about x = l' we have for 0 <x <!, 

o <a(x)x"(1 - xt <a(s)s"(1 - st, x <5 < 1 - x, 

O<a(s)s"(l-ST<a(x)xa(l_xt,o<t<x. (25) 

Thus 

x2i'-xsa+I(I-sta(sldt 

>a(x)x"+ 2(1 - xlaf -xs ds 

= a(x)xa + 2( 1 - xla( I - 2x) 

2 

and 

(1 - 2x)fsa+ 1(1 - s)aa(5) ds 

< (1 - 2x)a(x)x" (1 - x)" f s ds 

= a(x)x" + 2(1 - xl"(l - 2x) 

2 
from which the desired result now follows. 

T ABLE I. Summary of results. 

Conditions on a(xl 

Range of a 
So(xl 
Monotonicity 

Error estimate 

C[0,1]¢0,;;'0 
on [0, \] 

a> - 1 
x 

not 
necessarily 

No 
unless alternat
ing montonicity 
occurs 
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Lemma 3: Un + ) (x)/u" (x) is an increasing function on 
(0, !), Un + I (X)/U n (x) is a decreasing function on (0, !). 

Proof The proof is by induction. By Lemma 2, the con
clusion is true for uJuo and uJuo. We assume the result to 
be true for un/un _ I and un/un _ I' We have 

(un + dx)/un(x)' 

= [un(xlu~+ ,(x) - u~(x)un+ I(X)]/U~(x). 

Thus Un + I (x)/un(x) is increasing on (0, !) if and only if 
un(xlu~ + 1 (x) > u~(xlun + \ (x), 0 <x <!. Since 
un (x), u~ (x), Un + 1 (X), u~ + I (X) are positive on (0, !), this is 
equivalent to 

U~+l(X)/U~(X»Un+l(X)/U,,(x), O<x<!. (26) 

Using the integral representation of U dx) from Eq. ( 13) along 
with the symmetry of a(x) and Uk _ \ (x), we have 

uk(x) = i k [fsa(s)ur - \ (5) ds +x 

X f -xsa(s)ur_ \ (5) ds ], 

u;'(x) =ik f -xsa(s)ur_ ds) ds· (27) 

Thus from (26) we conclude U" + 1 (x)/un(x) is increasing on 
(0, !) if and only if for 0 < x < !, 

S~ - Xsa(s )u~(s) ds 

S~ -Xsa(s)u~ -1 (s) ds 

> S~sa(s )u~(s) ds + xS; - Xsa(s )u~(s) ds . (28) 

gsa(s )u~ _ \ (s) ds + xf~ - Xsa(s )u~ _ 1 (s) ds 

Equation (28) is true if and only if for 0 < x < !, 

S~sa(s)u~(Slds < f;-Xsa(s)u~(s)ds. (29) 

f~sa(s )u~ _ 1(5) ds f~ - Xsa(s )u~ - 1(5) ds 

By the mean value theorem there exists 5),0 < s) <x, such 
that 

f~sa(s )u~(s) ds 

f~5a(S )u~ _ 1(5) ds 

= 

f~sa(s )u~ _ 1(5) [u~(s )/u~ _ 1 (5)] ds 

S~sa(s )u~ _ I (5 ) ds 

u~(sd 

U~-I(SI) 

c [O,l];;.O,¢O, symmetric about 
x = 1. nondecreasing on 10,!] 
a>O 
4x(1 - x) 

yes 

Sn + 1 (x) <Sn(x) 

An C 1 >An 
Yes, if solution is unique; 
a posteriori by comparing the in
creasing and decreasing iterative 
sequences at each stage. 

4G(x,!) 

yes 

Sn,l(X»Sn(X) 

An+ 1 <An 
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Similarly, by the mean value theorem and symmetry there 
exists S 2, X < S-2 < ! such that 

s~ -xsa(5 )u~(s) ds 

S~ - Xsa(s )ii~ _ I (s) dS-

U~(S2) 

ii~ _ 1(52) 

By the induction hypothesis Un (x)!Un _ I (x) is increasing on 
(0, !), and since ° <s\ <x <S2<!' we conclude Eq. (29) is true 
and thus un + J (x)!un (x) is increasing on (0, !). Similarly, we 
can conclude Un + I (x)!un (x) is decreasing on (O,!) by revers-
ing the inequaliti~s in the abJve argull!ent. A 

Theorem 5: Sn + I (x) < Sn (x) and Sn + I (x) > Sn (x) for 

° <x < 1. 
Proof By Lemma 3 iin + I (x)!iin (x) < Un + I (!)Iun Wand 

Un + I (x)lun(x» Un + 1 (!)/unm~ ° <X <!, [rom which along 
with symmetry, we conclude Sn+ I (x) < Sn (x) and 
Sn + I (x»Sn(x), O<x < 1. 

IV. SUMMARY 

In Table I "solution" means normalized by having 
maximum on (0, I) equal to one. 
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We note that if - I < a < 0 our sequence {un (x)} gener
ated by uo(x) = x is alternating monotone, converging to the 
unique4 solution u(x). Thus error estimates are available a 
posteriori. Then S (x) can be calculated. 

These results have not been established for the case in 
which a(x) has an integrable singularity at an interior point 
(0,1). 

'I. G. Berryman,]. Math. Phys. 18,2108 (1977). 
2]. G. Berryman and C.]. Holland, J. Math. Phys. 19,247 (1978). 
']. G. Berryman, 1. Math. Phys. 21, 1326 (1980). 
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case for O<a < I. 
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A direct study of a class of singular (1'# 0) fundamental equations is shown to be possible. The 
method used for this prooffollows Marchenko's nonsingular (1'= 0) approach, step by step. 
Throughout the paper the interest of a simultaneous study of the "Marchenko associated 
equation" is stressed. Also it will be shown why the Marchenko approach does not extend to 
complex interactions. In order to treat a complex interaction one must therefore resort to a new 
set of ideas. 

PACS numbers: 02.30.Hq, 03.65.Ge 

1. INTRODUCTION 

As is well known, Marchenko solved 1 an inverse prob
lem where the spectral elements were replaced by scattering 
data. Its solution was therefore welcomed in physicist cir
cles. However it is less well known that Marchenko's meth
od is a two step method and consequently may be difficult to 
apply. Indeed Marchenko begins by solving the inverse 
problem with no centripetal forces (t= 0; no singularity) 
and in a second step treats the general case with singularities 
(t#o; centripetal forces present) via the method of special 
transformations, a method related to Crum's transforma
tions.2 The artifice has enough generality and is very ingen
ious since it permits the following statement, which we state 
as Faddeev does3

: If S (k ) is the S-function for the L (0) opera
tor with potential q(O) (x), then it is also the S-function for the 
L (m) operator (for any m = 0,1,2, .. ·) where the potential 
q(ml(x) behaves like q(O)(x) as x-o and x_ 00. Faddeev's state
ment concerns scalar cases but, as Marchenko shows, a simi
lar statement is valid for matrix cases. In Faddeev's state
ment the L Ii) operator is defined as follows: 

L (i)(x) = d 2/dx2 - t:(t: + 1)/X2 - q(i)(x). 

In spite of its appealing generality the method of special 
transformations is complicated. From our own studies4 its 
generality means its validity even in cases where an integra
ble translation kernel does not exist: in fact Marchenko is 
careful to tell his reader that special transformations cannot, 
in general, be expressed in an integral transformation form. 
The price to pay for its generality is, consequently, its com
plexity. By assuming as a basis for our studies the existence 
of a translation kernel, we already have sacrificed upon the 
altar of generality. However with some additional assump
tions, we were able to prove the existence of a fundamental 
equation for a singular (t#O) system which in addition was 
not necessarily Hermitian.s The proof was obtained follow
ing exact! y the steps of Marchenko in Ref. 1. We show, in the 
present paper, that the (t#O) fundamental equation related 
to a Hermitian operator can be solved directly. Of course, 
Marchenko's generality is lost in the process: only potentials 
with high (2t + 1) moments can be treated this way. Some 
extensions exist, but their nature seems limited. To obtain 
the Marchenko generality one may be obliged to use the spe
cial transformation method. Nevertheless we have provided 

a very simple and direct treatment for an important class of 
t# ° singular interactions. We also make clear that the exis
tence of a solution for the t#o inverse problem is related to 
the existence of a solution for a "Marchenko (t = 0) associat
ed equation". 

While writing Ref. 5 where non-Hermitian potentials 
were considered, we became convinced that Hermitian and 
non-Hermitian potentials need to be distinguished not only 
when one discusses their relative spectra but also when one 
discusses their fundamental equations. By following Ref. 1 
step by step we analyze which arguments that work for Her
mitian systems do not apply to non-Hermitian systems. It 
will be clear that arguments valid in the Hermitian case are 
no longer valid when a discrete spectrum is present. There is 
no reason to discuss the spectral singularities (k real#O) 
since they are absent in Hermitian systems. 

2. NOTATIONS 

Consideration of analytical properties of scalar systems 
and of matrix systems rests upon the same principles. Differ
ences essentially occur when the analysis or the identifica
tion of the scattering data is attempted. 

Since this paper is concerned with the discussion of the 
analytical properties of the spectral kernel, we deal explicitly 
with scalar systems. The extension t9 matrices will not, how
ever, introduce any essential difficulty. To avoid any mis
conception we use the terms interaction, or potential, 
indifferently. 

The concern of the paper is the two term Schrodinger 
equation 

(1) 

with a spherically symmetric real interaction V (r). Equation 
(1) is separated into a set of partial wave equations corre
sponding to each angular momentum and we study one of 
these partial wave differential equations 

[- (d 2/dx 2 
- /(/+ 1)/x2) - k 2 + U(x)]u= O. (2) 

A fundamental assumption is made at this point: there exists 
a Marchenko representation. In other words there exists a 
bounded and continuous function K (x,y) such that solutions 
!J(k,X)J2(k,x) defined by their behavior at infinity exist, and 
have the integral representation (4) which follows: 
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/I(k,x}::,::hl(kx)~exp[i(kx - 1'1T12)], 

/2(k,x)~h2(kx)~exp[ - i(kx - 1'1T12)]. 

(3a) 

(3b) 

In (3a) and (3b) we have introduced the Riccati-Hankel func
tions h I (kx) and h2(kx) with their asymptotic behavior. In the 
half-plane, where they are defined, one has 

.t:(k,x) = hj(kx) + 1'0 K(x,y)hj(ky) dy, (4) 

i = I and 2. 

The existence of the representation (4) imposes the condition 

L'" s<>1 U(s)1 ds < 00 for a = 0,1. (5a) 

If one adds the requirment that K (x,y) be absolutely 
integrable, one needs also 

1'0 S<>/U(s)/ ds< 00 for a = 0,1, ... ,1'+ 1. (5b) 

When (5a) is satisfied by the potential U (s), the kernel K (x,y) 
of(4) called hereafter "translation kernel" is unique. It obeys 
the upper bound 

IK(x,y)I,! (~ rO"o (x ~ y)exP[O"I(X)] (6a) 

when only (5a) is verified. The upper bound reads 

IK(x,y)I,! (! rO"o (x ~ y)exP[O"I(X)] (6b) 

with (5b). In (6a) and (6b) the O"j are the absolute moments of 
the interaction U(x) defined as follows: 

O"j = f"'sj/U (s) I ds. 

A condition similar to (5a) and (5b) is also used; it is 
denoted (5c) 

i"" s<>IU(s)1 ds< 00; a = 1,2. (5c) 

When the potential U (x) is real, the condition (5c) guarantees 
that the set of the normalizable states is finite and located in 
Imk;;;'O. No spectral singularities can be present for real 
k i'0. The normalizable states happen for k = ikn (kn real), 
when the Jost function/Ilk) vanishes 

h(k) = lim [(kr( 1 ft(k,r) ] . 
r--o (21' - I)!! 

The vanishing of/I (k ) for k = 0 may mean a normaliza
ble or a scattering state: a special discussion is therefore 
needed if/I (0) vanishes. With (5b) and conditions guarantee
ing that the set of the zeros of/I(k ) in Imk;;;.O remains finite, 
and thatlimk = 0 [I - S (k)] = Ak 21 oneproves5 the existence 
of a fundamental equation valid for all (x, y; y;;;.x): 

K (x,y) + F(x,y) + 1"" K (x,z)F(z,y) dz = O. (7) 

The function F (x,y) ofEq. (7) will be called "spectral kernel" 
for the reason that it is constructed from the set of scattering 
data which in Marchenko's theory replace the spectral data. 
The spectral kernel can be divided into two parts, a contin
uum and a discrete part denoted respectively Fc (x,y) and 
FD(x,y). 

To obtain Eq. (7) two identities defining the "regular" 
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solution G (k,x) 

- 2iG(k,x)k f+ 11(k) - 1= /2(k,x) - S(k )/I(k,x); k real i'D, 

- 2iG(k,x)k t'+ '/I(k)-' = iz!k,x) - S(k)/I(k,x); k;;;.D,lk I i'D, 

are used. Notations were the following: 

with 

S (k) = /2(k II/I(k), 

S(k) =iz!k)I/I(k), 

i2(k) = ~~ (kx)t' i2(k,x) (21' ~ I)!! 
and 

- I 
/2(k,x) = h2(kx) + 2ik 

X f h,(kx)h2(kt )v(t )i2(k,t) dt 

+ - h2(kx)h,(kt )v(t li2(k,t) dt. I 100 

2ik x 

The solutionj2(k,x) where the constant a is chosen so as 
to make the series solution absolutely convergent has been 
introduced for 1'= D by Naimark.6 

An integration from - 00 to + 00 of the r.h.s. of the 
first identity with a contour integration in the complex upper 
half plane of the r.h.s. of the second identity are used. The 
Marchenko equation results if limk~o T (k )= [I - S (k )] 
= Ak 2~ Then one has 

1 f+ 00 

Fc(x,y) = - h,(kx)[l-S(k)]hl(ky)dk. 
21T - 00 

(8a) 

If/I(k) -, has only poles of finite order, these poles furnish 
the definition of F D (x,y) through their residues. 

To be more specific, we use the asymptotic behavior of 
the physical solution tfJ(k,x) 

tfJ(k,x)~h2(kx) + S(k )hl(kx); 

S(k) and T(k) = I - S(k) are respectively the Sand T 
matrix obtained from Eq. (2). 

If the potential is real, the normalizable states are "sim
ple"; they occur for/I (ikn ) = 0, k = ikn (kn real); in addition 
their number p is finite. If, limk_...o T(k) = Ak 2~ we have 

FD(x,y) = f hl(iknx)M~hl(iknY), (8b) 
n=1 

with 

M~ = i oo 

dx/I(ikn,x}fl(ikn,x). 

The constant M ~ is related to the residue of S (k ), to be 
precise: 

M~ = - (-1)'21T~(iknll/;(ikn)' 

These Mn's defined in (8b) are normalization constants and 
are therefore positive. In the matrix case not considered 
here, they are Hermitian matrices associated with semiposi
tive definite quadratic forms. An equation similar to Eq. (7) 
where F is replaced by M, 

M(x,y) = mc(x,y) + MD(x,y), 
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1 f'" Mc(x,y) = 2;; _ '" [1 - S(k)] expik (x + y) dk, 

MD(x,y) = f M~ exp( - km(x + y)), 
n=l 

is introduced. This equation is called theMarchenko associ
ated equation. 

We assume that!1 (0) #0. If the potential satisfies (suffi
cient conditions): 

'0"'IU(s)ls2f+ 2 dr<00; U() o( 1 ) 10 s = ~l + 3 + < ' 

T(k) is 0 (k 2{+ ~and (8a) is the usual integral. The Landau 
symbol 0 just used means that the ratio U (s)/ s - 2f - 3 - < is 

bounded whens approaches infinity and that T(k )/k u+ I is 
bounded w~en k go~s to zero. However if such a high mo
ment of the mteractlOns does not exist and if we have only 

f jU(s)js2l+ 2 dr < 00 and U(s) = 0 (s - a - 1- E), 

ninteger,n <U' + 2,onemayhavesimplyT(k) = O(k n -I). 
For instance for n = U' + 1, T(k) = 0 (k 2f) then (8a) is still 
theusualintegral.Butfora = 2/, T(k ) maybe only 0 (k 2(- I) 
then a pole of order 1 intervenes. The integral (8a) has to be 
subjected to a regularization process; it becomes a principal 
value integral. 

Extensions of the domain of validity of Eq. (7) require 
some kind of regularization. The following mode of regular
ization will be considered in this paper. Some £ > 0 being 
chosen, the r.h.s. of the first equation defining the regular 
solution G (k,x) is integrated on the segments 
[- R, - E][E,R]. To complete the integration of radius E, 
located in the half plane Imk;;;.O. Limits are then taken with 
R going to infinity and E going to zero. Since the integral 
along the semicircle vanishes, we are left with 

[f -- iR] lim + . 
R-oc - R E 

<- .0 

In the case of a pole of order one, we have a principal value 
integral. 

If T(k) in the vicinity of k = 0 has an expansion 

n=a 

which contains only odd powers of k for n < U; the method 
just described applies. IfnO) = 0 the regularization method 
fails; then, for 1#0, the semicircle surrounds a pole of order 
two, bringing a limit which is infinite. We keep, therefore, 
throughout the paper the assumption!I(O) #0. 

3. THE FUNDAMENTAL EQUATION 

The fundamental equation (7) can be regarded as an 
equation for the spectral kernel when the translation kernel 
is given: as such it is a Volterra equation which can be solved 
by iterations. With the definitions 

7J(x) = ~ao(x) exp[al(x)], (9) 

7J(x) = l'" \Q(x)) dx = ~7Jo(x), (10) 
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i'" x)Q(x)1 dx = 7J I (x), 

one has 

) F(x,y) j <~( ~ Y7Jo(X) exp( 7JI(X)]. 

(11) 

(12) 

The inequality (12) guarantees the continuity of F (x,y) for all 
y<x and that of F (x,x) for all x including x = O. 

It is tempting at this point to try to solve Eq. (7), when 
F (x,y) is given, by the method of successive approximations. 
The translation kernel is then the solution one wants to be 
obtained. 

In this perspective the fundamental equation becomes a 
Fredholm equation. The same method as before gives 

IK (x,y)j <~7Jo(x)exp[7JI(x)] 

(13) 

Eq. (13) does not sum up into an exponential formula but 
rather into a 11(1 - x) form. Trouble will arise if there exists 
an eigenvalue v, Ivj = 1; the method becomes unsuitable. 
However, a general result can be proved. If F(x,y) is con
structed from scattering data generated by a Schrodinger 
equation (2), where U (x) satisfies (5a,b and c), then the funda
mental equation has a unique solution [5]. Such data will be 
called "authentic". 

In order for Eq. (7) to have a unique solution the homo
geneous equation 

K(x,y) + f"'K(X,z)F(Z,y) dz = 0 

must have only the trivial solution 

K(x,y)==O. 

(7') 

Section 4 discusses, therefore, the solutions of the homogen
eous equation (7') related to the fundamental equation (7). 

4. DISCUSSION OF THE SOLUTIONS OF EQ. (7') 

AsubspaceL '2(E, 00). (E> 0) which is dense inL 2(E, 00 lis 
used to show that Eq. (7) has no nontrivial solution in 
L 2(£,00 ). Afterwards one uses the result that any solution of 
(7') inL I(E, 00) belongs also toL 2(E, 00) to extend the previous 
statement for L 2 to L I; the case where E = ° is considered 
separately. The study is therefore divided into three parts: 
(A) solutions in L 2(E, 00) with E> 0, (B) solutions in L I(e, 00) 
with c> 0 and (C) solutions when e is equal to zero. 

A. Solutions in L 2(c, 00 ) 

Two differential operators D 1+ and D 1_ are intro
duced. Riccati-Hankel functions h ~ (kx) are also used. The 
order of the operators and that of the Riccati-Hankel func
tions is indicated by the superscript t 

h j (kx)~exp[i(kx - 111"/2)], 

D( =x( ~~. D( = ~.!!.-.x( (14) 
+ dx x(' - x( dx . 

When the two differential operators D (+ and D (_ are ap
plied to the Riccati-Hankel functions h i (kx) they give 

D '+ h ~- l(kx) = - kh i (kx), (15) 
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D ~ h ilia) = kh f- 1(1a). (16) 

We consider now the integral transformation 

(17) 

when ¢J ( S) is well behaved at infinity and at the origin with 

After one integration by parts we obtain 

TI[¢J] = f~ '" h i-I(ks) ~ Df[¢J( s)] dS' (18) 

Defining now 

~ _ =D~ XD2_ X···XD~, (19) 

from the assumptions that one can perform t'integrations by 
parts and still have the limit at infinity equal to zero and no 
problem at the origin, 

f'" 1 
TI [¢J ] = exp(ikS) -I £i) - [¢J (S)] dS· 

_ '" (k) 
(20) 

We move to a second kind of transformation. In the 
case where the integrand in Eq. (8a) has no pole on the real 
axis. we have the usual integral running from - 00 to + 00 

Fe (S.t) = ~ f~ '" h ilkS )T(k)h ilkt) dk. 

T(k) = l-S(k). 

We define: 

T2[¢J] = 2~ f~ '" ds f~ '" dk ¢J (S)h ilkS )T(k)h ilkt), 

(21) 

T2 [¢J] y(t). 

The existence of the fundamental equation (7) was obtained 
from the existence of a bounded translation kernel. Let us 
assume 

lim T(k)=Ak2~ (22) 
k--'() 

Condition (22) will be partially removed at the end of the 
conclusion. Sufficient conditions for (22). are 

f .rl'+ 2\ U(s}\ ds< 00 

and (23) 

f'" .r/+ I\U(S)\ ds< 00. 

Let us assume that ¢J ( S ) and its t'first derivatives vanish 
when S approaches infinity and are bounded at S = O. From 
Eq. (21) one obtains 

~ - [y(t)] = f~ '" dS f~ '" dk¢J(S) 

Xh i(kS)T(k)k t'exp[ikt], 

after integrations by parts. 
Equation (20), which expresses TI[¢J ]. is used together 

with the definition T == 1 - S: 
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1 
~ - (y(tll = g - (¢J( - tll - 211" 

xf~ '" dS g - [¢J( S)] f~ ",dk expikS 

xS (k )expikt. (24) 

If we introduce rfo by 

rfo(-k)= f~",~- [¢J(S)]expikSdS 

= f~ '" ¢J ( s )h i(ks)k IdS. 

we can write: 

1 
£i) _ [y(t)] = £i) - [¢J( - t)] - 211" 

(25) 

xf~ ,J (- k )S(k )exp[ikt] dk. (26) 

We retain the condition (22) and define the spaces 
L 12( - oo.oo).L 12(E.00).TheinterestinintroducingtheL 12is 
its property of being dense in L 2. 

A function ¢J (t ) is an element of L 12( - 00,(0) if 

~ _ [¢J(t)]EL2( - 00.(0). 

A scalar product between two elements of L 12( - 00.(0) is 
defined as follows: 

(¢(t).¢J(t) = f"'", ~ -[¢*(t)]~ - [¢J(t)] dt 

= _1 J'" if*(k)rfo (k ) dk. 
211" - 00 

Now we introduce 

L 2(E. (0) and L '2(E, (0) for E';;'O. 

A function f/; (t) belongs to L 2(E, (0) if 

f/; (t)E L 2( - 00,(0). 

f/; (t ) = 0 for t < E. 

By definition 

f: 00 f/; *(t)f/; (t) dt = f" f/; *(t)f/; (t) dt. 

A function f/; (t ) belongs to L 12(E, 00 ) if 

£i) _ [f/; (t )]E L 2(E, (0). 

Let us reconsider Eq. (21) when f/; (t) belongs to L '2(E, 00): 

1 J+ '" y(t) = - dS f/; ( s )Fc ( s,t ), 
211" - '" 

1 f'" = - dS f/; (s)Fe! s,t). 
211" • 

(21) 

The functiony(t) belongs to L 2( - 00, + 00). Together with 
y(t) one may define a functionji(t) in L '2(E, 00) by 

ji(t)=y(t), t>E, 

£i) _ [f(t)] = 0, t<E. 

The discussion of T2 starts with expressions related to its 
norm. Obviously: 
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1~ ~ -[y ..... (t)]g - [j(t)] dt 

.. J: '" ~ -[y*(t)]~ - [y(t)] dt. 

Using Eq. (26) the l.h.s. of this inequality becomes for E>O, 

i'" ~ -(?(t )]g - [j(t)J dt 

<S: '" dt g - [i*(t)]g - [i(t)] 

= _1 S'" <$ ( - k )S (k )S *(k )¢ *( - k ) dk. (27) 
21T - "" 

Equation (27) suggests that one consider the Fourier 
transform of g _ [y(t)]. One writes Eq. (27) as 

_1 f"" y*(k lY(k ) dk 
21T - "" 

< _1 J'" ¢ *( - k )S *(k )S (k l¢ ( - k ) dk. (27') 
21T - "" 

Assume now an eigenvalue equation 

~ _ [Y(t)J = ..lg _ [~(t )J==-ix(t), 

where x(t )E L 2(E, 00). The eigenvalue equation reads 

..lx(t) = x( - t) - _1_ JOG x( - k )S (k )expikt dk. 
21T _ '" 

Since x(t )EL 2(E, 00) 

J: "" x(t )exp[ ± ikt ] dt = 1'" x(t )expikt dt. 

Applying the Fourier transform to the eigenvalue equa
tion (E>O) gives either 

..lx(k ) = - x( - k )S (k ) 

or 

..lx( - k ) = - x(k )S ( - k ). 

The first of these two equations is multiplied by S ( - k ) and 
to simplify the result the equality S (k ) S ( - k ) = 1, valid for 
non-Hermitian aslwell as for Hermitian interactions 7 is used. 
One obtains 

..lx(k )S ( - k ) = x( - k ) = (1/ A. ).i(k )S ( - k ). 

Therefore A. 2 = 1 or A. = ± 1 for all the eigensolutions in 
L 2(E, 00 ) of the equation 

..lx(t) - x( - t) = _1_ J"" x( - k )S (k )expikt dt. (28) 
21T - "" 

Lemma 1: The eigenvalues ofEq. (28) considered as an 
equation in L ,2(E, 00 ) (E>O) are equal to plus or minus one. 

Lemma 1 applies to Hermitian and non-Hermitian in-
teractions as well. 

To pursue and to shorten the notations we denote 

~ _ [~(t)] =x(t), 

¢(k) =x(k), 

~ (t )E£ ,2(E, 00 ), x(t )E L 2(E, 00). 

The continuous Marchenko associated Me ( s,t ) kernel is 
introduced 

1600 J. Math. Phys .• Vol. 22. No.8. August 1981 

Mel s,t ) = _1_ f"" expiks [1 - S (k )] expikt dt, 
21T - 00 

Mels,t)-MelS+ tl· 
Equation (28) is equivalent to the Marchenko associated 
equation 

Ax(t) + f" x( s )Mel s + t) dS = O. 

Let us consider the scalar product 

(T2~'~ ), when ¢ is in L '2(E, 00). Let 

A = fO dt i"" x·( s)Mc*( s + t)x(t) dS· 

One has 

A= 1"" ds x*( s) 100 

dt x(t )15(t + s) 

1 foo 1"" - - S (k ) dk x*( S )expiks ds 
21T - "" £ 

X 1"" x(t )expikt dt. 

When x(t )E L 2(E, 00 ), 

A = - _1_ J"" x*( - k )S *(k ).i(k) dk. 
21T - "" 

From the inequality 

f: "" (f* + g*)(f + g) dk>O 

one can derive a Schwarz inequality in the form 

I J: /*(k )g{k ) dk I 
.;;; + [ S: 00 j*(k )f(k ) dk + J: "" g*(k )g(k ) dk ] , 

IA I.;;; J.. [f'" x*( - k )S *(k ).i( - k) dk 
2 -00 

(29) 

+ J: ""x*(k ).i(k ) dk J . (30) 

We note now the identities 

_1_ J"" x*(k ).i(k ) dk = 100 

x*(t )x(t ) dt; 
21T - 00 e 

_1 f"" x( - k )*S (k )* S (k )x(k ) dk 
21T - 00 

= 1'0 dt 1"" x*( s)Mc *( s + t) ds 

X 100 

Melt' +t)X(S'Jdt'· 

Since the inequality 

la*b I q[aa* + bb *], 

f.L = ± 1 implies Re[1aa* + ~bb * + f.La*b ]>0, one has: 
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Re {~1"" x*(t )x(t) dt + ~ ("" dt ("" x*( 5) 
2 E 2 JE JE 

XMc*( 5 + t) d5 1"" Me! 5/ + t)x( 5/) d5' 

+ /l 1"" x(t) dt f'" x*( 5 )Mc *( 5 + t)} ;;.0. (31) 

With A = lI/l, the l.h.s. of(31) is equal to zero if and only if 

f~ ""x*( - k ) S *(k ) x(k) dk 

= ~ {f"" x*( - k )S *(k ) 
2 -"" 

XS(k)i( - k) dk + f~ "" x*(k )i(k) dk } . (32) 

We look for a solution of(32) of the form 

x*( - k)S *(k) = a*x*(k). 

From (32) one obtains: 

a* f~ "" x*(k )x(k ) dk 

= 0 {a*a f~ "" x*(k) 

xx(k) dk + f~ "" x*(k )x(k) dk } . 

(33) 

Since A is equal to ± 1, a is real and equal to A. The compu
tation of both sides of (32) with a = ± 1 yields an identity. 
In other words, (33) implies (32). 

Conversely, (32) implies (33) with a = A. If it does not, 
there exists a nonzero function z(k ) such that 

x*( - k )S *(k ) = Ax*(k ) + z*(k ). 

The two sides of(34) are squared (AA* = 1) 

f~ "" x*( - k )S*(k )S(k)i( - k) dk 

= f~ "" x*(k )ilk ) dk + A f~ "" x*(k )z(k ) dk 

(34) 

+ A * f~ "" z*(k )i(k) dk + f~ "" z*(k )i(k) dk. (35) 

We now insert (34) into the l.h.s. of(32) and obtain 

A f~ "" x*(k )ilk ) dk + f~ 00 z*(k )ilk ) dk 

= ~ [J"" x*( - k)S *(k )S(k )i(k) dk 
2 -"" 

+ J~ "" x*(k )x(k ) dk ] . 

Equation (32b) says that 

A * J~ 00 z*(k )ilk ) dk = A J~ "" z(k )i*(k ) dk 

is real. In addition we have 
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u * f~ 00 z*(k )ilk ) dk 

= f~ "" x( - k )*S(k )*S(k )i(k) dk 

-f~ "" x(k )*x(k ) dk. 

With (36) we return to (35) and obtain 

f~ oc z*(k )z(k ) dk = 0, 

or z(k) = O. Equation (32) therefore implies Eq. (33). 

(36) 

At no point of the argument has use been made of a 
possible unitarity of S (k ); therefore the reasoning extends to 
complex interactions. 

The conclusion of this discussion of the scalar product 
(T2[Y]JI) results. From the uniqueness of the Fourier trans
form, the equation 

x( - k )*S(k)* = Ax(k)* 

is equivalent to the Marchenko associated equation 

AX(t) + 1"" x( 5)Me! 5 + t) d5 = 0, 

0.;;; €.;;; t < 00; A = ± 1; x(t)EL2(€,00) 

or to our initial equation 

A§ _ [~(t)] + 1"" §- [~(5)]Fe!5,t)d5=0, 
€.;;;t<oo; ~(t)EL'2(€,00). 

(37) 

No use is made here of (31), except in the particular case 
where S (k) is unitary. This form is derived later. 

We move now toward the proof that A = ± 1 cannot be 
an eigenvalue for (37). Still assuming ~ (t) solution of (37) in 
L ,2(€, 00) one has 

x*( - k )S*(k) = Ax*(k); A = ± 1. 

Thus we write 

or 

K (t )= AX(t ) + x( - t) - - x( - k )S (k ) 1 f"" 
21T - "" 

X exp[ikt ] dt. 

Use of (33/) in the last term of (38) gives 

K(t)~x(t) +x( - t) -x(t). 

Therefore we may write 

(33/) 

(38) 

AX(t) + 1"" ~ (5)Me! 5,t) d5=X( - t), A = ± 1, 

which is valid for - 00 < t < 00. 

Lemma 2: Let € > 0, then the equation 

A~ (t) + 1"" ~ ( 5 )Fe! 5,t) d5 = 0, €.;;;t < 00 

has no eigenvalue A with A = ± 1. 
The Lemma assumes € strictly positive and its proof is 

found in Ref. 1; it is not repeated here. 
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When[1 - S(k)] = 0 [k21thetransformationgenerat
ed by Fe is completely continuous in L ,2(E, 00). Following 
Ref. lone says that if an eigenvalue exists with A = ± I, one 
can construct an infinite set (not countable) of distinct eigen
solutions with the same eigenvalue. This construction is ex
cluded by the complete continuity of Fe and therefore no 
eigenvalue A = ± I may exist. 

Lemma 3: Let E>O, letS (k) be unitary; in order for t/J (t) 
to be a solution in L ,2(E, 00 ) of the equation 

t/J (t) + LOO t/J (s)F( s,t)ds = 0 

it must also be a solution of the equation 

t/J (t) + L" t/J ( s )Fe! s,t ) ds = 0; 

in addition each f; (ikn ) must vanish. 
Before proving Lemma 3 we return to Eqs. (28)-(32) 

assuming this time the unitarity of S (k ). The new equations 
will retain the same number, followed by V. 

Instead of (27') we have 

_1 foo y*(k lY(k ) dk <_1 f'" f; *( - k)f; ( - k ) dk 
2tT ~ 00 2tT ~ 00 

= f.oox*(t)x(t)dt. 

Equation (27'V) expresses that the norm T2 is less than one 
and consequently that the eigenvalues ofEq. (28V) are small
er or equal to one in modulus. 

In the study of the scalar product (T2[t/J ],t/J ) theinequal
ity (30) becomes 

1
_1 foo i*( - k )S *(k )ilk ) dk I 
2tT ~ 00 

1 Joo < - i*( - k )i(k) dk 
2tT ~ 00 

= L" x*(t )x(t) dt. (30V) 

As a consequence inequality (31 V) reads (J-l = ± 1): 

Re { i oo 
x*(t )x(t ) dt + J-l i oo 

dt x(t) 

X iooMe*(s+t)x*(s)ds} >0. (31V) 

The necessary and sufficient condition for (31 V) to hold is 
given in two equivalent forms: (32V) and (33V) 

f: ",i*( - k)S *(k )x(k) dk = f: '" i*(k )x(k) dk, (32V) 

or 

i*( - k )S *(k ) = ± i(k ). (33V) 

Lemma 3 is now ready for proof. Let us assume that t/J (t ) is a 
solution of the equation 

(39a) 

withF =Fe + FD andt/J (t)E L ,2(E, 00). Equation (39a)ismul
tiplied by t/J *(t ) and integrated. One gets 
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i OO 

t/J (t)t/J (t)* dt + Loo t/J *(t) dt L" t/J (S)Fe ( s,t) ds 

+ L"" t/J *(t) dt Loo t/J (S,t )FD(S,t) ds = O. (39b) 

The last term of Eq. (40), if 1 - S (k ) = 0 (k 2), is 

D== f f;(ikn)M~f;*(ikn) 
n=l 

and is semi positive definite. 
The real part of Eq. (39b) yields 

Re { 1"0 t/J *(t )t/J (t) dt + loo t/J *(t ) dt 

xloo 
t/J( s)Fe! s,t)ds +D } =0. 

Since D is positive definite, Eq. (39b) is obtained if 

(a) f; (ikn )Mn ==0 for all n, 

(b) Re [ Loo t/J *(t )t/J (t ) dt + i oo 
t/J *(t ) dt 

X i oo 
t/J ( s )Fe! s,t ) ds ] = o. 

By (31 V) we know that 

Re { i oo 
t/J *(t)t/J (t) dt + i oo 

t/J *(t) 

xfo t/J(s)Fe!s,t)ds }>o, 
with equality if and only if for t> E, one has 

± t/J (t) = i oo 
t/J (s)Fe! s,t) ds. 

It results, therefore, that for t/J (t)E L '2(E, 00) to be an 
eigensolution 

t/J(t) + ioot/J(s)F(s,t)ds=O, E<t<oo, 

t/J (t) must also be a solution of the equation 

t/J (t ) ± L" t/J ( s )Fe! s,t ) ds = O. 

(39c) 

Let us now consider a possible reciprocal statement and 
assume t/J (t ) is a solution of 

t/J (t) ± i oo 
t/J ( s)Fe! s,t) ds = 0 

in L ,2(E, 00 ). As before one gets 

i oo 
t/J *(t)t/J (t) dt + i oo 

t/J *(t) dt i oo 
t/J ( s)Fc (S,t) ds = O. 

To obtain (39b) one must add D, therefore one must 
require D =0 or equivalently require that each 

f; (ikn )Mn = 0 

in order to construct a solution of 
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Lemma 3 has in general no equivalent in a non-Hermitian 
case. When one considers a non-Hermitian problem, one has 
to require that Eq. (7') have no nontrivial solution. This re
quirement can be an a priori one as in Ref. 6 where Ljance 
sets up an essential condition 2 for his F-spectral function. It 
can also be realized by a proof that the set of scattering data 
are authentic, in the sense defined in Sec. 3. There one finds 
the essential difference between Hermitian and non-Hermi
tian inverse problems. 

All the results obtained so far have been obtained with 
the assumption that ¢J (t ) and its (t - 1) first derivatives van
ish at t<E. Let! Rn (t)] be a denumerable basis for L 'Z(O, 00), 
the set !Rn(u)]=!Rn(t - E)] is a denumerable basis for 
L ,Z(E, 00 ). With its help, given any ¢J (t )EI. Z( - 00,00) defined 
for r~E, one can construct a sequence 

!¢In(t)] 

such that 

LX> [¢In(t) - ¢J (t)] [¢J ~(t) - ¢J *(t)] dt 

is smaller than any prescribed positive quantity. In other 
wordsL '2(E, 00 ) is dense inL z(E, 00 ). This extends the study to 
any element ¢J (t ) of L Z(E, 00 ). 

In Appendix B we prove directly that if ¢J (t ) is a solution 
ofEq. (32')with plus sign then/l(t )==sc _ [¢J (t)] is also asolu
tion of Marchenko's associated equation: 

/l(t) + fO/l( t) Mel s + t) ds = 0, (40) 

and we know from [1] that/l(t) must then be identically zero. 

B. Solutions in L '(E, 00 ) 

In Subsec. 4 A concerned with L Z(E, 00 ) solutions, the 
importance of the study of Marchenko associated equations 
was made clear. Here in Subsec. 4 B concerned with L I(E, 00 ) 

the same need will become apparent. In order to be explicit 
we restrict ourselves to a complete treatment of the t = 1 
case. Then dropping the superscript 1 we have 

sc - ( S) = ~ :s s, 
hI (ks ) = i( 1 + if ks )expiks. 

Assumption is made that T(k) = 0 (k 2). To shorten the nota
tions, and to mean that in the discrete part [1 - S (k)] must be 
replaced by M ~ we write, 

F( s,t) = t hl(kS)[ 1 - S(k )]hJ!kt) dk. 

The Marchenko associated kernel Mo( s,t ) reads 

Mo( s,t) = j expik5[ 1 - S(k )]expikt dk. (41) 

By definition a function ¢J (t ) will be said to belong to 
L ,I(E, 00) if 
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L" Isc {¢J (t )}Idt =II¢J II < 00 

and I¢J (E)I = I¢J I < 00. 

We may use a norm, with subscript 1, in this space 

II¢J III=II¢J II + I¢J I· 

(42) 

By its definition L ,I(E, 00) is contained in L I(E,oo). Let us 
consider 

y(t) = I"'¢J(s)F(s,t)dt. 

Application of sc _ (t) to both sides of Eq. (42) gives 

sc _ [y(t)] = ¢J (E)Mo(t + E) 

+ 1'" sc - [¢J (s )]Mo( s,t) ds· 

Therefore 

Ilyll < I¢J 11'" I Mo(s) I ds + II¢J Ill'" I Mo(s) I ds. 

We assume E#O and define MI(t), Mz(t) 

MI(t) = t! [1-S(k)]expiktdk, 

Mz(t) = tk\ [l-S(k)]expiktdk. 

(43) 

(44) 

If T(k) = O(k Z), MI(t) and Mz(t) exist together with Mo(t); 
any element transformed by M and belonging to L ,I(E, 00) 

belongs to L lIE, 00). This remains true even if E = 0 as we 
shall see later in Subsec. 4 C. Therefore, from now on, we 
will omit the superscript prime when dealing with L I: 

Y(E) = ¢J (E) [iMI (2E) - ! M z(2E)] 

+ 1'" iSC - [¢J (E)]MI( s + E) ds 

1 1'" - - SC _ [¢J(s)]Mz(S+E)ds. 
E .. 

If one assumes IMI(s)1 and I Mz(s) I to exist, or if 

f'" 1 
- [1 - S(k )]expiks ds 

-'" k 
and 

f'" 1 
-2 [1 - S(k )]expiks ds 

-'" k 
exist, that is if T (k ) is 0 (k 2), then y(E) is bounded for E> O. 
Now let IIMII =sup!IIMIII,IIM2 1IJ; 

Iyl <[I¢J I + II¢J 11](1 + E)IIM II 
(45) 

lyl<ll¢J 111(1 +E)IIMII· 
Putting together (43) and (44) one has 

Ilylll < II¢J 111[(1 +E)IIMII + IIMol\]· (46) 

We have, therefore, a norm for the F-transformation in 
L I(E,oo). 

We follow now Marchenko; for the same reasons as in 
Ref. 1 the F-transformation is completely continuous in 
L I(E,oo). 
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As we defined L 1(£,00), we define L z(£, 00 ); we omit the 
superscriptprimesinceL ,zisdenseinL 2. A function ¢ (t ) will 
be said to belong to L 2(E, 00 ) if 

i""!0 - [<p(t)*]fZJ __ [<p(t)] dt< 00 

andiftheproduct¢ (£)¢ *(£) is bounded. ThenorminL z(£, 00) 
having a subscript 2 notations follow: I¢ I for L 2 is identicalto 
I¢ I for L \ 

II¢ II = iCC fZJ _ [¢(t)*]fZJ __ [¢(t)] dt 

IItP liz = 1¢ 1 + IItP 11· 
Now we consider the equation 

<p (t) + LX'tP (5 )F( s,t) ds = O. 

Applying fZJ _ (t) and integrating by parts gives 

0= fZJ _ [<p(t)] + <p(E)Mo(t + E) 

+ L~ fZJ - [tP(S)]Mo(t+s)ds. 

(47) 

(48) 

Following Marchenko (see Appendix B for a summary 
of his method), we obtain the following result. 

Lemma 4: If Fhas a norm defined as (46) then any solu
tion <p (t ) of Eq. (47) in L 1(£,00) is also a solution of (47) in 
L 2(£,00). 

Now we know from Sec. 4A that such a solution is nec
essarily related to a solution of the Marchenko associated 
equation 

fZJ _ [<p (t)] + L'" ~ - [<p (5 )]Mo( 5 + t) ds = O. 

Notations being as in (41) and (44); Mo,I.2;e denotes elements 
of the continuum part of the kernel M. Lemma 5 is obtained. 

Lemma 5: LetE>O. LetMocE L (- 00,00 ) be the Four
ier transform of T(k) = 0 (k 2) where S(k) is unitary. LetF 
be 

F Fe +FD with FD 

= t hl(iknS)M~hl(iknt), 
11-= t 

The M ~ 's are positive in finite number p no requirement pl. 
Then the equation 

I(t) + x(t) + LOX> x( s)F( s,t) ds = 0 

for any l(t)EL I(E, 00 ), where £ > 0, has a unique solution in 
L I(E,oo). 

The proof of this lemma uses Lemmas 1-4; the require
ment for a strictly positive £ is therefore included. 

C.Case€=O 

We consider now the case where £ is equal to zero. Since 

Fe=='- hi(kS)T(k)hi(kt)dk, 1 f + 00 

21T - 00 

one has to consider a set offunctions tP ( 5) such that for some 
finite a the integral 

La tP ( 5 )h ilh5") ds converges. 
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In other words, one requires 

lim<p(S)=A5"a, 
5---->0 

with a > t' - 1. 

The set offunctions tP (t) belongs to L 1(0,00) and in addition 
satisfies the previous limit at a equal to zero. In other words, 

tP(s)EL 1(0,00); g; __ [<p(sl]EL 1(0,00). 

Returning to parts A and B, one sees that while Lemmas 1,3, 
and 4 hold for vanishing E, Lemmas 2 and 5 do not. A study 
is therefore needed when £ goes to zero; this is achieved by 
discussing the equations which follow. 

These are the two equations 

<p (tl + LOX> ¢ (slF( s,t) dt = 0, 

tP (t) ± .£"" ¢ (s)Fe! s,t) dt = O. 

To these two equations, we must add, for reasons which be
come apparent later, the Hilbert associated equation 

tP(t) + L'" ¢(s)Fe! - 5, - t) = O. 

Together with these three equations we consider the three 
Marchenko associated equations where F is replaced by M 
and Fe by Me, see Eqs. (40), (41), and (44). 

Proposition: 
(I) The equation 

tP (t) + i ac 

tP (5")Fe! 5",t) ds = 0 

has n linearly independAent solutions inL (0,00 ) (see Appendix 
A for the definition of L ); n is the number of the bound states. 

(II) The equation 

± tP (t) + .£'" ¢ (s)Fe! - 5, - t) ds = 0 

has no nontrivial solution in L (0, 00). 
(III) The equation 

¢(t)+ (OC¢(s)F(s,t)ds=O 
Jo 

has no nontrivial solution in L (0,00 ). 
Proof Application of the g; operator and use of inte

grations by parts transform (I), (II), and (III) into Marchenko 
associated equations. The proof of the three propositions is 
therefore found in Ref. 1. It is sufficient that a summary of 
the method be given here. 

(I) The equation is replaced by 

ilk ) = i( - k )S (k ). 

A function t/J (k ) is constructed: 

t/J _ (k) = ilk If 1- I( - k ), Imh;;O, 

t/J f- (k) =i( - k)/I-I(k), Imk;;.O, 

t/J = t/J + = t/J _, Imk = O. 

where 

11- I( - k) = lim (- kr(ll( - k,r). 
r -.. 0 
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Sincet,6 (t ) of the original equation belongs tot (0, 00 )the.i(k) 
vanishes when k goes to infinity. The function t,6 is meromor
phic in the k plane. It has poles at every bound state location. 
The proposition follows a simple computation. 

(II) The equation is replaced by 

±x(k) =x(k)S( - k) 

A function ¢j (k ) is constructed 

¢j ~ (k) = ± x(k )ff( - k *), Imk < 0, 

¢j + (- k) =x( - k)ff(k *), Imk>O, 

¢j = ¢j ~ = ¢j +, Imk = O. 

By construction ¢j (k) is a bounded function of k which van
ishes at k = 00. One has therefore 

¢j(k)-O 

and the proposition results. 
(III) (Valid for Hermitian potentials) 
From Lemma 3 one knows that in order for t,6 (t ) to be a 

solution of (III) one must have 

{ 
x(k) = 0, Ik 1-00 
x(k) =x( - k)S(k) 

x(ikpx) = 0 for n values ikp'p = 1, ... n. Since (I) has n inde
pendent solutions, a solution of (III) must satisfy (n + 1) 
conditions. 

x(ikpx) = 0 

x(k)=O, Ikl=oo. 
Only the trivial solutions satisfies these requirements; the 
proposition results. 

Since n intervening in (I) and (III) is the number of 
bound states, the number of terms in FD must also be n. In 
other words the number of terms ofF D is specified by Levin
son's theorem. 8 

Converse Proposition: This converse proposition de
pends on the special relationship between the solutions of (I), 
(II), and (III) and consequently does not apply to non-Hermi
tian systems where the relationship fails to exist. 

Let n be the number of bound states as given by Levin
son's form ula. 8 Let p be the number of the terms belonging to 
F D · Assume p < n, then III has (n - p) linearly independent 
solutions. Assume p > n, then III has no independent solu
tions. However there will be (n - p) values ikn for which 

¢j(ikn ) =0 andfl(ikn)#O. 

The equation 

¢j (k ) = ¢j ( - k )S (k ) 

implies thatfl( - k) has a pole for k = ikn. Consequently (I), 
will have (n - p) independent solutions. A statement that (I) 
and (III) have no independent solutions is therefore equiv
alent to the statement that the number of terms of the dis
crete part FD is identical to the number of bound states as 
given by Levinson's formula. 

CONCLUSIONS 

This paper has been undertaken for two purposes: (a) to 
show that a direct study of the 1'#0 inverse problem was 
natural and purpose (b) to specify where differences between 
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Hermitian and non-Hermitian systems occur. We arrived at 
some conclusions. They will be expressed in terms of condi
tions A, B, C, D and E. The conditions are now enumerated. 

A)AmatrixS(k ) is given: It is unitary and T(k ) = O(k If) 
for k = O. We will show later cases where the condition 
T (k ) = O(k U) for k = 0 can be removed. 

B) The Fourier transform Me (t) of [1 - S (k )] exists. 
C) An arbitrary but finite number of real numbers Mn is 

given so that a kernel 

F(S,t)= _1_Ioo hi(ks)[I-S(k)]hi(kt)dk 
21T ~ 00 

+ fh~(iknS)[Mnh\(iknt) 
n=1 

for real k n can be constructed. 
Conclusion 1: If A, B, and C are verified, the equation 

K(x,y) + F(x,y) + 100 

K(x,z)F(z,y) dz = 0 

has always a unique solution for x > O. If, on the one hand, 
conditions, A and B concerning S or, on the other hand, 
condition C concerning the Mn 's and the k n 's are not satis
fied, no conclusion can be obtained. There lies the answer for 
purpose (b). 

D) The requirements on F( s,t) are strong enough for 
K (x,x) to be differentiable and for K (x,y) to be y-absolutely 
integrable. 

Conclusion 2: If the requirement D is not satisfied no 
potential can be obtained from the solution of the fundamen
tal equation and the Marchenko representation of the irregu
lar solution is not valid. 

E) On the one hand, the equation 

x(t) + 100 

x( s )Me! s + t) ds = 0 

has n-independent solutions where n is the index of S (for the 
definition of the index, see Gakhov9

). On the other hand, the 
equation 

x(t) + 100 

x( s)Me! - S, - t) ds = 0 

has no nontrivial solutions. 
Conclusion 3: (Sec. C; E> 0). The two conditions of E 

state that S (k) fl( - k )/fl(k) is factorizable. These condi
tions are equivalent to the Levinson theorem. 8 If they are not 
verified 

S(k)# lim fl ( - k,x) (-1(. 
X~O fl(k,x) 

Conclusion 4: If all the conditions A, B, C, D, E are 
satisfied then the equation 

K(x,y) + F(x,y) + 100 

K(x,z)F(z,y) dz = 0 

has a unique solution K (x,y) when S (k ), M ~, k n are given to 
construct F(x,y). One obtains V(x) by 

d 
V(x) = -! dx K (x,x). 

Let now a V(x) be given which satisfies (5a)-{5c) and (23); it is 
possible to construct a unique translation kernel K (x,y) by 
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the Riemann me!.h0d. This unique K (x,y) generates a unique 
spectral matrix F(x,y) by the fundamental equation. Since 
F(x,y) is unique, by identification we are assured that the 
spectral elements S (k ), M ~, kn' ofF (x,y) are identical to the 
spectral elements 

S(k)-S(k), 

M~==Mn' 
(-kn , 

of F(x,y). 

In other words, the exact scattering data are identical to the 
scattering data used for the construction of the fundamental 
equation; the circle is closed. Let us now remove the restric
tion we set in A, namely that T(k) be 0 (k 2f), i.e., condition 
(23), while the sufficient condition for the existence of an 
integrable K (x,y) is only SIb). The gap between (23) and (Sb) 
can be partially removed. If T (k ) is only O(k 2/- 2n -- I), 
n = 0,1,2, ... a residual term appears in Eq. (8b); it is due to 
the poles of the Hankel functions for k = O. Nonetheless 
from Marchenko I and Faddeev3 we know that if conditions 
A, B, C, 0, and E are satisfied there exists a potential V(x) 
which satisfies (Sa) and has T(k) as its T-function. Since V(x) 
satisfies (Sa) a translation kernel K (x,y) which may be con
structed by the Riemann method exists; in addition 

IK (x,y) I <1ao(x)expal(x) X (ylx( . 

Assume now that a) V(x) exists which satisfies (Sb), and b) a 
fundamental equation exists; the corresponding spectral ker
nel F (x,y) satisfies inequality (12). The situation is the follow
ing: a fundamental equation exists which has a solution 
K (x,y) generating a potential V(x) satisfying (Sa). But is this 
solution unique? According to the result reported in Sec. 3, if 
one deals with authentic scattering data the solution of the 
fundamental equation is unique. Now Faddeev's resule re
ported in the introduction states that any set of scattering 
data suitable for t= 0 is authentic. Therefore when one pos
sesses such data (their characterization being as in Ref. 1 or 3 
and when a fundamental equation exists, this fundamental 
equation has necessarily a unique solution. 

APPENDIX A: 

Marchenko's lemmas on integral equations. The fol
lowing function spaces are introduced: 

L lIE, 00): The function x(t) belongs to L lIE, 00) 

if LX> Ix(t ) I dt < 00. 

L 2(E, 00 ): The function x(t ) belongs to L 2(E, 00 ) 

if 1'" x*(t ).x(t ) dt < 00. 

L OO(E, 00): The function x(t) belongs to L OO(E, 00) 
iffor tE[E, 00 1 

Ix(t lI<M. 

L (E, 00): The function x(t) = xl(t) + x 2(t) belongs to 
L(E,oo) 

if XI(t)ELI(E,oo) 
and x 2(t)EL 2(E, 00) with x 2(t)EL OO(E, 00). 
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Let us recall Marchenko's results concerning kernels of 
integral equations L (E,t ) which are dominated by an additive 
term 

IL ( s,t)1 <A (s + t). 

If A (t) is L I(E, 00) for some E>O then, L ( s,t) is a completely 
continuous operator in L I(E,oo). 

LetA = A I + A2 withA IE L I(E, 00 )andA2E L 2(E, 00 land 
A2EL OO(E, 00); then any solutionf(t) of the equation 

fIt) + f"f( s)L (s,t)ds = 0 

in i (E, 00 ) belongs to both L 2(E, 00) and L 00 (E, 00 ). 
Corollary: If A belongs only to L I(E,oo), any solution of 

the equation 

f(t) + focf ( s)L (s,t) ds = 0 
in L I(E, 00) belongs to both L "'(E, 00) and L 2(E, 00). Also one 
can prove that any solution in L "'(E, 00) belongs to both 
L I(E, 00) and L 2(E, 00). 

Suppose now thatA (t ) belongs to L I ( - 00,00), suppose 
also that its Fourier transform is continuous over the real 
axis and vanishes when I k 1--+ 00; then for any E> - 00 the 
operator 

L [x] = fooX(s)L(s,t)dt 

is completely continuous in L 2(E, 00 ). 
Also if E>O,and if A (t) belongs toL I(E, 00), the operator 

L [xl is completely continuous in L 2(E, 00). 

APPENDIX B: Discussion of Eq. (39c) 

We write as in (39c) 

±¢(t)= l"'¢(s)Fe(t,t)dt. 

± l1(t) = 100 

11( s) Me (s, t) dt . 

(Bl) 

(B2) 

Together with (B 1) we consider the Marchenko equation 
where Fe is replaced by Me and which is denoted (B2). For 
simplicity only the case (= 1 is fully discussed, then 

Fe! s,() 

1 foc = - h l(ks)[I-S(k)]h l (kt)dk, 
211" - 00 

Me!S,t) 

1 foo = - [1 - S (k )) expik ( 5" + t) dk ] 
211" - 00 

1 d 1 . 
h,(kSI = -S--exPlks· 

k ds s 
Let us apply the operator D -( lit) (d I dt ) t, to both sides of 
equation (B 1). Define l1(t ) by 

± ¢ (t) ± ¢ (t)lt = l1(t). 

The function l1(t) satisfies Eq. (B3): 

100 1 
±11(t) = ¢(t)ds -

• 211" 

X I~ 00 hl(ks )[ 1 - S(k )]kexpikt dk. (B3) 
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NoticethatwhenJ.l(t) is given, aspecificconstant¢ (E) is need
ed to reconstruct ¢ (t ): 

1 it ¢ (t ) = - SJ.l(s) ds + ¢ (s). 
t • 

We write 

¢ (t ) = ~ (t ) + ¢ (E). 

By its definition 

D¢ (t ) = D~ (t ). 

We note also 

i"'¢ (sJds hl(ks) = if) (- k). 

Equation (B3) is integrated by parts; one gets 

± J.l(t ) = ¢ (E) _1_ f"" [expikE][ 1 - S (k )] expikt dk 
21T - '" 

i
oo 

1 f'" + ds - J.l( 5 )expiks [ 1 '- S (k )] expikt dk. 
• 21T - '" 

Let us denote 
(B4) 

i'" J.l( s )expiks = J ( - k ), 

and assume J.l(t ) = 0 for t < E, nothing being said for t = E of 
J.l(E). 

Equation (B4) reads 

I f"" ±J.l(t) = ¢(E)- expikE[I-S(k)]expiktdk 
21T - '" 

- - ¢ ( - k )S (k )expikt dk. 1 f'" .. 
21T - "" 

(BS) 

We obtain at t = E 

± J.l(E) = ¢ (E)Mo(E,E) 

+ - ¢ ( - k )S (k )expikE dk, 1 f'" .. 
21T - 00 

or (B6) 

¢ (E) = [± J.l(E) - _1_foo J ( - k )S (k )expik dk ] 
21T - '" 

X [M(E,E)] - I. 

If J.l(t ) is a solution of the Marchenko equation 

1 f'" ± J.l(t ) = - J.l( 5 ) ds 
21T - '" 

X f: 00 expiks [1 - S (k) ]expikt dk 

the bracket in Eq. (B6) vanishes. 

A Fourier transform ofEq. (B4) yields 

± J (k) = ¢ (E)expikE[1 - S(k)] - J ( - k )S(k), 

± J ( - k) = ¢ (E)exp - ikE[1 - S (k)] - J (k)S ( - k). 

Since S (k ) is factorizable 

S(k) =iI( - k)/iI(k), 

the two equations (B7) read 
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(B7) 

[± J(k)/l(k) + J( - k)/l( - k)] [/l(k) - Il( - k)]-I 

= ¢ (E)expikE, (BS) 

[±J( - klfl( - k) + J(klfl(k)][h(k) - II( - k)]-I 

= ¢ (E)exp( - ikE). (B9) 

In (BS) and (B9), k is real. A condition for the compatibility 
of (BS) and (B9) is 

either ¢ (E)expikE + ¢ (E)exp( - ikE) = 0 

or S (k ) = S ( - k) = ± 1. 

The first equality happens only if ¢ (E) vanishes. Returning to 
(B4) and(B6) one sees that ¢ (t) is the solution of the Mar
chenko associated equation. For the second condition if one 
hasS(k) = + 1,0neconsidersatransportpotential Vwhich 
does not possess any bound state since the Levinson formula 
is assumed to be valid; therefore 

V(x)=O. 

If S (k ) = - I ,Me (5 + t) did not exist since then we would 
have 

2 f"" Mds +t)==- expik(s+t)dS' 
21T - '" 

which is not bounded. The second condition does not need to 
be considered. 

Proposition: In order for a function ¢ (t ) to be solution of 
the 1'= 1 equation (Bl) it must be related to a solutionJ.l(t) of 
the 1'= 0 associated Marchenko equation (B2) by 

1 it ¢ (t ) = - SJ.l(s) ds. 
t • 

Extension to higher I'requires simply a recursion meth
od. The result is first proved for 1'= m - 1, the operators 

1 d Sm 
Sm ds ' 
sm d 1 

ds Sm 
are introduced, and Fourier transforms are replaced by Han
kel transforms of order m - 1. Using arguments similar to 
the one we used in Appendix A, the results extend to 1'= m. 
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We study the chain of the Backlund transformation (-BT) by the example of the KdV equation. 
The previously obtained chain of the BT, KdV.-modified KdV (=mKdV).-second mKdV, has 
been extended one step further to the third mKdV case. From this lowest order example, the 
structure of "infinity" of the chain process has been foreseen. 

PACS numbers: 02.30.1r 

I. INTRODUCTION 
In the study of solitons, Backlund transformation (here

after abbreviated as BT) plays a very important role in the 
analytical investigation. The BT enables us to obtain the so
called multiple soliton solution of a given nonlinear evolu
tion equation. At the same time the BT produces a new non
linear evolution equation which usually again has soliton 
solutions. In the previous work, I we have shown, by explicit 
example of the KdV equation, that this process actually goes 
to the higher order as KdV.-modified KdV (abbreviated 
hereafter as mKdV).-second mKdV, where the arrows de
note the BT. In this paper, we show that this process can be 
extended one step further as KdV.-mKdV.-second 
mKdV.-third mKdV. 

Significant here is the fact that, from the present study, 
very naturally appears the possibility that this process actu
ally continues "infinitely." In fact, this lowest-order process 
of "chain" of the BT sufficiently clearly reveals that they 
have actually a very simple and regular structure. 

In this paper, we explicitly calculate the BT of the sec
ond mKdV equation and derive the third mKdV equation. 
In the last section, we give certain analysis on the structure of 
the general BT connecting the "nth" and "(n + 1 )th" mKdV 
equations. 

As has been done previously, we calculate the BT using 
the language of Hirota's bilinear formalism. One definite ad
vantage of this method is that if we once transform from the 
original variable to the bilinear variable, BT becomes noth
ing but an almost trivial simple exchange between bilinear 
variables. 2,3 This simplicity in the transformed variable has 
already been shown by many examples of the physically in
teresting nonlinear evolution equations such as KdV, sine
Gordon equations,4 the integrodifferential type equation of 
Benjamin and Ono,5 and the cylindrical KdV equation.6 We 
believe that the present work adds another interesting exam
ple to these, 

II. BASIC SCHEME OF THE BILINEAR BT 
Before going into specific problems of the chain of the 

BT in the next section, it is worthwhile to consider bilinear 
BT theory in general. In 1974, Hirota first proposed the idea 
of the bilinear BT together with the explicit method of deri
vation. Although he has discovered the most important pre
scription of how to perform the calculation fully explicitly, 
the underlying reasons why certain procedures are taken 
have not been explained much in detail. Thus we give here an 

explicit explanation of Hirota's prescription, especially 
about his starting expression [which is Eq. (2.8) of this 
section]. 

For this purpose, we take the simplest example of the 
KdV equation 

(2.1 ) 

Throughout this paper, subscripts x and t denote partial dif
ferentiation. We consider the different solution u' of the 
same equation as 

u; + 6u'u~ + u~xx = o. (2.2) 

The BT is the relation relating one solution u to another 
solution u' (which may be called as relating the old solution u 
to the new solution u'). Namely, the BT is the relation which 
connects Eq. (2.1) to Eq. (2.2). We find that the simplest and 
the most natural way of combining Eqs. (2.1) and (2.2) is 
direct subtraction, 

(u, + 6uux + uxxx ) - (u; + 6u'u~ + u~xx) = O. (2.3) 

Clearly, if Eq. (2.3) holds and u satisfies Eq. (2.1), then u' 
satisfies Eq. (2.2). Thus Eq. (2.3) is the most primitive form of 
BT. 

From here, we consider, the dependent variable 
transformation 

u = (2 logf)xx, u' = (2 log g)xx' (2.4) 

By the direct insertion ofEq. (2.4) into (2.3), we have 

{
F(Dx,D,)f f _ F(Dx,D,)g.g} = 0, (2.5) 

f f g.g x 

where 

F(Dx,D,)-DxD, + D~, (2.6) 

and bilinear differential operators Dx and D, are defined 
b/,3 

D ':' D 7a(x,t ).b (x,t ) 

(ax - ax' na, - a" fa(x,t )b (x' ,t ') lx, ~. x' (2.7) 
t'=l 

for arbitrary functions a(x,t) and b (x,t). By integrating Eq. 
(2.5) once with x, taking the integration constant to be zero, 
and multiplying by f2g2, we have 

P=1 F(Dx,Dt )f1lgg - ffIF(Dx,D,)g·gl = O. (2,8) 

This is the primitive form of BT in transformed variables f 
andg. 

Now how should we deal with Eq. (2.8)? In the theory of 
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Bilinear 
Form 

Second Third 
Original KdV __ ~mKdV _____ mKdV ___ mKdV 
Equation ~ 

FIG. I. Schematic picture of the chain of the Backlund transform and bilin
ear formalism for the KdV equation. Symbols ¢:;>,->,- - --> represent the 
dependent variable transform, the BT in bilinear form, and the BT in origi
nal variables respectively. 

bilinear formalism, every quantity is to be reduced or decom
posed into bilinear form. This comes from the implicit but 
basic postulate of the bilinear theory that the most funda
mental nonlinearity is the lowest order nonlinearity which is 
second order (because first order is by definition linear) or 
bilinear. We notice Eq. (2.8) is fourth order nonlinear in var
iables/andg. Thus we try to decompose Eq. (2.8) into (coup
led) bilinear relations between old and new solutions, i.e., 
betweenl and g. For the purpose, in each term ofEq. (2.8) we 
try to interchange one/with oneg under appropriate rules of 
Dx and D, operators corresponding to the given form of 
F (D x,D,). As the results, we have several decoupled bilinear 
equations instead ofEq. (2.8), which is nothing but the BT in 
bilinear variables. Above is the explanation of the basic strat
egy of the bilinear BT method. 

III. SECOND mKdV EQUATION AND ITS BILINEAR BT 
In this section, we apply bilinear BT technique ex

plained just above to the second mKdV equation. In the pre
vious paper, we showed that the BT of the mKdV equation 
generates the second mKdV equation. I For simplicity, we 
consider a simple case of the second mKdV equation with 
only one arbitrary constant, 

u, + Uxxx + !(uj + 6a1ux sin1u = 0, (3.1) 

where a is an arbitrary constant. When a = 0, we consider u 
as a "potential" function of the variable v defined by 
v = - U x ' Then by differentiating Eq. (3.1) once with x, we 
have the modified KdV equation 7 

(3.2) 

Thus the second mKdV equation, Eq. (3.1), is not only the 
equation connected to the mKdV equation by BT, but is 
actually a generalization of the mKdV equation with the 
additional parameter a, which includes the mKdV equation 
as its special case a = O. 

Now we transfer from the original variable u to the bi
linear variable. By the dependent variable transformation 

u = i log(f; f~1 fJl), (3.3) 

Eq. (3.1) can be transformed to the coupled bilinear form 

1609 

(D,+D!)f;./;=O (i=I,2), (3.4a) 

D;I;'J; =0 (i= 1,2), (3.4b) 

(Dx + a)iI·!; - af;f~ = 0, 

(Dx + a)l; '/~ - alJ2 = o. 
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(3.4c) 

(3.4d) 

Note that for a = 0 Eqs. (3.4c,d) become 
Dx 11·/2 = Dx I; 1; = 0, which is equivalent to/2 a: fl, 

I~ a: I; . Then Eqs. (3.4a,b) reduce to only the i = 1 case 
(i = 2 being redundant) and Eq. (3.3) to u = 2i log(f; III)' 
which precisely agrees with the bilinear form of the mKdV 
equation given by Hirota,2,3 as it should. 

We consider another solution ofEq. (3.1) and the same 
dependent variable transformation as 

(3.3') 

which leads to the same bilinear equations for gl,g2,g;,g~ as 

(D, +D!)g;.g, =0 (i= 1,2), 

D ;g;.g, = 0 (i = 1,2), 

(Dx + a)gl·g2 - ag;g; = 0, 

(Dx + algi .g; - aglg2 = O. 

(3.4a') 

(3.4b') 

(3.4c') 

(3.4d') 

The BT, which connects two solutions u-<------>u', becomes, in 
the language of the bilinear formalism, the relation between 
transformed bilinear variables, fl!;' I; ,I; -<------>g I ,gz,g; ,g; . 

Having equations rewritten in bilinear form, we follow 
the standard procedure of Hirota explained in the previous 
section. 

Following the prescription given in detail in Appendix 
B, we obtain the explicit form of the BT as 

(D, + D; + ~ k 2Dx )I\')·g\'} = 0 (i = 1,2), 

(D; - k 2/4)/1'}·g\') = 0 (i = 1,2), 

Dxl;·gj = ~FtkJ;g;( - 1)' (i = 1,2), 

Dx/,·g; = !Ftkf;g,( - 1)'+ I (i = 1,2), 

Fkfzgl - af;g; = r Ilgz, 

- Fkf;g; - afzgl = r fig;, 

(3.Sa) 

(3.Sb) 

(3.Sc) 

(3.Sd) 

(3.Se) 

(3.Sf) 

with r being an arbitrary constant. Here and in the follow
ing, our notation .. ·/I'l·gl'l = 0 denotes two independent 
equations ... fg = 0 and '" f' .g' = O. The structure of the 
present BT is very regular in the following sense. We notice 
that the form of Eqs. (3.Sa,b) is precisely the same as the BT 
of the KdV equations,2,3 and Eqs. (3.Sc,d) the same as the 
space part BT of the mKdV,2,4 both repeated twice for sub
scripts i = 1,2, On the other hand, Eqs. (3.5e,f) are the first c 

example ofBT which contains no derivative at all. We can 
summarize this as follows. As we go to higher order in the 
BT chain, KdV ~mKdV ~second mKdV~, the D-operator 
functional form of time part BT does not change at all, while, 
in the space part BT, each time, we have the addition of 
equations containing derivatives of decreasing order one by 
oneasD ;~D ~~D~ = 1. Thus, in the language of the bilin-

FIG. 2. BT between five different solutions. Solid lines represent BT. 
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ear formalism, we see the BT chain has a very simple and 
regular structure. 

We can check that the present BT (3.5) actually gener
ates arbitrary N-soliton solutions as shown in the following. 
The generation of one-soliton solutions is seen as follows. 
For II = 12 = I; = I; = 1 (which corresponds to the triv
ial vacuum solution u = 0) Eqs. (3.5) become pure linear 
equations (with each Dx ,Dt replaced respectively by 
- ax, - at) whose solution can be easily obtained as 

gl = exp[!(t9 + ¢ + ¢')] + exp[ - ~(8 + ¢ + ¢ ')], 

g2 = expWe - ¢ - ¢ ')] + exp[ - !(8 - ¢ - ¢ ')], 

g; = exp[!(e-¢ +¢')] + exp[ -!(e-¢ +¢')], 

g; = exp[!(e +¢-¢')] + exp[ -!(e +¢-¢')], 

e =kx + (j)t + eo, (j)= - k" (3.6) 

e"'=i, e2""=( - k + 2a)/(k + 2a), (3.7) 

with the proper choice of 
r = ie""(k /2 + a) = [(ik /2)2 + a 2 ]1!2. This corresponds to 
the one-soliton solution 

, '1 (g;g~) u =1 og--
glg2 

'1 [COSh~(8 - ¢ + ¢') cosh!(e + ¢ - ¢ ') J 
=/~ • 

cosh!(e + ¢ + ¢ ') cosh!(e - ¢ - ¢ ') 
(3.8) 

Next, we consider multisoliton solutons. We denote the 

BT(3.5) by an arrow (f..hl; I;)~(glgzg;g~). Then we con

sider the four BT as depicted in Fig. 2. Ifwe assume commu
tability ofBT, i.e.,!I,)12 = 1\,)21, using relation (3.5b), we can 
obtain the superposition formula4 

1\,)°/\,)12 ex Dx f\,)I. f\,)2 (i = 1,2). (3.9) 

Next, we verify that this superposition formula holds even 
without assumingfl,)!2 = fl,)21. For that purpose, we define 
JI,)12 by 

J\,)12=(1I f\I)O)D x f\')!· f\1)2 (i = 1,2) (3.10) 

and assume the BT relation depicted by solid line in Fig. 3. 
We can prove without the a priori assumption of 

f ll )12 = f11)21, that broken lines in Fig. 3 are actually the BT 
I • -(,)12 

relation defined by Eqs. (3.5), and therefore the functlOnf; 
constructed from three old solutionsfl')0,f\')1 ,f11)2 by (3.10) 
is actually a new solution. We leave the details ofthe proofto 
Appendix C. Superposition formula (3.10) is known to gen
erate higher order multisolitons from lower order solitons.4 

FIG. 3. Solid lines represent assumed BT and broken lines represent BT to 
be proved. 
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IV. BT IN ORIGINAL VARIABLE AND THE THIRD mKdV 
EQUATION 

In the previous sections, we have obtained the BT in 
bilinear variables. Now we transform the results back to the 
original variables u + u' and u - u'. For the purpose, it is 
convenient to introduce the following symbols: 

<P;= log(/;/g;), <P ;=log(j;/g;), 

P;= log/;g;, P;== logf;g; (i = 1,2). 

From Egs. (3.3) and (3.3'), we have 

i(u - u') = <P J + <P2 - <P; - <P~, 

i(u + u') = PI + P2 - P; - p;. 

(4.1) 

(4.2) 

By these variables <P I'I, pI I), Egs. (3.5) can be rewritten as 

<P \;) + <P \~~x + 3<P ~~) pl~~ + <P 1~13 + ~k 2<p i~1 = 0 

(i = 1,2), (4.3a) 

pi~~ + <P :;)2 - k 2/4 = 0 (i = 1,2), (4.3b) 

~(<P; + P; + <P; - p;)x = (- 1)'!Ftk exp(<P; - <P:l 
(i = 1,2), (4.3c) 

!(<P; + P; + <P; - pFlx = ( - 1);+ I!Ftk exp(<P; - <P;) 

(i = 1,2), (4.3d) 

!ik - a exp[!(<P J - <P2 - <P; + <P;) - F(u + u')] 

= r exp(<PI - <P2 ), (4.3e) 

- yk - a exp[ - !(<PI - <P2 - <P; + <P;) + ~i(u + u')] 

= r exp(<P; - <P ~). (4.3f) 

Subtracting Eq. (4.3d) from (4.3c) and adding for i = 1 and 2, 
we have 

(u + u')x = i(p; + p~ - PI - P2)x 

= ik Ft [cosh(<P2 - <P ~) - cosh(<P1 - <P ;)] 

= 2ikFt sinh !(<P I + <P2 - <P; - <P;) 

X sinh !(<P2 - <PI - <P; + <P;) 

= - 2kFt sin !(u - u') 

X sinh M<P2 - <PI - <P; + <P;). (4.4) 

Dividing Eq. (4.3e) by Eq. (4.3f), we have 

kcosh!(<P 1 -<P2 -<P; +<P;)= -2asin[(u+u')l2]. 

(4.5) 
Eliminating <PI - <P2 - <P; + <P ~ from Egs. (4.4) and (4.5), 
we have 

(u + u')x [ 1 _ ( ~ y sin2( u ~ u' ) ] ~ 112 

. (u - U') = - 2ksm --2- . 
(4.6) 
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This is the space part of the BT in the original variables. 
When a = 0, Eq. (4.6) reduces to the BT of the mKdV equa
tion given by Wadati.8 As shown in Appendix D, the time 
part of the BT can be written as 

(u - u'), + (u - u')xxx + ~k 2(U - u')x - 2N = 0, 

{ (U-U')}2 N =-rl;(u - u')x (u + u')x cot -2-

+ 3a2(u _ ul< sin2
( u ~ U') sin2

( u ~ u' ) 

_ 6a2(u + u')x cos( u ~ U') cos( u ~ u') 

x sin( u : U') sin( u ~ U') 

_ 3a2(u _ u')x cos2
( u ~ U') sin2( u ~ U') 

- ~[(U - u')x r. 

(4.7) 

Equations (4.6) and (4.7) are the BT of the second mKdV in 
the original variables. If we consider it as a coupled equation 
for (u + u')l2==Vand (u - u')l2=U, then the equation for 
U is nothing but the "third mKdV" equation. The third 
mKdV equation can be written in single equation form by 
eliminating (u + u')l2 ( = V) from Eqs. (4.6) and (4.7). This 
can be done by solving Eq. (4.6) as 

sin!(u + u') = sn( - k f dx sin( U ~ U'); ~) (4.8) 

and putting this into every place for ~(u + u') in Eq. (4.7): 

U, + Uxxx + i(U,Y + (~k 2 + 6a 2 )Ux sin1U 

- 6a 2 Ux(3 sin2 U - I)Sn2
( - k f dx sinU; 2;) 

+6a2 {sn2( -k LX dxsinU; 2;)L sinUcosU=O. 

(4.9) 

V. CHARACTERISTICS OF THE CHAIN OF THE BT IN 
BILINEAR VARIABLES 

We have seen that the BT has a very regular structure 
when written in bilinear variables. From the lowest order 
examples of the KdV BT series, one can foresee the following 
features as a natural extention. In the bilinear form, in each 
step of the BT we have the addition of the space part with 
decreasing order of x derivative. Since we have reached the 
lowest order of x derivative D ; _D ! -1 at the BT of the 
second mKdV, from here on we expect no addition of new 
D x -operator functional forms, but simply an exchange of 
bilinear variables under the same D x operators. We expect 
that the nth mKdV equation [which is essentially the same as 
the BT of the (n - lith mKdV equation] can be reduced to 
bilinear form by the dependent variable transform 

- f;"'f~ 
u = ~ - 1 log , , N ==2n - I (n> 1) 

fl .. ·fN 

and has the one-soliton solution of the form 

f)'1 = cosh(e ± ¢I ± '" ± ¢n)' 

(5.1) 

(5.2) 

where total 2n differentf~')'s (for i = 1, ... ,2n .. I and with and 
without the prime) correspond to 2n different combinations 
of plus-or-minus signs ± ¢i (i = 1, ...• n). N-soliton solutions 
foIlow the KdV case with the formal replacement of 
0_0 ± ¢I ± '" ± ¢n' 
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APPENDIX A: IDENTITY PROPERTY OF THE BILINEAR 
OPERATOR 
The following identities are used in the derivation of the BT: 

DAP(x)·a(x) = Dxa(x).ccP(x) = 0 (co = const.), (AI) 

(Dxa.b )cd - ab (Dxc·d) = (Dxa·c)bd - ac(Dxb.d) 

= Dx(ad )·(bc), (A2) 

(D;a·b )cd - ab (D;c.d) = (D;a.c)bd - ac(D;b·d) 

- 2Dxad·(Dxb·c), (A3) 

(D ~ a·b )cd - ab (D ~ c·d ) = (D ~ a·c)bd - acID ~ b·d ) 

APPENDIX B: BT 
From Eqs. (3.4a),(3.4a'),(A2),(A4), we have 

PI == {(D, +D~)/;'/;Ig;gi - f;/;IID, + D;)g;·gi I 
= ((D, +D! +~k2Dx)f;·g:J.t;gi 

-f;g:!(D, +D! +~k2Dx)j,·gjJ 

- 3Dx (Dx f;·gj)·(Dx /;·g;) - ~k2Dxf,~gi·/;g;. 

(A4) 

From the BT equations (3.5a-d), we see that PI = O. Similar
ly, from Eqs. (3.4b),(3.4b'),(A3), we have 

P2==(D;f;·.t;)g;gj - f:/;(D;g;·gi) 

= UD; - k 2/4)/; .g;j /;g,. - f;g; I (D: - k 2/4).t; 'gi I 
- 2Dx(f;giHDx /;.g;), 

which also vanishes provided the BT equations (3.5b-d) are 
satisfied. From Eqs. (3.4c),(3.4d'),(A2), we have 

P3=={(Dx + a).t;·}; - af; f~llg;g2 - .t;};IIDx + a)g; .g~ - aglg1J 

= (Dx fl·g; )fzg~ - fig; (Dx h·g;') - af; f2g;g;' + afdzg]g2 

= Fk f;gdzg2 + ~ik.t;g; f;'g2 - af;f;'g;g;' + a.t;fzglgz 
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=f;g;Wkf~1 - af;g;) + flg2(!ikg;f; + af~d, 
which is seen to vanish provided the BT equations (3.5e,f) hold. In a similar way, we see 

P4=! (Dx + a)f;f; - afJ2lglg2 - f;J;! (Dx + a)gl·g2 - ag;g;l 
= ... = -P,,=O. 

APPENDIXC 

We prove that in Fig. 3 if two solid line BT are satisfied, then a broken line is actually a BT. We check the upper broken 

line in Fig. 3. As is mentioned after Eq. (3.5), since the essential new part in the present BT is (3.5e,f), we confine our attention 
to this part of the BT only. Prooffor (3.5a,b) can be obtained in a manner similar to the recent work on cylindrical KdV BTl> 
and for (3.5c,d) to the work on the Benjamin-Ono BT.' 

We will prove that relations (3.5e) hold for variablesf},)I+----->-I},)12. Namely Q, defined by 

Q =Vkdi 1:2 - af;Ij;12 - yd:li2, (CI) 

vanishes provided the following are satisfied: 

Dx f;o-!; = ( - Inj=1k pf?f/ (i = 1,2, P = 1,2), 

Dx i7-!;P =--= (- l)i+ 1!j=1kp f;o f; (i = 1,2, P = 1,2), 

!ikpf~ ff - af;o f;P = ypf~ f~ (i = 1,2, P = 1,2), 

- !ikpf;o f;P - af~ ff = ypf;O ft (i = 1,2, P = 1,2), 

f (,)(J'j-(.'I12 = D f(,)I·f(.'I 2 (i = 1,2). 
I I x I I 

From (C2e) we have 

f~ f~f;()f;oQ = !ikd~ f;cy;ofi(Dxf: 'fi) - af~ f~f;o f;I(Dx f;l·f;2) - yd~ f;of;o f: (Dxfi 'f~), 

= Vk 2 [ - f~l;°fifi(Dxf;o·f:) + f~f;ofif:(Dxf;o·fi)] 
- a[ - f~f;of;lf;2(Dxf~·f;l) + f~f;o f;lf;I(Dxf~-!;2)] 
- Y2 [ - f? f;o f: f~ (Dx f;o. fi) + f~ f;o f: fi (Dx 1;0. f~)], 

which becomes by (C2a,b), and then by (C2c,d) 

= Vk 2( + VkJ~ f;o fi fi f? f;1 - !ikd~ f;o fi f: f? f;2) 
- a( - Fklf~f;o f;lf;2 f;o f: + !ikd~ f;of;lf;lf;o fi) 

- Y2( - yk I f? f;o f: f~ f~ f;1 + Fkd? f;o f: fi f~ f;2) 

= ~ik2( - af~ f: - yJ;o f;l)f~ fi fi f~ +!k; f~ f;o fi f: f? f;2 

(C2a) 

(C2b) 

(C2c) 

(C2d) 

(C2e) 

+ liak fOf,ofdf,2f,ofl +lik fOfdf,Of2(y fOfl -lik fOfl) +ll'k (l'k fOf2 - f,Of,2)f,OflfOfd 
2 I 2 2 2 I I I 2 2 2 2 I I I I 2 2 I 2 I 2 I 21 2 2 I a 2 I I I 2 2 

+ Fk2(!ikd;0 f;2 + a f~ fi )f? f: fi f~ = O. 

Similarly, we can prove 

Q '-- Il'kfdf-d2 aflf-12_ y fdf-,12-0 
=-2 2 2 I - 2 I 2 I 2 - . 

Therefore we have proved that the upper broken line in Fig. 3 is actually a BT. Similarly, we can also prove that the lower 

broken line in Fig. 3 is a BT. 

APPENDIX D: TIME PART OF BT IN ORIGINAL VARIABLES 

Elimination of Pixx from Eqs. (4.3a,b) with use of (4.2) gives 

i(u - u'), + i(u - u')xxx - 2iN + ¥k 2(U - u')x = 0, (DI) 

iN=(<Plx )3 - (<P ;x)3 + (<P2x)J - (<P;S 

= -M<PI + <1>2 - <P; - <Pi)x [(<PI + <P2 + <P; + <P;), P + rli(<I>1 + <P2 - <P; - <P ;)x [(<PI - <P2 + <P; - ct>;t r 
+~(<PI-<P2-<P; +<P;)x!<P I +<P2 +<P; +<Pi)x(<P I -<P2+<P; -<Pi)x 

+ rli(<P I + <P2 - <P; - <P;)x [(<PI - <P2 - <P; + <P;)x ]2 + n,[(<PI + <P2 - <P; - <P;)x y. (D2) 

From Eqs. (4.3c,d) we have 
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(<PI + <P2 + <P; + <P;)x = ik [ - sinh(<P I - <P;) + sinh(<P2 - <P i)) 
. <P\ + <P2 - <P; - <P; <P2 - <PI + <P; - <P ~ 

= 21k cosh sinh ---------
2 2 

_ (u + u'lx cot( u ~ u' ). 

(<PI - <P2 + <P; - <P; lx = - 4a sin( u ~ U') sin (U ~ U'). 

From Eqs. (4.4) and (4.5), we have 

(([>1 - <P2 - <P; + <Pi);, = ax2 arccosh[ - ~ Sin(U ~ U')] = _ 4ai COS(U ~ U') Sin( U ~ U'). 

Inserting Eqs. (D3)-(DS) into Eg. (D2), we have Eg. (4.7). 
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An uppe~ limit is ?btained for the rate at which the expectation value, of a bounded positive 
operator tn an arbitrary state, can change with the parameters of a unitary transformation of the 
state. 

PACS numbers: 02.30.Tb 

1. STATEMENT OF THE LIMIT 
Let p be a positive quantum mechanical density opera

tor with unit trace. Let U (A) be a member of a family of 
unitary operators parametrized by the real ordered n-tuple, 
A = (A " ... ,An ). Let A be a positive semidefinite bounded op
eratorwith norm IIA II, and letp, UrAl, andA all be defined in 
a complex Hilbert space »r. Finally, let GQ (A) be defined by 

. JU(A) -1(,) ( 1) (1 1) Ga(A)==-l~V I\. a= , ... ,n. . 
a 

Now consider the expectation value of A in the mixed state 
p" =U(A)pV -I(A), transformed from the "original" mixed 
state p by U (A). This expectation value is 

E(A;A}=Tr(p"A J. (1.2) 

Writing 

A =IIA IIA, 
we have 

E(A;A) = IIA liE (A;A)=IiA liE. 
where 

O<E<1. 

(1.3) 

(1.4) 

(1.5) 

Consequently, there exists a real angle, e (A;A), such that 

( 1.6) 

If E (A;A) is differentiable with respect tOAa, then e (A;A) can 
be chosen so that it also is differentiable with respect to Aa . 

From these definitions we will show that the derivative 
of e is bounded by the positive square root of some expecta
tion values of the operator - A xG ~, where 

AXGa(A) A '/2Ga(A)(I - A)1/2 - (I - A)1/2Ga(AjAI/Z, (1.7) 

with all indicated square roots taken positive. The expecta
tion values in question are calculated using the modified nor
malized density operators 

or 

pA."==A1/2p"AII2/Tr!p,,Aj (1.8a) 

p(/_xl.,,-(I _A)'!2p"(I -A)'/z/Tr!p,,(I - All. 
(1.8b) 

In short, suppressing the A dependence, we show that 

\ 
Je \<J Tr(pxAxG;J JI!2, (1.9) 

aAa 

J Tr!Pl_ xAxG ; IJ'/2<IIA xGa II· 

The last inequality is obvious and is to be employed when the 
expectation values are too complicated to be useful. 

There is, of course, no priori guarantee that the expecta
tion values or norm on the right-hand side of (1. 9) are finite 
and we learn something only when they are. Nevertheless, as 
we will see, there are circumstances in which they are useful
ly finite. To begin with we note that if A commutes with V 
they all vanish, forcing the derivative to vanish as we know it 
must. Secondly, we note that if ffis "very close" to unity or 
zero, then since 

aff . ae 
-- = 2 sme cose --, 
JAa aAa 

(1.10) 

any finite expectation value in (1. 9) yields 

( 1.11) 

2. DERIVATION OF THE LIMIT 

The derivation is based primarily on the following 
property of the trace: 

ITr(AB W< Tr(A tA ) Tr(B tB), (2.1) 

which holds for any operators A,B, for which the indicated 
quantities exist. 

We have 

aff = ~ Tr\p"A\ = ~TrlpU -IAU I 
aAa aAa JAa 

= i Trip" [A,Ga 11. (2.2) 

But, referring back to (1.7) 

[A,Ga 1 = A'/2AxGQ(I - A)1/2 + (I - A)1I2AxGaAIIZ.(2.3) 

Substituting (2.3) into (2.2) we have 

aff = _ 2Im[ Tr (p"A II2AXGa(I - .4)1/2J], (2.4) 
aAa 

where "1m" denotes imaginary part. Consequently 

\ :~ \ <12 Tr\p"A'!2AxGa (I -A)'!2II· (2.5) 

If we now write the absolute value on the right side of 
(2.5) in the form 

1 Tr!pj,12AII2A xGQ(I - A)1/2p~121 \, 

then we can apply (2.1) to obtain 
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\ 
aE \ <21 Tr\p .. A11\/2 
aAa 

X I Tr\(I - A)1I2p .. (I - A)lIz.:l;rG ~ J 1112, 

or (2.6a) 

In the first case (2.6a) the second factor on the right side is 

I Tr{p .. (I - A)j 11121 Tr{PI_ A. .. .:lAG ~ J 11/2, (2.7a) 

while in the second case (2.6b) the second factor is 

I Tr{p .. A J 11/21 Tr{pA. .. .:lAG ~ J 11/2, (2.7b) 

where the definitions (1.8a,b) have been used. Substituting 
these expressions back into (2.6a,b) and introducing the com
pact notation, 

(.:l;rG~ h= Tr{pA. .. .:l;rGa(AlJ, 

(.:l;rG ~) / _ ;r= Tr{PI_ A. .. .:l;rGa (}.f J, 

we have 

(2.8a) 

(2.8a) 

! aff! <2IEII1211 _ ffll12[ / (.:lA~ ~ h/lI:12]' (2.9a) 
aAa I (.:l;rGa)/_;r1 (2.9b) 

We now invoke (1.6) which yields 

I aE! = !2sinOcoso ao I =2IEJ1I211-EII12/ ao I. 
aAa aAa aAa 

Comparison with (2.9) immediately gives 

ao {I (.:lAG ~ hll/2 

\ aAa \< 1(.:l;rG~)/_;rI'/2 
as claimed. 

3. ILLUSTRATION OF THE LIMIT 
A. Sequential decay 

(2.10) 

(2. 11 a) 

(2.11b) 

We will first illustrate the limit (1.9) by application to a 
simple model of sequential decay. Working in the center of 
mass frame we denote the parent particle state by I u) and the 
two particle daughter state of relative momentum p by [p). 
The three particle grandaughter state resulting from subse
quent decay of one of the daughters is denoted by I p,q) 
where the following diagram explains the notation: 

- -p 
u----~ 

-----
-J - ~ ~ -p-q 

Our normalization conventions are given by 

(ulu) = 1, 

(p'lp) = ~ 3(p' _ p), 

(p' ,q'lp,q) = ~ 3(p' _ p)~ 3(q' _ q). 
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(3.1a) 

(3.1b) 

(3.lc) 

Letting H denote the Hamiltonian of the system, we 
consider the time dependence of 

I(ul exp[(i/~)Ht]luW 

and 

f d 3p I (pi exp[(i/~)Ht] luW· 

The former is the probability that the parent particle has not 
yet decayed after the time interval t and the latter is the 
probability for finding the daughter state with any momen
tum after the time interval t. The first probability is of the 
general form (1.2) if we putp = A = lu)(ul and G = ~-'H. 
The second probability requires the choices 
p = lu)(ul,G = ~-IH, and A = Sd 3plp) (pl==1T· 

In the first case we have 

.:lAG = [Ju)(uIH - H lu)lul ]~-I 

and 

wnere 

l_(uIHlu). 

Thus 

\ 
ao \ < .:If at ~ , 

where 

I(ul exp[(i/~)Ht]luW= sin20(t) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

This limit, the rms deviation of the energy spectrum in the 
state I u), is the same as that obtained from the norm 1I.:l;rG II, 
and has been reported before. I For the alternative expecta
tion value we get 

I (.:lAG 2) 1- AI = ~-2\(ul(H - €) exp[(i/~)Ht ] luW 

X [I - I(ul exp[(i/~)Ht] luW] -I. 
(3.7) 

We make the model more specific by putting 

H luI = lull + f d 3p lp)v(p); 

then 

I (.:l;rG 2)[_;r1 =~-2Ifd3p v*(p)(plutW 

(3.8) 

X [Jd3pl(PIUtW + Jd 3 pd 3 ql(p,qlu,W + , ... ,J -1, 

(3.9) 
where lu t )= exp[(i/~)Ht] lu) has been introduced. Thisl.im
it is less than (3.3) (except for t = 0) since 

Ifd 3 p V*(P)(PIUtW<fd3 p1V(PWfd3 pl(plutW (3.10) 

and 

J d 3 plv(pW = .:le. (3.11) 

In particular this limit drops to zero for large times with the 
depletion ofthe Ip) states. 2 

For the seconfl probability Sd 3 pi (pju,W, we will re
tain (3.8), change (3.2) to 
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AAG = 1i- 1 [1TH - H1T], 

and add, for definiteness, 

(3.12) 

HIp) = Ip)2€(p) + Iu)v*(p) + f d 3 qlp,q)vp(q), (3.13a) 

H Ip,q) = Ip,q) [€(p) + E(q) + E(p + q)] + Ip)v:(q). 
(3.13b) 

With these specifications a little calculation yields 

I(AAG2hl =1i- 2 [lfd 3p v*(p)(plutW 

and 

+ fd3Pd3qIVp(qWI(PIUtW] 

X [f d 3 pi (pl(pIUt 12] - I, 

I (AAG 2) I -AI = 1i-2[A€21(ulu tW 

+ f d 3 plf d 3 q v:(q)(P,qIUtW] 

(3.14) 

X[I(UIUtW+ fd3Pd3ql(P,qIUtW]-I. 

(3.15) 

Both (3.14) and (3.15) yield A~ lli2 for very small times t, as 
can be shown from a power series expansion of exp[(i/li)Ht] 
in each case. For later times (3.14) is difficult to assess while 
(3.15) approaches 

fd 3Plfd 3q v:(q)(p,q(+)lu) 

X exp{(illi)(€(p) + E(q) + E(p + q)t }1 21 

f d 3 P d 3q l (p,q( + )luW, (3.16) 

where (p,q ( + ) I is the outgoing scattering eigenbra of H for 
the stable grandaughter particles. For "sufficiently smooth" 
potential vp(q), and decay amplitude (p,q( + )Iut ), this ex
pression (3.16), vanishes by the Reimann-Lesbesque Lemma 
as t_ 00. We speculate that detailed examination of the 
threshold behavior of the potential and the decay amplitude 
in (3.16) would yield inverse power law bounds on 8 for large 
times, where 

(3.17) 

Finally we note, for completeness, that the norm of 
(3.12) in the presence of (3.13) and 

1= Iu)(ul + fd 3p lp)(pl + fd3Pd3qIP,q)(p,ql 

(3.18) 

is IA I, where 

1 = fd 3 P Iv(pW 
A 2 -fd3 qlvp (qW' 

(3.19) 

B. Field theory correlation 

As an indication of possibly extensive applications of 
the limit to quantum field theory we consider the spatially 
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smeared two point function for a neutral scalar field 

(Ol<p (J,xo)<P (f',xb)IO), 

where 

with 

fd3Xlf(XW<00. 

Writing 

l(q) = (21T)-3f d 3 x Iq·y(x), 

we have 

(Ol<p (f*,xo)<P (f',xb)IO) 

= (21T)6 (00 da21J(a2) d 3q l*(q)l'(q) 
)0 2(q2 + a2)112 

X expi[ (q2 + a2) 112(xb - xo)], 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

where 1J(a2) is the Kallen-Lehmann spectral function3 

1J(q2) = (f~)dn84(q - Pn)1 (n I<p (O)IOW. (3.25) 

Since4 

100 

da21J(a2) = 1, 

we have 

(Ol<p (f* ,O)<p (J,O)IO) < 1 

and we can put 

and 

p = A = <p (J,O)lO) (I<p (f*,0)<p (J,O)IO)-I 

X (Ol<p (f*,0) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

The statement of the result of applying our limit, with the 
indicated definitions, to this quantity (3.24), will be greatly 
facilitated by introducing the notation 

IN(q) j(q) /fda2 1J(a2) 2d 3q~ I Il(q'W. (3.30) 
2(q' + ) 12 

We then have, putting 

sin20 (xb - xo) = (Oi<p (f,xo)<p (f,xb )10)1 (Ol<p (f,0)<p (f,0)10), 
(3.31) 

that 

I 
aO(xo) 1< Apo, 

axo Ii 
where 

(3.32) 

Ap~ = fda21J(a2) 2(q2~~)1I211N(q)12[(q2+a2)-P~] 
(3.33) 

and 
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(3.34) 

The finiteness of these quantities depends on how fast 1J(cr) 
vanishes at infinity. 

C. Collisions from a mixed state 

If P = Pin is the density operator for the incident state of 
a collision process then the corresponding density operator 
for the final state iss 

Pout = Tp;o T +, (3.35) 

where S = / - 2iT is the unitary scattering operator. If the 
projection operator rr projects out the eigenvectors of the 
observed final state parameters, then the probability of the 
observed transition is proportional to 

Tr{ rrTPin T+rr) = Tr!Pin T+rrT), (3.36) 

where T + rrT is bounded by unity. A matter of frequent in
terest is the change induced in this transition probability by a 
change in the relative spin orientations of the participating 
particles. Such a change would be induced by the unitary 
rotation operator U (fi¢ ) generated by the spin operator S for 
some subset of the initial particles. Thus we consider 

Pin,I;;"') = U (fi¢ 10in U ~ I(fi¢ ), (3.37) 

where 

U (Ii,¢ ) = e ~ li/fi)S.fl",. (3.38) 

We define, in this case, 

J.. = fi¢, oJ.. = fit>¢ + ¢t>fi (3.39) 

and 

a A a 1 a 
-=n-+--, 
aJ.. a¢ ¢ afi 

(3.40) 

with the understanding that Ii·(al ali) = 0 since li2 = 1. Then 
noticing that [from (1)] 

U(fi¢ + t>1i¢ + lit>¢)U -1(1i¢ ) - / 

~fG(fi¢ Hlit>¢ + t>/i¢ ) 

and 

R (fi¢ + fit>¢ + t>fi¢ )R ~ I(fi¢ )x 

(3.41) 

;:::x + 1(1 - costP )lixofi + sin¢t>1i + o¢fiJ Xx, (3.42) 

where 

Rab(fi¢) = nanb + (t>ab - nanb) costP - Eabcnc sin¢, 
(3.43) 

we conclude 

G(Ii¢ Hlit>¢ ) + 8n¢ ) 
= - (illi)S·!(l - costP )fiX81i + sin¢oli + 8¢1i), (3.44) 

which yields 

G(fi¢) 
- (l/Ii){[(l - costP)I¢ ]SXIi + (sin¢I¢)[S - fi(fi·S)] 

+ fi(Ii-S)}. (3.45) 

Having presented this example of a calculation of G a (J..) 
for a nonabelian group we now return to (3.36) and consider 
the simplest case of the total transition prObability, i.e., 
rr = J. Then defining () (fi¢) by, 
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Tr{Pin,,;., T + T F-sin28 (Ii¢ ), 

we have 

(3,46) 

Ina ~: + ~ :~ I < I (~r' rGa (Ii¢ f) 11/2, (3,47) 

where the expectation value on the right employs either 
Pin";.,, J ,or Pin,,*, 7 J' Let us examine ~ r' rG(fi¢ ). Intro
ducing the reaction operator K via 

S = (/ - iK )1(/ + iK), 

we have 

T = K 1(/ + iK ), T + T = K 2/(1 + K 2) 

and, consequently, 

.:i r 'rG = (/ + K2) - 112 [K,G](/ +K2) - 1/2 

and 

(~r' rGaf = (/ + K2)- 1/2 [K,Ga ](/ + K2)~1 

(3,48) 

(3,49) 

(3.50) 

X [K,Ga](I+K 2
)-I12. (3,51) 

Thus, 

'«(~T+TGa )2) 1< I ([K,Ga ]2), 
= I <£K,Ga ]W + (~rm.i[K,Ga ])2 

«~rm,K )(.:i rm,fGa)2 + (~rm.i[K,Ga ]f, (3.52) 

where ~ rm' denotes the rms deviation of the (Hermitian) op
erator following.:i rms in the same (mixed) state used to calcu
late the original expectation value. 

We recognize that the limit (3,52) is probably not very 
good, and indeed, none of the examples are offered for their 
stunning power. They are offered as suggestive of the gener
ality of the basic result (2.11) and in the hope that they will 
stimulate more substantive application of that basic result. 

4. EXAMINATION OF THE LIMIT 

In this final section a few observations are made on the 
general structure of the limit (2.11) for the purpose of gaining 
insight into future applications. To this end we denote the 
eigenvalue ot:... Aby sin2a and introduce the spectral decom
position6 of A via 

(77/2 
A = Jo sin2a dll (a), (4.1) 

where II (a) is a projective resolution of unity satisfying 

U (0) = O. II (rrI2) = I, (4.2) 

U (a)ll (a') = ll(min(a,a')), 

A dO (a) = dll(a) sin2a. 

From (4.1) we have 

("./2 (77/2 
1'112 = Jo sina dn (a), (1 - 1')1/2 = Jo cosa dll (a) 

and, from (1. 71 
(77/2 

.:ixGa = Jo sin(a - a') dll (a)Gadll (a'). 

The density operators P}',A and P}',l- X become, 

G. N, Fleming 

(4.3) 

(4.4) 

1617 



                                                                                                                                    

P)...;r = 1'T12 sina sina' dll(althdll(a'Y 

llT12 sin 2aTr Ip)..dll(a)j, 

P)"./~;r = 1lTI2 cosa cosa' dll(alP)..dll(a'Y 

1lTI2 cos2aTr (p)..dll(a)j, 

and Ll;rG ~ becomes 

Ll;rG~ = 1lT12 sin(a - a')sin(a' - a") 

X dll(a)Gadll(a')Gadll(a"). 

But 

2 sin(a - a') sin(a' - a") = costa + a" - 2a/) 

- costa - a"). 

Hence 

(4.5a) 

(4.5b) 

(4.6) 

(4.7) 

(lT12 
Ll;rG~ = -!)o [cos(a-a")dll(a)G~dll(a") (4.8) 

- costa + a" - 2a')dll(a)Go dll(a')Ga dll(a")]. 

This last equation displays a kinship of Ll;rG ~ to the 
square of the rms deviation of Go with respect to the eigen
spaces of A. 

A simple limit, lying somewhere between (2.11a) and 
(2.11 b) is obtained by writing 

! ao !2=Tr(p)..AJ! ao !2+ T r lp)..(I-A)J! :: !2 
~o ~o 0 

<Tr!p).. A J/2Ll xG ~A1/21 
+ Trip).. (I -A)1/2Ll;rG~(I -A)1I2J. (4.9) 
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In the presence of (4.3), (4.5), and (4.8) this becomes 

1 ~12 aAa 

1
lT12 

<! 0 cos(a-a")[Tr(p)..dll(a)G~dI1(a")j cos(a-a") 

- Tr (p)..dll (a)Ga dll (a")j cos (a + a" - 2a/)]. (4.10) 
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To each linear operator T acting in a Hilbert space JIt", an adjoint operator T * is assigned which 
coincides with the usual adjoint whenever the domain of T is dense in JIt". General properties of 
T * are: If JIt" is countably infinite-dimensional, then the set of all closed operators equals the set of 
all adjoints; if the domain (range) of Tis closed, then so is the domain (range) of T*; Tis closable 
(bounded) if and only if T * is densely (everywhere) defined. N oteworth y corollaries are the closed 
graph and the closed range theorems, as well as basic crosslinks between ad joints and inverses. 
Applications to the problem of extending formally self-adjoint operators are given. 

PACS numbers: 02.30.Th 

1. INTRODUCTION 
In quantum theory, one is accustomed to the fact that 

the basic objects like observables, symmetries, or propaga
tors are always represented by operators which are (at least) 
densely defined in the relevant Hilbert space JIt" (complex, 
and with inner product (.1.»). In many cases, however, the 
mathematical development leads naturally to operators 
whose domain is no longer dense in JIt". Typical examples are 
scattering theory, spectral analysis of Hamiltonians per
turbed by finite-rank operators (e.g., in pseudo-potential the
ory, or for construction oflower energy bounds), Trotter
type approximations of semigroups, I approximation of 
Schrodinger operators, 2 "coordinate notation") for direct 
integrals of operators in Hilbert spaces of non constant di
mension. 

For such a linear operator Twith domain!iJ (T) and 
range ~(T) in ,)Y' [the set of all these will be denoted by 
x(JV')] where fiJ(T) is not dense in JIt", the conventional 
wisdom is to regard T as a densely defined operator T from 
the closed subspace fiJ (T) to JIt", say, so that the funda
mental notion of the adjoint operator is available as T* (see 
e.g., Ref. 4, p. 50).5 Clearly, this approach requires careful 
bookkeeping of domain and range spaces and yields a rather 
unwieldy calculus when more than a single operator is in
volved. It is the purpose of this paper to show that the usual 
definition of the adjoint T * for densely defined TE2'(JV') can 
be naturally extended to a map *:x(JV')~2'(JV'), which 
not only preserves the former's manipulative simplicity, but 
also sheds light on many standard results [i.e., for !iJ(T) 
= df1 by eliminating all nonintrinsic, "local-reference-
frame" fiJ(T) -dependencies. Applications additional to 
those in Sec. 5 will be presented elsewhere.6 

2. DEFINITION AND PROPERTIES OF THE ADJOINT 

For TE.Y(JV'), let (in addition to the foregoing) ~ (T), 
< 1/( T), P T be the graph, null space, and orthogonal projector 

, 

onto ~, respectively; for closable T, Tis the closure. 
Of the following notions of adjointness, the first one is 

standard. 
Definition 1: Let TEX(JV'). T'EX(JV') is said to be a 

formal adjoint of Tif (lPIT¢) = (T'lPl¢) for all ¢EfiJ(T), 
lPEfiJ(T'). The set of all formal adjoints of Tis denoted by 
d(T). Tis called formally self-adjoint (f.s.a.) if TEd(T). 

Definition 2: Let TE2'(JV') and put fiJ(T*) = ! lPllPEdY'; 
the linear functional (lPlT.) with domain fiJ(T) is boun
ded] = ! lP IlPEJIt"; there is a lP' EJIt" [unique if chosen from 
~ such that (lPl T¢) = (lP'I¢) for all ¢EfiJ(T)]. The 

adjoint T*E2'(JV') of Tthen is defined by T*lP = lP', 
lP'E fiJ(Tl being as in the preceding equation, for every 
lPE!iJ (T *). T is called self-adjoint if T = T *. 

Remark 1: The few assertions underlying Def. 2 are 
elementary. It follows from Theorems 2 and 5 that this defi
nition of self-adjointness coincides with the customary one. 

Remark 2: T * can equivalently be defined as the (usual) 
adjoint of the densely defined operator TPT , or as the single
valued part of the adjoint subspace? of ~(T), whereas the 
relation 

s1'(T) = IT* +XIXE2"pn;R(X)CfiJ(T)l] (I) 

shows that T* is singled out from <rf(T) by having maximal 
domain and minimal range. 

If S,TEX(JV'), then 

drS) + d(T)C<~(S + T), 

Ps + T(S * + T*)C(S + T)*; 

d(S )sl"'(T)C d(TS), 

PTsS*T*C(TS)*; 

d(S)Cd(T) and PI'S *C T* for TCS. 
Less trivial results on composition and extension of ad

joints are collected in the following theorem: 
Theorem 1: Let S,TEX(JV'). Then 

(S+ T)* =S* +PsT* 
(TS)* = S*T* 

if fiJ (S ) C fiJ (T) and T is bounded; 
if ~(S)CfiJ(Tl and Tis bounded; 

(2) 
(3a) 

(TS)* =S*T* if fiJ(T)C~(S), Shas a bounded inverse, and -s=rPTS is bounded8 ; 

-Ipresent address: Department of Physical Chemistry, Hebrew University 
of Jerusalem, 91904 Jerusalem, Israel. 
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(TS)* =S*T* if S is closed and there is a closed subspace i?tJ e!:zj (T) with M(S )ni?tJ = ! 0] , 

T* = PrS* 

T* =S* 

['d(S) + ,~= 9 (T) , and the restriction of T to c~ being bounded'l; 

if TeS, T is bounded, and S is closable; 

(3c) 

(4a) 

(4b) if TeS, .'?!P(T) = .'?!P(S),andShasaboundedinverse. 

Proof (2), (3a): Adapt the well-known proof for dense
ly defined Sand T (3b): The hypotheses imply T = TSS - I, 
T*:>Pr(S-I)*(TS)*, and by (3a) S*T* 
:> ( S - i P rS )*( TS)*. So boundedness of S - I PIS and 
Theorem 5 yield §(S*T*P!iJ((TS)*), whence (TS)* 
= PrsS * T * = S * T *. (3c): Since .'?!P(S) must be closed 

(Theorem IV. 1.12 in Ref. 4) the (bounded) projector from 
Yi (T) onto g; along .'?!P(S) is well-defined. Let To and So be 

the restriction of Tto !iJ and of S to Yi (S )n.,,y(S )1. Bounded
ness of To andS 0- I gives T = ToP + TSS 0 I (1 - P), so that 
T* :>(ToP)* + (S 0- 1(1 - P ))*(TS)* and [by S * = S~ and 
(3a)] 

S*T* :>S*(T uP)* + S~(S o· 1(1 - P))*(TS)* 

= (T uPS)* + (S 0- 1(1 - P)So)*(TS)* = (TS)*. 
(4a): Follows from Theorems 2 and 5. (4b): Take Tin (3b) to 
be an appropriate restriction of the unit operator. Q.E.D. 

Remark 3: Equations (3b,c) generalize Problem 4.18 in 
Ref. 10 and Theorem 6 in Ref. 11. Further results in Ref. 11, 
and Theorem 5.27 in Ref. 10 admit similar extensions. 

Remark 4: None of the conditions ::J9(S) Cq) (T), boun
dedness of ~PrS, .'~(T) = .W(S) in (3a), (3b), (4b) can 
be dropped. 

To see that only T* and T** are relevant (because 
T*** = T*PT' and T**** = T**) we have: 

Theorem 2: Let TE.Y(JY). Then T* is closed, P1'* Tis 

closable, and T** = Pp T Pr' 

Proof Closedness is clear from Remark 2. Since TPrE 
.af(T*)andby(l) PT - TPre T**, the densely defined opera
tor Pro TP r is closable and hence satisfies P 1'* TP r 
= (Pp TPr )** = ((TPr)*Pp )* = (T*Pp )* = T**.Q.E.D. 

Remark 5: The operator PI'- T equals the single-val
ued pare of ,~( T). P 1'* T is distinguished in that it effects a 
unique decomposition of T into a maximal closable part 
Pp T and a minimal nonclosable part (1 - Pp)T [indeed, 
the adjoint of the latter is the restriction of the zero operator 
to .9J (T *), which is minimal in the sense that, for SE.Y(JYI, 
S * COif and only if /3J (S *) consists just of the trival part 
.9t(S)l]. A similar decomposition is known for positive qua
dratic forms. 2 For further characteristics of Pp T, see Re
marks 6 and 7, and Theorem 8. 

There is a partial con verse of Theorem 2: 

Theorem 3: For separable ,JY', the equality 

! T * I TE2"«Jf')] = ! S ISE,,Y(c5YI; S is closed 1 

holds if and only if dim (~ is either 0 or 00. 

Proof A little thought shows that we only need to prove 
that, for closed SE.'y(df') with /.iJ(S) ,#,]Y' and ,JY' counta
bly infinite-dimensional, there is a TE2'(JYI such that 
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,.---------------------------------
S = T *. Pick an orthonormal basis (cp n );;" ~ I in:;0 (S *) and a 
dense sequence (5n);;" ~ I in .qJ(S )1, define XEY(dY) by 
9(X) = span! CPI' CP2'''] and XCPn = (1 + liS *CPn 11)5n 
(n = 1,2, ... ), and put T = S * + X. Iffollows that 
Y(T*) = ! I/; + 511/JE :&5(S);5Eq/(S)1; 

(I/;IS*.) + (5 IX.) is bounded]. 
But for every I/JE § (S) and 5E9J (S)l we have 

I (I/;IS *CPn) + (5IXcpn) I 

;;. 1(5IXCPn)I-I(I/;IS*CPn)1 

;;. I (515n) I + (I (515n) I - III/;II)IIS *CPn II 

(n = 1,2, ... ) where, by denseness Of(5n);;"c I in §(S)l, the 
right hand side remains bounded for n-oo only if 5 = O. 
Thus Eq. (5) reduces to 9(T*) = g/(S**)n 9(S). Since 

(5) 

S ** = SPs (Theorem 5), one actually finds T* = S. Q.E.D. 
The next result collects the fundamental domain and 

range properties of T *. 

Theorem 4: Let TE.Y(~. Th~ 1 

JV(T*) = .'1?(T)l, .W(T*) =.Y'( Pro T) n 9(T). (6) 

Yi(T*) = ! lim TI/;n I(I/;n);;" ~ I is a sequence in 9(T) 
n .. 00 

with lim I/;n = 0 and (TI/;n);;" _ I convergent] 1, 

" "00 

(7) 

Yi(T*P §(T) if! (I/;ITI/;) I I/;Eqz; (T); 111/;11 = 11 ,#e, 
(8) 

YJ(T*) is closed if cqJ(T) is so, (9a) 
.9?(T*) is closed if .9?(T) is so. (9b) 
Proof (6): Clear from definition 2 and Theorem 2. (7) is 

well known in view of Remark 2. (8): Cf. proof of Theorem 
V.3.4 in Ref. 12. (9a): let cpE §5(T*), and let (CPn );'.0 I be an 
approximating sequence in 9 (T *). Then (cp I TI/;) 

= lim (CPn I TI/;) for alll/JE!iJ(T), where (CPn I T) is bounded 

(n = 1,2,00')' For closed YJ(T), the uniform boundedness 
principle implies that the limit functional (cpl T.) is also 
bounded. (9b): Let cP'E .9?(T*). By (6), there is a sequence 

(CPn);;"=1 in!iJ(T*)n.W(T)withcp'= limT*cpn· Then 
n - +00 

(cp'll/;) = lim (CPn I TI/;) for alll/;E!iJ (T). Since CPn E .9f(T) 

(n = 1,2,00~) it' follows by twofold application of the uniform 
boundedness principle that, for closed .'?!P(T), (CPn);;" = I is 
bounded and coverges weakly to some cpE.'?!P(T). But weak 
convergence of(CPn );:"= I and (T*CPn);:" ~ I to cP and cP' implies, 
as T* is closed, that cpEYi(T*) and cP' = T*cp. Q.E.D 

Remark 6: The conditions in (9) can be weakened to that 
the respective . ..IlE! 91(T),.%'(T)] are of second category in 
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7,13 Also, (9) and Theorem 2 imply that fiJ(T*) [,';W(T*)] is 

closed if and only if fiJ ( p:;:;T) L~ ( P p T II is so. 

3. CLOSABILITY AND BOUNDEDNESS 

The results of Sec. 2 allow very quick generalization of 
some classical tools to operators which are not densely de
fined. Particularly simple proofs emerge for the closed graph 
and the closed range theorems (Theorem 6). 

Theorem 5: For TE2"(£/, the following unprimed 
(primed) statements are equivalent: 

(a) T is closable. 
(b) fiJ(T*) = cW'. 

(a') 
(b') 

Tis bounded. 
fiJ(T*) = JY: 

(a) T has a closable inverse. (a') T has a bounded inverse. 
(b) .9S'(T*) = ,@(T). (b') .9S'(T*) = F(T). 
(c) Pp T has an inverse. (c') Pp T has a bounded 

inverse. 

If Thas a closable inverse, then ~ = (Pp T)-Ipp . If T 
has a bounded inverse, then (T +) - I is also bounded and 
II(T+)-III = II(PpT)-III. 

Proof (a)<=>(b), (a')<=>(b'): Clear from (11), (6), and Theo
rem 5. (b)<=>(c): Use (6). (b')<=>(c'): Use (b)<=>(c) and Theorem 6. 
For closable T -I, compute r=rby taking the inverse of 
!1(T), where 
??TTi= [(f/!, p;;rf/! + cp)lf/!EfiJ( PpT);cpEfiJ(T*)lj 

(c) The functional 14 II T.II is 
lower semicontinuous. 

(c') The functional II T.II by Remark 5 and Eq. (7). For bounded T - I, use (b'), (11), and 
the closed grlU2hJheorem; and combine Eq. (to) with the 
formula for T - I . Q.E.D 

is continuous. 

If Tis closable, then f* = T* and T** = fPT . If T 
is bounded, then T * is also bounded and II T *11 = "T II· 

Proof For (a)<=>(c) and (a')<=>(c'), see Theorem 6.1.3 
and Sec. 4.1.2 in Ref. 13. Everything else follows, e.g., from 
Remark 2, Theorem 2, and standard arguments. 

Theorem 6. For closed TE2"(dY'), the following un
primed (primed) statements are equivalent: 
(a) 9(T) is closed. (a') .9S'(T) is closed. 
(b) §(T*) is closed. (b') .9S'(T*) is closed. 
(c) Tis bounded. (c') ,';W(T) = .. F(T*)l 

(d) T* is bounded. (d') ,';W(T*) = c.V(T)l n fiJ(T) 

Proof Elementary combination of (6), (9), Remark 6, 
and Theorem 5. 

Remark 7: Most parts of Theorems 5 and 6 admit nu
merous variants and corollaries in view oft 1), (6), Theorem 2, 
and Remark 6. Some of these are well known (see, e.g., Theo
rem 111.5.28 in Ref. 12, or Theorem 2.12.3 in Ref. 15); others 
read as follows: For every TE2"(dY), T * is bounded if and 
onlyifPp T isso. For closed TEf(dY)with,';W(T) C 
every subspace dense in ,Q1(T) is a core of T. 
!l(T*), 
4. INVERSES 

First we show how to obtain (T - 1)* from T * (and vice 
versa) for invertible TEf(,W}. Theorem 8 then prepares for 
spectral analysis. 

Theorem 7: For TE.Y(dY" the restriction of T * to 

91(T *)n ,9t(T), denoted by T +, is closed and invertible. 1fT 
is invertible, then 

(T- I)* = (T+r IPT> (to) 

,(:I)((T- I )*) = &t(T*) + .@(T)l, (11) 

,j9((T -1)*) = .g1(T*)n :~(T). (12) 

Proof The first part is clear from Theorem 2 and (6). 
Since (T - I )*cp ITf/!) = (cp lIP) for alI cpE@((T -I )*) and 
f/!E(fi(T), we have [j9((T -I)*)C§(T*) and hence 
.·~((T -1)*)C!:iJ(T+). So relation T*(T -1)* CPr may be 
rewritten as (T - 1)* C (T +) - I P T and we obtain (to) by noting 
that 9i((T+)-IPr ) = /~(T*) + 9(T)\ 

M(T*)CC0((T- I)*), and g(T)1 =vF((T- I)*). Q.E.D. 

Theorem 8: For TE2"(£/, the following un primed 
(primed) statements are equivalent: 
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Remark 8: Again, most known results on inverses can 
be recovered from Theorems 5-8, Whereas the fact that T* 
(respectively T +) and (T -1)* are Tseng generalized in
verses 16 of each other suggests extensions involving general
ized inverses in place of T- I. 

5. FORMALLY SELF-ADJOINT OPERATORS 

To see in what sense f.s.a. operators generalize the no
tion of a symmetric (i.e., densely defined f.s.a.) operator, we 
have: 

Theorem 9: For TE2"(dY), the following are equivalent: 
(a) Tisf.s.a (b)PrTCT*. (c)T=T*+(I-P.,.)T. 
(d) There is an SEf(dY') with T = S + S *. 

Proof (a)~(b), (c)~(a): Use (1). (b)~(c), (d)~(a): Trivial. 
(a)~(d): Put S = (1 - WriT, verify that S + S * 
= (1 - ~P.,.)T + T*(1 - !Pr ) = (1 - WriT + !T*, and 

apply (a)~(b). Q.E.D. 
As indicated in Sec. 1, in physical applications a typical 

problem is to find self-adjoint extensions (e.g., as for a Ha
miltonian), if any, of a given f.s.a, operator TEfPY). This is 
well understood if lYi(Tf = W', so the problem reduces to 
finding symmetric extensions of T. Necessary (and presum
ably also sufficient) for this to be possible, is that Tbe closa
ble. [Note that nonclosable f.s.a. T's exist [e.g., with 
,';W(T)c£iJ(T)l =. V'(T)l and ~)(T)#, VITI] already for 
dim U.i(T)1) = 1. On the other hand, the operators PIT 
obtained from f.s.a. T's do not exhaust the set of all closable 
f.s.a. operators.j 

The next result bounds the set of possible symmetric 
extensions and shows how to construct f.s.a. extensions from 
arbitrary ones. 

Theorem 10: Let TE.Y(,W) be f.s.a. and closable. Then 

[S ISE.Y'(,Wi; TCS; S is symmetric j 

C [HT* + (1 - Pr)S + (T* + (1 - P.,.)S)*]ISEY(dY'); 

TCS; Ii;(T*)n.£0(S) = ,rj 

C [S ISEf(,W); TCS; Sis f.s.aj 

::J [HT* + (I - P.,.)S + T** + S*(I - Pr)]ISEX(dY'); 
TCSj. 
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Proof Let SE2"(dY) be f.s.a. with TCS, so that 
fiJ(T)CfiJ(S)CfZJ(S*)CfiJ(T*). Hence by Theorem 9, 
(b) and (c), PTS = PTS* + PT(1 - Ps)S = PTS*C T*, 
T * + (1 - P T)S = S, and 
HT* + (1 - PT)S + (T* + (1 - PT)S)*] = !(1 - Ps)S. On 

considering the special case 9(S) = JY', this proves the 
first inclusion. For the others, let SE2"(dY) with TCS 
only, so TC T* + (1 - PT)S by Theorem 9(c). Since 
TEd(T* + (1 - PT)S), Eq. (1) and condition 
liJ(T*)nlil'(S) = JY' give also TC(T* + (1 - PT)S)*, 

whence the second inclusion. The last one is clear from 
Theorem 5. Q.E.D. 

If applied to extensions S = TP r + B (1 - P T) of T, 
where BEX(dY) is bounded and everywhere defined, the 
last-mentioned set of operators in Theorem 10 is character
ized as follows and, for bounded T, gives all self-adjoint ex
tensions of T: 

Theorem 11: Let TE2"(dY) be f.s.a. and closable, let 
BEX(dY) bounded and self-adjoint, and put 

S = T* + (1 - PT)T** + (1 - PT)B(1 - Pr ) 

= T** + T*(I-P'f') + (I-PT)B(I-PT). 

Then S is a symmetric (bounded self-adjoint) extension of 
Tifand only if(1 - PT)T is closable (Tis bounded, in which 
case every self-adjoint extension of Thas this form). 

Proof Since 9(S) = .fiJ(f) + (9(T"')n£i)(T)1) by T** 
= TPT and Theorem 9(b), the stated equality for S and the 

"if and only if' part are clear from Theorems 10 (last inclu
sion) and 5. If T is bounded and TCB, then the previous 
relation T'" + (1 - P T)B = B (proof of Theorem 10) shows 
that S = B. Q.E.D. 

Remark 9: IfTisf.s.a. and (1 - P1 )T is closable, then T 
is closable. But even self-adjoint operators may have restric
tions T such that (1 - PI) T is not closable. 
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Remark 10: The operator T'" coincides with the exten
sion of PrT as carried out in Krein's classical construction 
to prove that every bounded f.s.a. T admits a norm-preserv
ing self-adjoint extension. 
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The criticality problem for a halfspace with an exponential single scatter albedo is analyzed. 
Analytic results are presented in the limits of very weak and very strong exponential behavior, and 
numerical results are given for general exponential behavior. 

PACS numbers: 02.60.Nm, 42. 10. Fa 

I. INTRODUCTION 

In 1966 Chamberlain and McElroy I gave an approxi
mate solution to the problem of reflection of light from a 
semi-infinite atmosphere with a single scatter albedo C which 
approaches zero expontially with depth into the half-space, 
i.e., 

C(z) = coe - zlS, (1) 

where Co and s are positive constants, with z representing the 
spatial variable. This problem was reconsidered by Martin2 

who derived a singular integral equation which the specific 
intensity of radiation exiting the halfspace must satisfy. Mul
likin and Siewert3 have recently rederived this integral equa
tion by constructing a set of singular eigenfunctions of the 
equation of transfer and using the associated full-range orth
ogonality relationship. For sufficiently rapid exponential be
havior of the single scatter albedo (i.e., for small s) they ob
tained excellent numerical results from this equation using a 
particular collocation method, the so-called F-N method. In 
a subsequent paper by Larsen, Pomraning, and Badham4 the 
F-N method was shown to break down for weak exponential 
behavior (s:> 1). It was conjectured in that paper that these 
singular eigenfunctions may not be complete for s sufficient
ly large, thus accounting for the poor numerical results from 
the F-N method for large s. It was proved in that paper that 
these eigenfunctions are in fact complete for s sufficiently 
small. More precisely, it was shown that completeness is ex
tant if Co and s satisfy the inequality 

i){C: Jln(1 +2s)+min [S:SI +C: .)1I2'1T]} < 1. 

(2) 

In a recent paper by Garcia and Siewert5 a modification to 
the F-N method extended the range of parameters Co and s 
for which good numerical results are obtained. This rather 
confusing situation was partially clarified by Larsen and 
Mullikin6 who very recently proved that the continuum ei
genfunctions are complete, and the corresponding singular 
integral equation possesses a unique solution, for all subcriti
cal atmospheres. That is, if the parameters Co and s are such 
that a solution exists to the diffuse reflection problem first 
considered by Chamberlain and McElroy, I then the singular 
eigenfunction technique and the associated singular integral 
equation provide the solution. A separate, still not entirely 
understood, question is the applicability of the F-N method 

as a solution technique for solving this singular integral 
equation. 

The purpose of this short note is to give explicit results 
for the region in the co-s plane for which a solution to the 
diffuse reflection problem exists (i.e., for which the haIfspace 
is subcritical). For small and large s, we obtain analytic rela
tionships between Co and s defining the criticality condition, 
and for intermediate s we give numerical results based upon 
the use of the Rayleigh quotient applied to non-self-adjoint 
operators. 

2. ANALYSIS 

The eigenvalue equation to be analyzed is 

a·I·(z 11.) c e - zls fl 
p_'f'_r_ + l/J(z,p) = _0__ dp''''(z,p'), 

az 2 - I 

with boundary conditions 

",(O,p) = 0, 0 <. p <. 1, 

l/J( 00 ,p) = 0, - 1 <. P <. O. 

(3) 

(4) 

(5) 

Given s, we seek the smallest value of Co such that a non-zero 
solution exists to Eqs. (3)-(5). Physically these equations de
scribe a monoenergetic critical halfspace with isotropic re
emission according to a single scatter albedo given by Eq. (1.), 
and l/J(z,p) is the specific intensity of radiation at optical 
depth z streaming at an angle cos- I (.u) with respect to the z 
axis. The smallest value of Co corresponds to the fundamen
tal mode [the physically meaningful mode in which the ei
genfunction ",(z,p) is non-negative). 

For s > 1 the albedo is a slowly varying function of 
space and Eq. (3) then describes transport in a source-free, 
essentially homogeneous (constant properties) medium 
which is well known to be equivalently described by asymp
totic diffusion theory 7-9 

D a
2!;z) + (coe - zls - l)¢ (z) = 0, (6) 

where ¢ (z) is given by 

¢ (z) = 21T J~ Idp ",(z,p). (7) 

The diffusion coefficient D follows from 

D = 1 - c; 2K = In (1 + K). 
K2 C 1 _ K (8) 

Clearly D depends upon position since c = c(z) in Eq. (8). 
However, for s > 1 this dependence is very weak and can be 
neglected in the limit s ---+ 00. The boundary conditions on 
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Eq. (6) can be taken as 

r/J (0) = r/J ( ~ ) = 0, (9) 

i.e., we can neglect the extrapolation distance at z = 0 for 
large s. To solve Eq. (6) we change variables according to 

x = 2s(coiD )1/2e - z/2S; e (x) = r/J (z), (10) 

which gives 

2 a2e (x) ae (x) 
x --+x--+(x2 -4s2ID)O(x) =0. (11) ax2 ax 

Equation (11) is Bessel's equation of order 2sIV D, and the 
solution for r/J (z) which vanishes at infinity is 10 

r/J(z) = (const)J2sID'I2(2s(coID)I/2e- Z/2S). (12) 

Applying the boundary condition at z = 0, setting D = 1/3 
since Co~ 1 for s > 1, we find the criticality condition 

J2(3s)'"(2(3co)I/2S) = O. (13) 

Using the properties of Bessel functions with simultaneous 
large order and large argument lO we obtain the final result 

(co -l)3/2s ~x03/23-1/2=2.064125 31, (14) 
s~'" 

where - Xo is the first zero of the Airy function Ai(x) given 
by 10 

Xo = 2.33810741. (15) 

For other values of s we find it convenient to rewrite 
Eqs. (3)-(5) in the equivalent integral form (Peierls' equa
tion). A formal integration ofEq. (3) yields this equation: 

r/J (z) = Co r"'dz' EI(lz -z'l)e-Z'lsr/J (z'), (16) 
2 Jo 

where EI(z) is the first-order exponential integral. 10 The 
equation adjoint to Eq. (16) is 

r/J*(z) = 5Le- ZIS r"'dz'EI(lz-z'I)r/J*(z'), (17) 
2 Jo 

and it is clear that r/J *(z), the adjoint function, is related to r/J (z) 
by 

r/J *(z) = e - ZISr/J (z). 

100 

10 

1.0 

/

CRITICALITY 
CONDITION 

LARGEs 
LIMIT 

(18) 

0.' L-___ --.JL-__ .1...---L ____ --L __ ---.:_....I 
0.01 0.1 1.0 10 100 

FIG. I. Co vs s. 
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Given s, we consider Co to be the eigenvalue and the standard 
Rayleigh quotient for estimating this eigenvalue is 

21'" dz¢*(z)¢(z) 

~= -------~---------------
f"dzj*(Z)l'" dz' EI(lz-z'l)rz"lsj(z') 

( 19) 

where Co is the variational estimate of Co' and j (z) and j *(z), 
the trial functions, are envisioned as first-order approxima
tions to r/J (z) and r/J *(z). The value Co given by Eq. (19) differs 
from the eigenvalue Co by terms quadratic in the first-order 
errors in ¢(z) and j *(z). In view ofEq. (18) it is reasonable to 
write the adjoint trial function as 

f *(z) = j (z)e - zlS, (20) 

and Eq. (19) then becomes 

2 i'" dz Ipz(z)e - zls 

Co = 0 .(21) I'" dz ¢(z)e - Zlsl'" dz' EI(lz - z'l)e - z'I'¢(z') 

Equation (21) can be used to obtain the analytic depen
dence of Co upon s for small s. For s « 1, the integrands only 
contribute to the integrals in the vicinity of z = z' = 0, and 
hence 

2 roo dz e- zis 
_ Jo 

s----+O s-.o f I I / I) z'/.,> 
Co ~Co ~ '" 100 

Jo dz e - z s 0 dz' E I( z - z e 

(22) 

which gives 

co~2[s In (1Is)1-I. (23) 
,......0 

For intermediate values of s, we use Eq. (21) with a trial 
function 

N 

f(z) = I anzne- Z, (24) 
n=O 

where the an are determined by demanding that the first 
variation of Co vanish within thi~ restricted function space. 
This trial function is chosen because it falls off exponentially 
for large z, and this is the proper behavior for r/J (z) since the 
half space becomes a pure absorber (c = 0) for large z. This 
leads to the matrix eigenvalue problem 

N N 

I Amnan = Co I Bmna n , 
n=O n=O 

where the matrix elements are given by 

Amn = 2(m + n)!(_s_)m + n + I, 
2s + 1 

B = M (.:.±J.. s + 1 ), 
mn mn , 

S S 

Here the function M mn (x ,y) is defined as 

(25) 

(26) 

(27) 

Mmn(x,y) = 1'" dz 1'" dz' zmz,n EI(lz _z'l)e-XZe- YZ'. 

(28) 
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TABLE I. CO vs s as determined from Eq.(25). 

s Co 

0.0\ 42.740 
0.02 24.956 
0.04 14.937 
0.07 10.096 
0.1 7.9661 
0.2 5.1964 
0.4 3.5672 
0.7 2.7450 
I. 2.37054 
2. 1.86437 
4. 1.54979 
7. 1.38307 

10. 1.30461 
20. 1.195328 
40. 1.125244 
70. 1.08741 

100. 1.06947 

For m = n = 0 we have 

Modx,y) = _1_[ In (1 +x) + In(l + y)], (29) 
x+y x y 

and the higher-order indices results fol1ow from recurrence 
relationships which can be developed from Eq. (29) in con
junction with the observations 

M",+l.n(x,y) = (30) 

M",.n+ I (x,y) = (31) 

1625 J. Math. Phys., Vol. 22, No.8. August 1981 

Equation (25) was solved by a standard matrix eigenenvalue 
routine, and Table I gives results for various values of s. The 
values tabulated are believed to be accurate to the number of 
digits given. We were restricted as to the value of N which 
could be used (N < 20) due to numerical roundoff. Figure 1 
displays these same results, together with the large and smal1 
s limiting forms, Eqs. (14) and (23), and the earlier estimate of 
the criticality (completeness) condition given by Eq. (2). 

ACKNOWLEDGMENTS 

This work was partially supported by the National Sci
ence Foundation. The author is grateful to Mr. I. R. Shokair 
who performed the numerical calculations. 

'1. B. Chamberlain and M. B. McElroy, Astrophys. 1.144,1148 (1966). 
2B. 1. Martin, SIAM 1. App!. Math. 20, 703 (1971). 
'T. W. Mullikin and C. E. Siewert, Ann. Nuc!. Energy 7,205 (1980). 
'E. W. Larsen, G. C. Pomraning, and V. C. Badham, J. Math. Phys. 21, 
2448 (1980). 

'R. D. M. Garcia and C. E. Siewert, "Radiative Transfer in Inhomoge
neous Atmospheres-Numerical Results," 1. Quant. Spectros. Rad. Trans
fer (in press). 

"E. W. Larsen and T. W. Mullikin, "Linear Transport in an Exponential 
Atmosphere," 1. Math. Phys. 22, 856 (1981). 

'B. Davidson, Neutron Transport Theory (Oxford V. P., London, 1957). 
MA. M. Winslow, Nucl. Sci. Eng, 32, 101 (1968). 
9G. C. Pomraning, The Equations of Radiation Hydrodynamics (Perga
mon, Oxford, 1973). 

10M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions 
(V. S. Goverment Printing Office, Washington, D. C. 1964). 

G. C. Pomraning 1625 



                                                                                                                                    

Conservation laws and discrete symmetries in classical mechanics 
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A method is given for deriving conserved quantities from discrete symmetries in classical 
mechanics. 

PACS numbers: 03.20. + i 

It seems to be widely believed that conservation laws in 
classical mechanics can be deduced from symmetries of the 
system only when these symmetries are continuous; this is in 
contrast to the quantum mechanical situation, where con
served quantities can sometimes be associated with discrete 
symmetries (for example, parity and coordinate inversion). 
We will show that, in fact, conserved quantities can be found 
from discrete symmetries even in classical mechanics; our 
method utilizes a recent result concerning nonequivalent 
Lagrangians. 

Consider the second order dynamical system 

ql = al(q,tj,t), (/ = 1,2, ... ,N) (1) 

and suppose that two distinct Lagrangians i (q,q,t) and 
L (q,tj,t) both lead to (1). It has been shown in Ref. I that a 
constant of the motion is given by 

(2) 

where 

15 = det{a2L /atjjatj), D = det{a 2L /atjjatj). 

If the Lagrangians are equivalent [that is, if the Lagrangians 
differ only by the total time derivative of some function/(q,t )] 
then the result is trivial, since, in this case, we have 15 / D = 1. 
Of interest to us are situations where the Lagrangians are 
nonequivalent. We note further that the validity of the theo
rem does not require that L be derivable from L by means of 
a symmetry transformation. The case in which L does arise 
from L through the action of a continuous symmetry group 
has been treated in Ref. 1, where it has been shown that 
knowledge of the group generators allows the determination 
of conserved quantities. Here we will be particularly con
cerned with the case in which L is related to L through a 
discrete symmetry. 

Let the ql,t variables be related to the QI' T variables 
through the transformation2 

ql = ql(Q,T). t = t(Q.T). 1= 1.2 •... N. (3) 

Then the time derivatives along trajectories transform ac
cording to 

. {dql}/f dt} 
ql= dT ldT 

where Q ~ = dQkldT. Let us assume that (1) is invariant 

under (3); this means that (1) takes the form 

Q;' = al(Q.Q '.T). 1= 1.2 ...• N, (4) 

when expressed in terms of the QI' T variables. If the equa
tions (1) are the Euler equations associated with the action 
integral S:;L (q,tj,t) dt, then by expressing this integral in 
terms of QI,T we can show that Eqs. (4) are the Euler equa
tions arising from 

f~'L(Q,Q"T)dT, 
where 

L(Q,Q"T)=L(q,tj,t)(~ + ~Qi). 
aT aQk 

(5) 

Here the (q,tj,t) are considered to be expressed in terms of the 
(Q,Q', T), using the relations (3) given above. 3 We conclude 
thatL (q,tj,t) andL (q,tj,t) both lead to(l), so that a conserved 
quantity for (1) can be obtained from (2). It is natural to 
associate this conserved quantity with the discrete symmetry 
(3). 

We illustrate this technique with the simplest possible 
example, namely the one-dimensional free particle, with La
grangian L = ~tj2 and equation of motion q = O. Let Q and T 
be defined by the discrete transformation 

q = Q/(l + Q), 

t = T /(1 + Q). 

Then 

q=Q'/(l +Q- TQ'). 

q = Q II 11 + Q j3 111 + Q - TQ' j3. 

Under this transformation q = 0 goes to Q II = 0, so that the 
free particle equation is invariant. The new Lagrangian is 
obtained from (5), and assumes the form 

L(Q,Q',T) = HQ'j 2/(l + Q - TQ'j P + Q j2. 

It is easy to verify that L (Q,Q', T) does indeed yield Q II = O. 
We have therefore demonstrated that L = ~q2 and 

L = !q2 I P + q - tq H 1 + q j2 

both yield q = 0; then (2) gives cP = 11 + q - tq j- '. which 
is indeed a conserved quantity for the system. 

This procedure may be applied to any system posessing 
a discrete symmetry, although the conserved quantity so ob
tained can be nontrivial only if the Lagrangians Land L turn 
out to be nonequivalent. It is thus clear that the applicability 
of the method described here depends crucially on the exis
tence of inequivalent Lagrangians; in this connection we 
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note that it has occasionally been implied in the literature 
that inequivalent Lagrangians cannot exist for (nontrivial) 
N-dimensional systems (see, e.g., Ref. 4). That this view is in 
error is amply demonstrated in an unjustly neglected paper 
of Jesse Douglas on the inverse problem of the variational 
calculus. 5 The question considered is that of finding Lagran
gians which yield specified Euler equations, and a complete 
analysis is given of the various cases which may arise for the 
general two-dimensional system x = I(t,x, y,x, j), ji = g(t,x , 
y,x, j). Of particular interest here is the conclusion that 
there exist classes of two-dimensional systems for which ap
propriate Lagrangians can be found as solutions of a set of 
completely integrable linear partial differential equations. 
The existence of these solutions can be proven, along with 
the determination of their generality, that is, the number and 
nature of the arbitrary functions or constants which are in
volved. For example, it is proved that the set of possible 
Lagrangians yieldingyji = 1 + j2 + X2, X = 0 is doubly in
finite, each member being determined by the specification of 
two arbitrary functions. In this classification, Lagrangians 
which differ by total time derivatives are not considered to be 
distinct, so that inequivalent Lagrangians certainly exist in 
this case. Since Douglas does not explicitly solve any of the 
systems of partial differential equations which define the La
grangians, his demonstration is in the nature of an existence 
proof; however, for the purpose of showing that the method 
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of this paper has potential for application to N-dimensional 
systems, existence of inequivalent Lagrangians is sufficient. 
We conclude by remarking that is is of considerable theoreti
cal and conceptual interest that procedures exist, even in 
classical mechanics, for determining conserved quantities 
from discrete symmetries. 

Note added in proof It has recently been demonstrated 
by Marmo, Saletan, Simoni, and Zaccaria [J. Math. Phys. 
22,835 (1981)) that conserved quantities may be associated 
with discrete symmetries in both Hamiltonian and Liouville 
mechanics. 

'M. Lutzky, Phys. Lett. A 75, 8 (1979). 
'The transformation (3) is to be regarded as a transformation of trajectories; 
thus, given a trajectory Q, = Q,(T), 1= 1,2, ... ,N in (Q, T) space, (3) associ
ates with each point of this trajectory a point in (q,t ) space, thereby defining 
a trajectory q, = q,(t) in (q,t) space. Since the total derivatives along these 
trajectories transform in a well-defined way [see the equations immediate
ly following (3)], the procedure can be used to investigate the manner in 
which differential equations such as (I) transform under operations such 
as (3). 
'A special case N = I ofEq.(5) is given in Gel'fand and Fomin, Calculus of 
Variations (Prentice-Hall, Englewood Cliffs, N.J., 1963), p. 30; see also M. 
Lutzky, J. Phys. A 11, 249 (1978). 

4G. Rosen, Formulations of Classical and Quantum Dynamical Theory 
(Academic, New York, 1969). 

'J. Douglas, Trans. Amer. Math. Soc. SO, 71 (1941). 
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On reduction of the four-dimensional harmonic oscillator 
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This paper deals with reduction of the four-dimensional harmonic oscillator by use of a one
parameter subgroup U(I) of the symmetry group SU(4), U(I) being the symmetry subgroup 
generated by an "angular momentum." The angular momentum determines in the energy surface 
S7 an "energy-momentum" manifold S3 XS3 on which a subgroup SU(2)X SU(2) ofSU(4) acts. 
The reduction process yields a manifold S3 XS 2 = S3 XS'/U(I) on which SO(4) acts effectively. 

PACS numbers: 0.3.20.+ i, 0.2.20.. - a 

1. INTRODUCTION 

The harmonic oscillator, one of the well-known dyna
mical systems whose symmetries are studied to the full ex
tent, is no longer interesting by itself. However, new use for it 
can be found when it is associated with other dynamical sys
tems. For example, the four-dimensional harmonic oscilla
tor is employed in Ref. I for analyzing the three-dimensional 
Kepler problem. There is an analogy in quantum mechanics. 
Ikeda and Miyachi2 studied the symmetry of the three-di
mensional hydrogen atom, the correspondent to the Kepler 
problem, by using the symmetry of the four-dimensional 
harmonic oscillator. 

The purpose of this paper is to study reduction of the 
symmetry of the four-dimensional harmonic oscillator. The 
results to be obtained will be utilized in the next paper' for 
getting insight into the symmetry of the three-dimensional 
Kepler problem in the large. 

As regards reduction of dynamical systems, Marsden 
and Weinstein presented a theory of reduction of symplectic 
manifolds with symmetry.4.5 A general setting for reduction 
is discussed in Ref.6. 

The material of this paper is organized as follows. Sec
tion 2 contains a review of the symmetry of harmonic oscilla
tors which are concisely described in the complex vector 
space C'. The symmetry Lie algebra formed by constants of 
the motion is identified with anti-Hermitian matrices with 
vanishing traces. The linear group SU(n) acts on e as a 
group of symmetry transformations. Particular interest will 
center on the kinematical symmetry for the four-dimension
al harmonic oscillator. The set of 4 X 4 antisymmetric matri
ces, isomorhpic with the kinematical symmetry Lie algebra, 
is the Lie algebra ofSU(2)XSU(2) as well as ofSO(4). A 
question as to which of SU(2) X SU(2) and SO(4) is the kine
matical symmetry group will be cleared up. Though the an
swer is well known, the question deserves mention for com
parison with the case of the symmetry group which will 
appear in Sec.4. In the succeeding sections only four-dimen
sional harmonic oscillators are treated. 

Section 3 is concerned with the subgroup that com
mutes with a one-parameter group U( 1), where U( 1) is gener
ated by the antisymmetric matrix corresponding to an angu
lar momentum, a constant of the motion. A subgroup 
SU(2) X SU(2) X U( 1) will be obtained. 

Section 4 deals with invariant manifolds in C4 under the 

action of the subgroup SU(2) X SU(2) X U( 1) obtained in 
Sec.4; those manifolds are determined by assigning values of 
the angular momentum mentioned above. Of particular in
terest is a hypersurface S 3 X S.l of the energy surface S 7, 
which is obtained by setting the angular momentum equal to 
zero. A subgroupSU(2)X SU(2) ofSU(4) actsonS.1 XS"CC4 

effectively. 
Finally, Sec.S is devoted to obtaining a reduced mani

fold S 3 X S 2 defined by S.1 X S .1/U( I). Accompanying the re
duction to the manifold S 3 xs 2, the symmetry subgroup 
SU(2)xSU(2) reduces to SO(4), acting on S' xs 2. 

2. REVIEW OF THE SYMMETRY OF HARMONIC 
OSCILLATORS 

Suppose that we have an n-dimensional harmonic oscil
lator. Lee (x)'p)) be the Cartesian coordinates of 
JR" X JR" = T *JR", the cotangent bundle of JR". By introduc
ing the coordinates 

(2.1) 

A being a positive constant, we endow T*JR" with the struc
ture of an n-dimensional complex vector space C". Then the 
Hamiltonian H and the canonical two-form (tJ are written in 
the form 

I '\' ' 0 '\' 0 1 "'I 10 

H = 2 L)P))- + (A -/2),L,(xj )- = 2,L, Zj -, 

w = dpJ A dXj = (1 12,,1,i)dzj A d~ . 

(2.2) 

(2.3) 

The time evolution of the dynamical system is generated by 
the vector field XII determined by 

i(XII)w = - dH, (2.4) 

where i(X H) denotes the interior product by Xu. The vector 
field Xu is easily integrated to give Zj(t ) = e ',lIZ) (0), from 
which Z)Zk proves to be a constant of the motion. 

Let (C kj) be a constant matrix. Define a function F by 

F= (l/2i)Ckj z)zk' (2.5) 

Of course, F is a constant of the motion. We impose the 
condition that Fis real-valued. Then (Ckj ) becomes an anti
Hermitian matrix, so that it is expressed in the form 

Ck} = A k} + iRk}' (2.6) 

where(A k)) and (R k)) are antisymmetric and symmetric real 
matrices, respectively. According to (2.6), F reads 
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F=!AkjLjk +~BkjQjk' (2.7) 

where Ljk and Qjk are the imaginary and real parts of ZjZk' 
respectively 

Ljk = Imzjzk = - AXjh + AXkPj, (2.Sa) 

Qjk = Rezjzk = PjPk + A 2XjXk · (2.Sb) 

As is weIl known, the constants of the motion (2.7) with 
tr(B kj) = 0 form the symmetry Lie algebra for the harmonic 
oscillator with respect to the Poisson bracket. 

The infinitesimal canonical transformation X F deter
mined by (2.4) with F substituted for H takes the form 

d ,-- d 
Xp = - AejkZk - - It ejkZk ~. 

dZj dZj 

(2.9) 

Let K be a constant of the motion with a coefficient matrix 
(Djk ). Then one has commutation relations 

(1/A )XiF. K I = - [(1/A )Xp ,(1/A lXK] 

d 
= (ejhDhk - Djh e hk )Zk -

dZj 

where! F, K I denotes the Poisson bracket of F and K. Equa
tions (2.9) and (2.10) show that the mappings 

F_ - (1/A lXF' (2.11a) 

(2.llb) 

are Lie algebra homomorphisms. Therefore, we can take 
anti-Hermitian matrices (ejk ) with vanishing traces to be the 
symmetry Lie algebra. This Lie algebra, the Lie algebra of 

SU(n), will be integrated to give a symmetry group of 
transformations. 

Given an anti-Hermitian matrix e = (ejk ) with 
tre = 0, one can construct a one-parameter subgroup expte 
ofSU(n). The subgroup acts on C, as a symmetry group 
preserving OJ and H, in the form 

z-+exp( - te )z, Z- exp( - te)z , (2.12) 

where Z = (Zj) and Z = (~) are column vectors. Conversely, 
(2.121 gives rise to the infinitesimal canonical transformation 

1 d I TXJ= dt/(ex p( - te)z, exp( - te)z) I ~ o. (2.13) 

Here/is any function of Z and Z, and F is the constant of the 
motion with the coefficient matrix C. Since SU(n) is connect
ed and simply connected, it is generated by all the matrices 
expte with tre = 0. Therefore, it acts on e" as the symmetry 
group in the same manner as (2.12). 

Now we concentrate on four-dimensional harmonic os
cillators. The kinematical symmetry is expressed by the con
stants of the motion L = !AkjLjk = - AAhjxjh [see (2.7)]' 
According to (2.111, we treat the symmetry in terms of anti
symmetric matrices (A hj)' As is weIl known, the 4 X 4 anti
symmetric matrices are the Lie algebra ofSO(4) as well as of 
SU(2) X SU(2). The basis and the commutation relations are 
given in the fol1owing;~ 
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2M'{ -1 
-) 

2M, ~( 
-I -) 

2M, ~(' 
-I 

) 
-1 

(2.14) 

2N, ~( 
-1 ) 

-1 

2N'{ 
- 1 

) 
-1 

2N, ~(' 
-I 

~) (2.15) 

[Mj,Mk ] = EjkhMh' [N;,Nk ] = EjkhNh' [Mj,Nk ] = O. 
(2.16) 

Here Ejkh are Eddington's epsilons. The set of exptMj , 

j = 1,2,3 and exptN;,j = 1,2,3 generate, respectively, the 
matrices 

c 
- a2 - a, 

-a, ) 
a2 a l a4 .- a~ 

a~ -a4 a l 

, 
a2 

a4 a3 - a2 a l 

(2.17a) 

( b, 
b2 bJ b4 

) -b2 b l b4 -b, 
-b, - b4 b l b2 

- b4 b, - b2 b l 

(2.17b) 

4 4 

with I (ak )2 = I (bk )2 = 1. 
k=1 k=1 

This fact may be proved by straightforward calculation. 

Conversely, the matrix (2.17a) [respectively, (2.17b)] is 
broken up into a product of exptMj,j = 2,3 (respectively, 
exptNj ,j = 2,3). In fact, denoting (2.17a) and (2.17b) by 
M (a k ) and N (b k ), respectively and letting 

a I ( = b I) = cos ~ cos ¢ + r.p 
22' 

e . t/J+r.p 
a,( = b,) = cos - sm --- , 
-" 2 2 

(2.1S) 
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( b) . e . t/J-cp 
a4 = 4 = sm - sm ---

2 2' 

we obtain the decomposition 

M (a k) = (expcpM,)(expeM2)(expt/JM,), (2.19) 

N(bk) = (exp( - cpN,))(exp( - eN2))(exp( - t/JN,)). 
(2.20) 

Of course, exptMI and exptNI are special cases of (2.19) and 
(2.20), respectively. Because ~(ad = ~(bd2 = 1, and be
cause ofthe commutativity of M (a k ) and N (b k), the matrices 
M (a,,) and N (b k ) form the group SU(2) X SU(2). 

Now, SU(2) X SU(2) acts on C4 in the same manner as in 
(2.12), leaving wand H invariant. We now consider whether 
the action ofSU(2) X SU(2) is effective or not. Since (2.17) are 
real matrices, SU(2) X SU(2) induces the same action on each 
1R4 of the real and imaginary parts ofC4

• Hence we choose to 
treat the action restricted to 1R4

, the real part of (;4. 

Introducing the complex variables by 

u = X I + iX2' V = X, + iX4' 

{51 = a l + ia 2, {52 = b l + i~2' 
TIl = a, + ia4 , 772 = b, + Ib4 , 

(2.21) 

(2.22) 

we define the complex matrices by 

X=(: - v) 
- , 
U 

(2.23) 

gl = (51 
771 

-_771) 
51 ' (2.24a) 

(52 
g2 = 772 -t;2). (2.24b) 

I t is obvious that i5j 12 + l77j 12 = I,} = 1,2. Then 1R4 is identi
fied with the vector space consisting of all matrices of the 
form (2.23), and a pair (gl,g2) belongs to SU(2)XSU(2). The 
action of (2.17) on ]R4 can now be represented in the form 

X-~gIXg2 I. (2.25) 

The transformation (2.25) makes it easy to show that the 
subgroup r = l (I,!), ( - I, - I) I is the one and only sub
group that fixes all of X, where I stands for the identity of 
SU(2). Thus the action of SU(2) X SU(2) proves to be not ef
fective. We then form the group SO(4) = SU(2) X SU(2)/ r to 
establish the conclusion that the kinematical symmetry 
group is SO(4). 

3. THE SUBGROUP OF SU(4) WHICH COMMUTES WITH 
A ONE·PARAMETER SUBGROUP U(1) 

Let U( 1) be the one-parameter subgroup generated by 
N, given in (2.15). From (2.15) U(l) has the form 

exptN, = (T(t) ), T(t) = (c~s(t /2) - sin(t 12)). 
T(t) sm(t /2) cos(t /2) 

(3.1) 
We proceed to obtain subgroups ofSU(4) which commute 
with the group U( 1). In the first place, we determine the Lie 
subalgebra that commutes with N ,. To do this, instead of 
dealing with commutation relations of anti-Hermitian ma
trices, we employ the Poisson brackets of the constants of the 
motion Lj" and Q;k for the sake oflater use. We note here 

1630 J. Math. Phys., Vol. 22, No.8, August 1981 

that N, is the matrix corresponding to an "angular momen
tum" LI2 + L34 [see (2.8a), (2.11), and (2.15)]. The Poisson 
brackets of Ljk and Qjk show that the constants of the motion 
that commute with LI2 + L34 are linear combinations of 
lr4"jLjk and ~BkjQjk' each of which commutes with 
LI2 + L,4 independently. The constants of the motion 
'zA,,;Ljk that commute with LI2 + L'4 are immediately ob
tained from the commutation relations (2.16). They corre
spond to Mj ,} = 1,2,3. As regards ~Bk;Qjk commuting with 
L 12 + L w calculating the Poisson brackets in full yields the 
linearly independent constants of the motion: Q II + Qw 
Qil + Q24' - QI4 + Q23' and Q1.\ + Q44' Imposing the con
dition tr(Bkj ) = 0, we obtain QI1 + Q24' - QI4 + Q23' and 
QII + Qn - Q" - Q44' 

The coefficient matrices of Q13 + Q24' - QI4 + Q2J' 
and ~(QII + Q22 - Qn - Q44) turn out to be 

(3.2) 

respectively. Thus we have obtained a basis of the Lie algebra 
that commutes withN,: Mj , Bj (j = 1,2,3), whereMj aregiv
en in (2.14). The commutation relations are 

[N" Mj ] = [N" Bj ] = 0, 

[M;, M k ] = tjkhMh' 

(3.3a) 

[Bi' Bk ] = tjkhM" , [Mi' Bk ] = t;k"Bh· (3.3b) 
Let 

Hj = ~(Mj + Bj ), Ki = ~(Mj - Bj ). (3.4) 

Then from (3.3) we get 

[N" Hj ] = [N3' Kj ] = 0, (3.5a) 

[Hj' H k ] = tjk"H", [Kj' K k ] = tjk"K,,, 

[Hj' Kk ] = O. (3.5b) 

Thus we get the following: 
Theorem 3.1: The symmetry Lie algebra that commutes 

with the constant ofthe motion L 12 + L34 is isomorphic with 
the Lie algebraofSU(2)XSU(2)XU(I), and is represented in 
terms of the matrices Hj' Kj' and N3 (j = 1,2,3) with the 
structure equation (3.5). 

We now proceed to Lie subgroups which commute with 
U(I). To get the subgroups we need to compute exptHj , 
exptKj , and exptN" and to form products of them. (Of 
course, there is no need to fix t for all the matrices.) We here 
give the following: 

Theorem 3.2: The set ofexptHj ,} = 1,2,3, generates 
SU(2) in the form 
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(i/2)(z - 1) -!w 

U(z,w) = - (iI2)(z - 1) ~(z + 1) (iI2)w 

!w (i/2)w Mz+ 1) 

( l(z+ ') 

- (i/2)w ~w - (i/2)(z - 1) 

with 

Izl2 + Iwl2 = 1, 

and the set of exptKj,j = 1,2,3, also generates SU(2) in the 
form U (z,w), the complex conjugate of (3.6). 

Proof The second part of the theorem is obvious from 
the fact that ~ = Hi" We prove the first part. It can be 
shown that each of exptHj takes the form (3.6). In fact, we 
have 

exptH I = U(cos(t /2), isin(t /2)), 

exptH2 = U(cos(t 12), sin(t /2)), 

exptH3 = U(e it !2, 0). 

Multiplying U(z,w) by exptH2 and exptH3 results in 

(exptH2 )U(z,w) 

u(' t . t . t t ) 
= zcos - - wsm - , zsm - + wcos - , 

2 2 2 2 

U (z,w)(exptH2) 

u( t -' t - t . t) = zcos - - wsm - ,zcos - + wsm - , 
222 2 

(3.7a) 

(3.7b) 

(3.7c) 

(3.8a) 

{
(exptH3)U(Z,W) = U(zeitI2,we-itI2), 

U(z,w)(exptH
3

) = U(zeit !2,weit12 ). (3.8b) 

Note that matrices in the right-hand side ofEqs. (3.8) actual
ly belong to (3.6). From (3.7) and (3.8b) we obtain 

exptH1 = (exp( - (1T/2)H3))(exptH2){exp(1T/2)H3J. (3.9) 

It follows from (3.7), (3.8), and (3.9) that any product of 
expt~,j = 1,2,3, takes the form (3.6). We next show that the 
converse is true. Given a matrix U(z,w), we let 

z = ei(,p + 'I' )l2cos(OI2), w = eil,p - 'I' )/2sin(OI2). (3.10) 

Then by using (3.8) and (3.7b) we obtain 

(exp( - f/lH3))U(z,w)(exp( - t/JH 3JJ 

= U(cos(O 12),sin(O 12)) = expOH2. (3.11) 

Equation (3.11) implies that 
U(z,w) = (expipH3 )(expOH2)(expt/JH3). (3.12) 

Thus we conclude that the matrices of the form (3.6) actually 
form the group SU(2), since the space of the matrices (3.6) is 
homeomorphic tOS 3(iz12 + Iwl 2 = 1). This completes the 
proof. 

The following is clear: 
Theorem 3.3: SU(2)xSU(2)XU(1) is a subgroup of 

SU(4), which commute with U(l) generated by Ny 

4. AN INVARIANT MANIFOLD S3X S30F SU(2)xSU(2) 

At the beginning ofSec.3 we obtained the constants of 
the motion that commute with L 12 + Lw Let 
F = (l/2i)C kjZjZk be one of those constants. Then the coeffi-
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-(i/2)", ) 

(iI2~;: 1) , 

W+1) 

(3.6) 

cient matrix of F is a linear combination of M j , Hj , and N3 
V = 1,2,3). By the definition of the Poisson bracket, X F acts 
on the hypersurface LI2 + L34 = const. In fact we have 
X F (L I2 + L 34) = - [F,L I2 + LHl = O. The set of F's is the 
symmetry Lie algebra which was defined in Theorem 3.1. 
We now show that the group SU(2)XSU(2)XU(I) defined in 
Theorem 3.3 indeed acts on the hypersurface 

LI2 + L34 = canst. 
For this purpose we introduce the coordinates (Wj) by 

WI =Z, + iz2 , W2 =Z3 + iz4 , 

W3 = Z, - iz2, W4 = Z3 - iz4· 
(4.1) 

Then in these coordinates the matrices U(z,w) and U(z,w) 
given in Theorem 3.2 are transformed into 

(~ 

(' 

-w 
Z 

Z 

W 

(4.2a) 

(4.2b) 

respectively. The matrix exptN3 given in (3.1) is diagona
lized: D (e it 12,eit 12,e - it 12,e -- it 12). Thus we have the elements 
of SU(2) X SU(2) and ofU(l), respectively, in the form 

c 
-v, 

VI ii, 

- ) U2 -~: V2 

(4.3a) 

en eit12 

e"J e - it 12 (4.3b) 

with 

luj I2 +IVjI2=1 V=I,2). 
Theorem 4.1: Real hypersurfaces L'2 + L,4 = canst of 

(;4 are invariant manifolds for the group -
SU(2)XSU(2)XU(I) defined in Theorem 3.3. 

Proof First we recall that L'2 + L34 = Im(z,z2 + Z3Z4)' 
From (4.1) we have the following: 

IWl12 + IW212 = l:IZj 12 + 2Im(z1Z2 + Z3Z4)' (4.4a) 

IW312 + Iw4 12 = l:IZj 12 - 2Im(ZIZ2 + Z3Z4)' (4.4b) 

The matrices (4.3) show that SU(2)XSU(2)XU(1) leaves 
Iw,1 2 + IW212 and IW312 + Iw4 12 invariant. Moreover, 
SU(2) X SU(2) X U(I) preserves l:IZj 12

, because it is a sub
group ofSU(4). Therefore Eqs. (4.4) show that hypersurfaces 
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Im(zlz2 + Z3Z4) = const. are invariant under 
SU(2) X SU(2) X U( 1). This completes the proof. 

Remark 1: The action ofSU(2)XSU(2)XU(I) on 1(;4 is 
not effective. This is because the elements of (SU(2) X SU(2), 
U(I)) that fix all the pointswj are(I,I) and ( - I, - /), where I 
denotes the 4 X 4 unit matrix. This can be proved by means of 
(4.3). 

Remark 2: On the other hand, the subgroup 
SU(2) X SU(2) acts effectively on 1(;4 as a symmetry Lie group. 
This should be compared with the case of the kinematical 
symmetry group discussed in Sec.2. 

The hypersurface L 12 + L34 = 0 is of particular inter
est. Let S 7 be the energy surface}: IZj 12 = 1. Then from (4.4) 
the intersection of S 7 with the above hypersurface turns out 
to be a product manifold S 3 X S 3 C S 7. The following is then 
immediate. 

Theorem 4.2: The condition L 12 + L34 = 0 defines a hy
persurface S 3 X S 3 of the energy surface S 7, on which 
SU(2)XSU(2) acts effectively. 

We conclude this section with the remark that the Ha
miltonian flows are given by wj(t) = e - iAtWj(O),j = 1,2,3,4. 
Of course, the flows run on S 3 X S 3. 

5. A REDUCED MANIFOLD 5 3x 52 

First we show the following. 
Theorem 5.1: Let S 3 X S 3 and U (1) be the manifold de

fined in Theorem 4.2 and the one-parameter group (4.3b) 
acting on S3 xS 3, respectively. Then one has 

S3XS-~/U(I) = S3 X S2. (5.1) 
Proof The manifold S 3 X S 3, given by the conditions 

IWI12 + IW212 = 1, IW312 + Iw4 12 = 1, (5.2) 

has the local coordinates 

WI = ei(rf;, + <P,)12COS(81/2), W2 = ei1rf;, - <p,)12sin(8,/2), 

(S.3a) 

W3 = ei1rf;, + <p,)l2cos(82/2), W4 = ei(rf;, - <p,)/2sin(82/2). 

(S.3b) 
To obtain the orbit spaceS 3 xs 3/U (1) in a manifest way, we 
introduce the variables 

x = !(tP2 - tP,), tP = ~(tP2 + tP,). (5.4) 

Then the action of (4.3b) is expressed in the form 

X---+X - t and the others fixed. (5.5) 
From (5.5) we see that the orbit space is independent of 

X. In order to get an idea of the topology of the orbit space, 
we make (4.3b) with t = tP + X ( = tP2) act on (5.3). Then we 
obtain the equalities of equivalence classes: 
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[(W"W2)] = [(eiI2rf;+<p,)/2cos ~' ,ei(2tb-'I',)/2sin ~' )], 

(5.6a) 

[(w~,w411 = [(ei<P,/2cos ~2 ,e - i<p,!2sin ~2 ) J. (5.6b) 

It follows from (5.6) that [(w"w2)] and [(W~,W4)] represent a 
point of S 3 andS 2

, respectively. Thus we get (5.1). It is worth 
mentioning that (5.1) is an extension of the Hopf mapping: 
S 3 -+S 2. This ends the proof. 

We point out incidentally that the Hamiltonian flows, 
Wj(t) = e -- iAtwj (O),areprojectedonS 3 xS 2 tobe expressed in 
the coordinates appearing in (5.6) as tP-tP - zAt, with the 
other coordinates fixed. 

Now that we have obtained a reduced manifold S 3 X S 2 

from the energy surface S 7, we turn the crank to consider 
what group acts on S3 X S2. LetpES 3xS 3 and 
gESU(2) X SU(2). Denote the action of g by the same letter, 
that is, g: p-gp. Then the induced action on 
S3 XS3/U(I) = S3 XS 2 is defined by 

g[p] = [gp] for [p]ES 3 XS3/U(I). (5.7) 

Since SU(2)XSU(2) and U(l) commute, the action is well 
defined. Now suppose that g fixes all the points [Pl. Then for 
g there is an element rEU( 1) such that rgp = p for all the 
points p of S 3 X S 3. Further, one has rgp = p for all pE1(;4. 
Incidentally, the elements ofSU(2) X SU(2) XU(l) that fix all 
the points of C have been obtained in Remark 1, which 
followed Theorem 4.1. Accordingly, the subgroup of 
SU(2)xSU(2) that fixes all the points (P] turns out to be 
SO = ! I, - I I, where I is 4 X 4 unit matrix. Therefore, we 
have the transformation group SO(4) = SU(2) X SU(2)/So 
acting on S 3 XS 2 effectively. 

Theorem 5.2: Accompanying the reduction of the ener
gy surface S 7 to S 3 X S 2 stated in Theorem 5.1, the symmetry 
group SU(4) reduces to a transformation group SO(4) acting 
on S 3 X S 2 effectively. 
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A "conformal" Kepler problem is defined in order to associate the Kepler problem with the 
harmonic oscillator. The four-dimensional conformal Kepler problem which shares an energy 
surface with the four-dimensional harmonic oscillator reduces to the ordinary three-dimensional 
Kepler problem. By use of the reduction the symmetry group SO(4) of the Kepler problem is 
brought out from a symmetry subgroup SU(2) X SU(2) of the conformal Kepler problem; the 
subgroup is the same as a subgroup of the symmetry group SU(4) of the harmonic oscillator. 

PACS numbers: 03.20. + i, 02.20. - a 

1. INTRODUCTION 
The Kepler problem has received much attention be

cause of its marked symmetry. It is widely known that the 
symmetry Lie algebra consisting of the constants of motion 
is isomorphic with the Lie algebra of SO(4). As regards glo
bal theory, Bacry, Ruegg, and Souriau I showed that the 
Kepler problem of a negative energy has the symmetry 
group SO(4) indeed (see also Ref. 2). The regularized (or com
pactified) energy surface of the n-dimensional Kepler prob
lem is known to be the unit tangent bundle of the n-sphere 
sn.3.4 For n = 3 the unit tangent bundle becomes a trivial 
bundle S .~ X S 2. The method for getting the topology of the 
energy surface is ultimately due to Fock,5 and is developed 
for studying symmetry of the Kepler problem in both classi
cal and quantum mechanics.6-9 The point of this method is 
projecting the momentum space stereographically upon a 
unit sphere. 

This paper aims to show that the regularized energy 
surface S 3 X S 2 for the three-dimensional Kepler problem of 
a negative energy is obtained together with the symmetry 
group SO(4) from the energy surface S 7 of the four-dimen
sional harmonic osciIIator with the symmetry group SU(4). 
A dynamical system caJIed a "conformal" Kepler problem is 
defined and analyzed in order that the harmonic oscillator 
may be associated with the Kepler problem. The point of this 
article is that defining the conformal Kepler problem makes 
it feasible to treat the ordinary Kepler problem in the large. 
This article will make fuJI use of the results obtained in a 
previous paper. I() 

Here brief mention should be made of the relation be
tween the Kepler problem and the harmonic oscillator. In
troducing the time coordinate and its conjugate momentum 
(the negative total energy) as dependent variables, Baum
garte ll

•
12 brought the three-dimensional Kepler problem 

into the four-dimensional harmonic oscillator to discuss the 
noninvariance algebra of the Kepler problem. Beside this, by 
means of the so-caJIed KS transformation 13 the Kepler prob
lem is put into the four-dimensional harmonic oscillator. In 
Ref. 13 Stiefel and Scheifele intensively utilized the KS trans
formation to study perturbed two-body motions. This trans
formation has its use in quantum mechanics. 14.15 

On the other hand, the present article is founded on a 
principle similar to one which Ikeda and Miyachi used in 
Ref. 16 for associating the four-dimensional harmonic oscil
lator with the three-dimensional hydrogen atom in quantum 

mechanics. The leading idea is as follows. 
Consider the four-dimensional harmonic oscillator. 

The Hamiltonian is given on ]R4 X ]R4, the phase space, by 

H = J... "n2 + ~ "X2, (1.1) 2 £,fl 2 L... 1 

where (Xj 'Pj )E]R4 X]R4 and A is a positive constant. Introduce 
in ]R4 the coordinates 

f/;+q; e 
XI = Rcos --- cos -, 

2 2 
X, = Rsin f/; + q; cos.f., 

- 2 2 

X, = Rcos f/; - q; sin.f., 
. 2 2 

R
· I/;-q; . e 

X 4 = sm --- SIll -, 
2 2 

where R 2 = };X]. Furthermore, let 

R 2 = r. 

(1.2) 

(1.3) 

Then, the Hamiltonian (1.1) is expressed in terms of the new 
coordinates and their conjugate momentums as 

H 2 
2 2 (P~ + P~ - 2cosepl/,pcp 2) A 2 

= rPr + - . 2e + PI! + -2 r. 
r SIn 

(1.4) 

Since the Hamiltonian is independent of f/;, the conjugate 
momentump", is conserved. Whenp", is equal to zero, the 
energy conservation H = const is put into the form 

- A 2/8 = ~(p; + (1!r2)(p~ + pVsin2e)) - H 14r. (1.5) 

This may be interpreted as the conservation of negative ener
gy for the three-dimensional Kepler problem, if the coordi
nates r, e, and q; are to be thought of as the spherical polar 
coordinates. However, 1t should be pointed out here that f/;, 
q;, and () have the range 

0«1/; + q;)!2<21T, - 1T«1/; - q;)/2<1T, o<e 12 < 1T12. 
(1.6) 

Questions then arise as to whether the range of q; reduces to 
0<q;<21T or not, and as to how the coordinate I/; is gotten rid 
of. Succeeding sections wiII give answers to these questions, 
which could be ignored when one is interested only in formal 
correspondence between the harmonic oscillator and the 
Kepler problem. As far as symmetry Lie algebras for these 
dynamical systems are concerned, this formal correspon
dence could work well. The present paper, however aims to 
look into symmetry groups. 

In Sec.2 a conformal Kepler problem is defined and 
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analyzed in connection with the harmonic oscillator. Here 
the conformal Kepler problem has the Hamiltonian having 
the kinetic energy defined through a conformally flat metric 
ds~ and the central potential - k /r, where r is the radial 
distance with respect to ds~ and k is a positive constant. In 
the course of analysis, the singularity at the collision, i.e., 
r = 0, in the conformal Kepler problem is regularized. 

Section 3 is concerned with reduction of the four-di
mensional conformal Kepler problem to the three-dimen
sional ordinary Kepler problem. 

Section 4 shows that the regularized energy surface S 7 

of the conformal Kepler problem reduces to the regularized 
energy surface S 3 X S 2 of the ordinary Kepler problem. 

Section 5 shows how the symmetry group SU(4) of the 
four-dimensional harmonic oscillator reduces to the symme
try group SO(4) of the three-dimensional Kepler problem. 

2. THE CONFORMAL KEPLER PROBLEM 
Let (xj ) be the Cartesian coordinates oflRn. 17 By ds~ and 

d,2 we mean the standard flat metric on lRn and the canonical 
metric on the unit sphere S" - I, respectively. Let 

R 2 = L.xJ = r. (2.1) 

Then the metric ds~ takes the form 

ds~ = dR 2 + R 2dr = (l/4r)(dr + 4rd,2). (2.2) 

We define a conformally flat metric ds~ on lRn 
- ! OJ by 

(2.3) 

Let To and Te be the kinetic energies associated with ds~ and 
ds~, respectively. Then from (2.2) and (2.3) we have on 

(lR" - !OIlXlRn 

Te = 4R 2To. (2.4) 

By (xj,pJ we mean the standard coordinates oflR"XlR", the 
cotangent bundle of lRn. Then To = ~~PJ. Equation (2.4) 
therefore means that 

Te = 4R 2( + DJ ). (2.5) 

A one-form Be relevant to ds~ is defined by 

(2.6) 

Definition 2.1: We define the conformal Kepler prob
lem to be a dynamical system on (lRn - ! ° j) X lRn, with the 
Hamiltonian 

H -4R2(ID2)_~ c- '5 J. 7 - R-
(2.7) 

and the symplectic form We = dOe' where Oe is given by (2.6). 
Remark: It is to be noted that r = R 2 is the geodesic 

distance in the radial direction with respect to ds~ . 
Now we multiply (2.7) by 4R 2 to get, after a change of 

form, 

4k = (4R 2f( +DJ) - 4HeR 2. (2.8) 

In view of this, we define the following Hamiltonian K, and 
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the relevant one- and two-forms OK and Clh on 
(lRn - !OIlXlR" 

K=(4R2f( + DJ)+ +A2R2, (2.9) 

(2.10a) 

(2.10b) 

where A is a positive constant. The Hamiltonian K and the 
symplectic form Clh determine a dynamical system on 
(lR" - ! OJ) X lR", which is closely connected with the confor
mal Kepler problem. 

Proposition 2.2: Both dynamical systems 
((lR" - !OIlXlRn

, wcoHc) and ((lRn - 10j)XlR",wK , K) have 
the same energy surfaces when He = - A 2/8 and K = 4k. 
On the energy surface prescribed the Hamiltonian flows of 
respective dynamical systems coincide within a change of 
parameters. 

Proof From (2.7) and (2.9), and from (2.6) and (2.10) we 
obtain 

K = 4R 2(He + A 2/8) + 4k, (2.11) 

(2.12) 

respectively. The first part of the proposition is an immediate 
consequence of(2.11). We prove the second part. The Hamil
tonian flows are generated by the vector fields X H,. and X K 

determined, respectively, by 

i(XfI,)we = - dHe , 

i(XK)wK = - dK, 

(2.13a) 

(2.13b) 

where i( ) denotes the interior product. Writing out (2.13) by 
use of (2.11) and (2.12), we obtain 

i(XK -4R 2X H ,)WK = -8(He +A2/8)RdR. (2.14) 

Since W K is nondegenerate on (lR" - ! ° I) X lR n
, it follows 

from (2.14) that if R #0 

X K = 4R 2 X H, on K = 4k 

or 

He = -A 2/8. (2.15) 

Equation (2.15) shows that both X K and XII, generate the 

same Hamiltonian flows as sets on the energy surface 
K = 4k or He = - A 2/8. Flows of X K and Xu, are trans
formed to each other by a change of parameters. This com
pletes the proof. 

We now define the mapping of (lR" - ! ° I) X lRn into 
lR" XlR" 

(2.16) 

The mapping is singular outsideof(lR" - I 0 I) X lR". By (2.16) 
we put K, OK' and W K into 

w'=dO', 

Toshihiro Iwai 
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respectively. A pair K ' and w' determines the harmonic oscil
lator on JRII X JR n

. The following is obvious. 
Proposition 2.3: Within a region (JR" - ! 0 j) X R", the 

dynamical system (Rn X Rn, w', K ') is isomorphic with the 
system ((JRn - (OIlXJR",WK,K): 

K=K', 

W K = w'. (Ref. 18) 

(2.19a) 

(2.19b) 

So far we have obtained a series of dynamical systems 
((JR n 

- (Ol)XJRn
, we,He), ((JRII 

- (OJ)XR", W K , K), and 
(JRn X JRn, w', K '). By Propositions 2.2 and 2.3 the energy sur
face He = - A. 2/8 of the conformal Kepler problem is 
mapped into the energy surface K' = 4k of the harmonic 
oscillator. This makes it possible to extend the noncom pact 
energy surface He = - A. 2/8 to be compact. We begin by 
considering what occurs outside of the domain 
(JRn - (0 I) X JRn of the conformal Kepler problem. 

Flows of X H, which tend to( OJ X JRn will reach within a 
finite time an ideal point (0, OC! ) which represents the collision 
of two bodies at the origin R = 0 with the momentum OC!. 

This may be seen from (2.7). From Proposition 2.2, the flows 
which approach along the energy surface 
He = - A. 2/8 to (0) X Rn have corresponding flows on the 
energy surface K = 4k of the dynamical system 
((JRn - (OJ )XRn, W K , K). These flows go out of the domain 
(Rn - ! 0)) X JRn to an ideal region! 0) xS n - I( OC!), where 
S" .. ~ I( OC!) is an ideal sphere of infinite radius: !'pJ = OC!. This 
may be observed from (2.9). The reason why we should imag
ine the ideal sphere is that the corresponding flows on the 
energy surface K' = 4k of the dynamical system 
(]RII X R", w', K')tend to the subset [0) Xsn ~ I of the energy 
surface K' = 4k, where S II - \ is a sphere determined by 
'2.p;2 = 8k. We refer to the space enlarged by gluing the ideal 
region (0) X S II - I ( OC! ) to the energy surface He = - A. 2/8 
as the regularized energy surface ~ = - A. 2/8. 

Conversely, let (O, b j) be any point of [OJ Xsn - I, the 
subset of the energy surface K' = 4k, and let (xj(t), p;(t)) be 
the flow passing (0, b j). Then the curve (x)(t)) comes to zero 
when and only when the curve (P;(t)) arrives at ( ± b j). 
Hence Propositions 2.2 and 2.3 show that the flow 
(xj(t), p;(t)) without points (0, ± b j) has the corresponding 
flow (x)(t), Pj(t i), which represents a collision orbit of 
((]RII - (0)) X RII

, We' He). Thus the subset (0 I xS II - I of the 
energy surface K' = 4k is understood to be what corre
sponds to the ideal region (O J xS n ~ I( OC!) for the conformal 
Kepler problem. Therefore we have proved 

Theorem 2.4: The regularized energy surface 
fie = - A. 2/8 for the conformal Kepler problem is mapped 
onto the compact energy surface K' = 4k of the harmonic 
oscillator. The Hamiltonian flows of respective dynamical 
systems coincide within a change of parameters. 

3. REDUCTION OF THE FOUR-DIMENSIONAL 
CONFORMAL KEPLER PROBLEM 

Consider the four-dimensional conformal Kepler prob
lem. We employ the local coordinates (r, e, <p, !/I) introduced 
in (1.2) and (1.3). Then the metric ds~ defined by (2.3) takes 
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form 

ds~ = d? + ?(de 2 + sin2ed<p 2 + (d!/l + cosBd<p )2). 
(3.1) 

By P"Po'P,/" andp,p we denote the conjugate momentums 
with respect to ds~. 19 The Hamiltonian (2.7) and the one
form (2.6) then take the form 

He = !V; + :2 (p~ + p~ - 2P'/'::2;SB + p~ )) - ~ , 
(3.2) 

(3.3) 

respectively. Since He is independent of !/I, the momentum 
PIp is conserved. Therefore, if if; is got rid of, and if Pif, is set 
equal to zero, a pair of(3.2) and (3.3) may determine the 
ordinary Kepler problem. We are to show that this is the 
case. 

To gain an insight into the reduced manifold deter
mined by Pif, = 0, we ought to deal withp,p in the large. To 
this end, we consider the one-parameter group of transfor
mations which is relevant to the momentumpif,. Let 20 

(A) (-1/2). N = A with A = 1/2 (3.4) 

Then one has 

- sin(t /2)). 
cos(t /2) 

(3.5) 

Taking account of (1.2), we can express the action of exptN 

(
T(t) 

exptN= ) 
. h T (COS(t /2) 

WIt t = 
T(t) () sin(t /2) 

on ]R4 in the coordinates (r, e, <p, !/IJ as 

if;-'>if; + t, and the others fixed. (3.6) 

Equating the infinitesimal generator of (3.5) with that of 
(3.6), we obtain 

~ = ~(XI~ -X1~ +Xl~ -x ~). 
aif; 2 aX2 - ax 1 . aX4 4 ax 3 

(3.7) 

The transformation exptN of JR4 lifts to that of 
]R4 X]R4 = T *]R4, the cotangent bundle of ]R4, therefore so 
does the infinitesimal generator. By exptN * and X * we de
note the lifts of exptN and its infinitesimal generator, respec
tively. Then we have 

exptN*: (x,p)~((exptN)x, (exptN)p), (3.8) 

X*= ~(XI~ -X1~ +X3~ -X4~) 
2 axz - aX I . aX4 ax, 

+ ~(PI~ -P2~ +P3~ -P4~)' 
2 ~2 ~I ~4 ~3 

(3.9) 

where x = (x)) and p = (Pj) are column vectors,j = 1,2,3,4. 
Since exptN is an orthogonal matrix, exptN * given by (3.8) 
leaves the canonical one-form '2.pj dxj invariant. (This is, 
however, a special case of the well-known fact that the lift of 
a base space transformation leaves invariant the canonical 
one-form on the cotangent bundle. 21) Therefore, from (2.6) it 
follows that Be is invariant under exptN *. As a consequence 
of the invariance, we see from (3.3) and (3.6) that the conju-

Toshihiro Iwai 1635 



                                                                                                                                    

gate momentums are all invariant under exptN *. Thus we 
obtain in (an open subset of) R4XJR4 

a 
X* =-. (3.10) 

a¢ 
We are now ready to express the momentump.", without 
reference to the local coordinates. From (3.3) and (3.10), and 
from (2.6) and (3.9), we obtain 

P.", = Be(X*) = 2R 2(XI P2 - X2 PI + X3 P4 - x4P,)· 
(3.11) 

Of course, Be (X *) is a conserved quantity, as He is invariant 
under exptN *. (This is a special case of the conservation 
theorem which is established under fairly general condi
tions. 21) Weare now in a position to show 

Proposition 3: 1: For the four-dimensional conformal 
Kepler problem, the conditionp", = 0 determines a "mo
mentum" manifold (JR4 - 10j)XJR3

. 

Proof Recall that our conformal Kepler problem has 
the domain (R4 - (0] )XR4, so that R 1=0. From (3.11) the 
conditionp", = 0 then becomes 

!(X IP2 -X2PI +X3 P4 -X4P3) = (Nx,p) =0, (3.12) 

where ( , ) denotes the standard inner product. We here un
derstand that for each x 1=0 Eq. (3.12) gives a linear equation 
in the cotangent space T:'R4 at x. Then, to Eq. (3.12) there 
exists linearly independent solutions Sk (x), k = 1,2,3, which 
depend continuously on x: 

(3.13) 

The basis sdx), k = 1,2,3, spans the hyperplane JR3 in each 
cotangent space 

R3 = {(ak ); \NX, ktlakSdX)) = o}. (3.14) 

Thus Eq. (3.12) determines the product space 
(JR4 

- (0]) X R3. This completes the proof. 
So far we have decreased the degree of freedom by one. 

We now proceed to get rid of ¢ by means of the group 
exptN *, under which all the coordinates other than ¢ are 
invariant. Obviously, the group exptN * acts on 
(JR4 - (0 I) X R3. Indeed theform (Nx,p) is invariant under 
exptN* 

(N(exptN)x, (exptN)p) = (Nx,p). (3.15) 

The action of exptN * is given by the following. 
Lemma 3.2: Let S (t) be a 3 X 3 matrix given by 

S(t)=(T(2t) J (3.16) 

where T(2t) comes from (3.5). Then the action ofexptN* on 
(R4 _. ! 0]) X JR3 takes the form 

(x,a)-((exptN )x, S (t )a), (3.17) 

where a = (a k ) is an element of the second factor space ]R-l. 
Proof The action on the first factor space JR4 - 101 is 

already obtained in (3.8): x----+(exptN )x. We turn to the action 
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on the second factor space JR3. In the first place, we have to 
determine how the basis sdx), k = 1,2,3, given by the (3.13) 
transforms under the transformation x-x' = (exptN )x. 
From (3.5) it follows that 

( -x:)=T(_t)(-X3
), (x;,)=T(_t)( XI), 

~ ~ -~ -~ 

(3.18a) 

x;) ( Xo) ,=T(-t) -. 
XI XI 

(3.18b) 

From (3.13) and (3.18), we obtain the action of exptN in the 
form 

sl((exptN)x) = exp( - tN)sl(x), 

s2((exptN)x) = exp( - tN)S2(X), 

s3((exptN)x) = (exptN)s3(x). 

(3.19a) 

(3.19b) 

(3.19c) 

Assume that a point (Xj ,a k) of (JR4 - ! 0 1 ) X]R-l is carried to 
(x; ,ak) by the action of exptN *. Then one has from (3.19) and 
(3.15) 

\NX\tlakSdx')) 

= \Nx'ktlakeXp( - 2tN)Sk(X) + a;S3(X)). (3.20) 

With reference to the last equation, simple calculation yields 
2 

L a"exp( - 2tN)sdx) 
k~1 

= (a; cost + a2 sint)s dx) + ( - a; sint + a2 cost )S2(X). 
(3.21) 

Substituting (3.21) in (3.20) and using the invariance of the 
form (Nx,p), we obtain 

(Nx'}:'lakSdx)) = \NX\tlakSdx')) (3.22) 

= (Nx,(a; cost + a 2sint )SI(X) + ( - a; sint 

+ a2 cost )S2(X) + a;s3(x). 

From(3.22)wededucethata = S ( - t la', whereS (t ) is given 
by (3.16). This ends the proof. 

Using Lemma 3.2, we prove 
Proposition 3.3: Let (R4 - ! 0]) X]R-l be the momentum 

manifold stated in Proposition 3.1. Then one has the orbit 
space 

(R4 - !0])X]R-1IU(1) = (]R-l - 10])XR\ (3.23) 

where U (1) denotes the group exptN *. 
Proof To make effective use of (3.17), we employ (1.2) 

and (1.3), setting 

Z = X I + ix2, W = Xl + ix.j' (3.24) 

and denote a = (ak) in the form 

~ = a l + ia2 = peiXsiny, a 3 = pcosy. (3.25) 

We write X and a as x = (z,w) and a = (;,a,), respectively. 
Then the action of exptN * is expressed as 

(3.26) 
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Introducing new coordinates a and f3 by 

a = !(x - ¢), f3 =!(x + ¢), (3.27) 

we make use of(3.26) with t = -lfJ - a) = - ¢ to obtain a 
representative (xo, uo) of the equivalence class [(x, u)] with 

Xo = (V(r)eiop!2cos(O 12), V(r)e --- iop!2sin(O 12)), (3.28a) 

U o = (pe''2asinr, pcosr). (3.28b) 

Equation (3.28a) means that (r, 0, tp) are the spherical polar 
coordinates in R3. In fact, one has for [x] = [xoJ the point of 
R3 

(2Rezw, 2lrnzw, [Z[2 ~ [W[2) 

= (rsinOcoStp, rsinOsintp, rcosO ), (3.29) 

where Re and 1m indicates the real and imaginary parts, 
respectively. Equation (3.29) is a slight extension of the Hopf 
mappingS 3--.,...5 2.22 Thus Eq. (3.28) implies that [(x, u)] deter
mines a point of (R~ - ! 0 J) X R3. Conversely, given any 
point of (R' - (O J) X R3

, we can invert the above reasoning 
to get the inverse image in (R4 - ! OJ) X R3. This completes 
the proof. 

So far we have reduced the cotangent bundle 
(R4 - ! 0 J ) X R4 to the cotangent Qundle (R3 

- (O J) X R3 of 

R3 - ! 0 J. Furthermore, it is evident that (R3 - f 0 J) X R3 
has the local coordinates (r, 0, tp, P "p 0 ,Pop) because of the fact 
that they are invariant under exptN *. Here a question arises 
as to whether ds~ on R4 - (O J reduces to the standard flat 
metric on R3 - f 0 J or not. To work out the question, we first 
note that Eq. (3.12) also defines a three-dimensional sub
space R; of the tangent space TxR4 at x#O. The basis are 
sdx), k = 1,2,3. Then they read 

a a a a 
SI(X) = -x3 - +x4 - +x l - -X2-, (3.30a) 

ax , aX2 aX3 aX4 

a a a a 
S2(X) = -x4 - -X3- +x2 - +x l -, (3.30b) 

ax , . aX2 aX3 aX4 

a a a a 
S3(X) =x l - +X2 -+X3 - +x4 -. (3.3Oc) 

ax I aX2 aX3 aX4 

In the coordinates (r, 0, tp, ¢) the above vectors have the form 

~s I(X) = cos¢ ~ + sin¢cscO ~ - sin¢cotO ~, (3.3Ia) 
ao a¢ a¢ 

!s,(x) = sin¢~ - cos¢cscO~ + cos¢cotO~, (3.31b) 
- ao atp a¢ 

(3.3Ic) 

We now treat ds~ in terms of one-forms defined by 

1'1 = cos¢dO + sin¢sinOdtp, (3.32a) 

1'2 = sin¢dO - costPsinOdtp, (3.32b) 

1'3 = d¢ + cosOdtp. (3.32c) 

Then ds~ takes the form 

ds; = dr + r(~ + ~ + ~). (3.33) 
That ds; is invariant under exptN * can be verified from 
(3.32) and (3.33) by using (3.6). 

We are now in a position to reduce ds;. By S I we mean 
the group exptN. Let u and v be tangent vectors in R;, the 
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subspace of TxR4. Let [u] and [v] denote the equivalence 

classes in R;ITx(S I.X ), which are thought of as the tangent 
vectors to R3 - {OJ = (R4 - (OJ)lS I, where T,,(S I.X ) is the 
tangent space at x to the S I orbit of x. Now the reduced 
metric is uniquely determined by the condition 

ds;(u,v) = (dS;)'d([UJ, [v]). (3.34) 

Proposition 3.4: The quotient space 
R' - 10 J = R4 - f 0 j IS I is equipped with the standard fiat 
metric which is reduced from ds; defined on JR4 - ! 0 J: 
(dS~)'d = dr + r(~ + ~) = dr + r(dO 2 + sin20dtp 2). 

(3.35) 

Proof: With reference to (3.31) and (3.32), one has 

l'd~sj(x)) = Okj' 1'3 (¥j(X)) = 0, k = 1,2. (3.36) 

The proof is then accomplished by using (3.36) and the fact 
that Tx(S I.X) is spanned by (a la¢). This ends the proof. 

We return to (3.2) and (3.3). Through the reduction pro
cess stated above, the Hamiltonian (3.2) and the one-form 
(3.3) reduce, respectively, to 

H;d = !(P; + (1!r)(p~ +p;/sin2e)) - klr, 

O;d = Prdr + Po de + popdtp. 

(3.37) 

(3.38) 

From Proposition 3.4 we see that (Pr' Po, Pop ) can be thought 
of as the conjugate momentums with respect to the standard 
flat metric on R3 - {O I. Thus we have obtained 

Theorem 3.5: The conformal Kepler problem on 
(IR4 - f 0 J) X R4 with the Hamiltonian (3.2) and the one-form 
(3.3) reduces to the ordinary Kepler problem on 
(IR' - {0J)XJR3 with the Hamiltonian (3.37) and the one
form (3.38). 

To make things precise, we point out how H;d and 
W~d = dO ~d are characterized. Let M = (R4 - ! 0 I) X IR3 be 
the momentum manifold stated in Proposition 3.1. Then 
H;d and W;d are characterized as folIows21

: 

H;d([m]) = He(m) for meM, 

W;d([U], [v]) = we(u, v) for u,veTm(M), 

where [m]EM IU(I) and [u], Iv]eT1m](M IU(l)) 

(3.39) 

(3.40) 

= Tm(M)lTm(U(I)·m). Here U(l).m denotes the U(l)orbit 
ofm. 

4. REDUCTION OF THE ENERGY SURFACE 

From Theorem 3.5 we may expect that the regularized 
energy surface He = - A. 218 (which is by Theorem 2.4 with 
n = 4 the same as the energy surfaceK , = 4koftheharmon

ic oscillator) will reduce to the regularized energy surface of 
the ordinary Kepler problem. With this in mind, we treat the 
harmonic oscillator in parallel with the conformal Kepler 
problem. 

We shaH begin by considering what momentum for the 
harmonic oscillator corresponds to P", for the conformal 
Kepler problem. Recall that P '" is associated with exptN *, 
the lift of exptN. In the case of the harmonic oscillator, exptN 
and its infinitesimal generator lift t023 

exptN*: (x,p')-((exptN)x, (exptNjp'), (4.1) 
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respectively. For B' and Be> one has B' = Be in 
(JR.4 

- ! 0 1) X JR.4 from (2.6), (2.16), and (2.18).24 We should 
note here that Be is degenerate on ! 0) X JR. but B' is not. Now, 
applying B ' = Be to X *, we obtain 

2B '(X *) = x LP2 - X2P; + x3P~ - x4/J; = 2Be(X *). (4.3) 

Thus we see that the conditions Be (X *) = p", = 0 and 
B '(X *) = Ocoincideatleastin(JR.4 - 10)) X JR.4. We now show 
that the condition Be (X *) = 0 may work outside of 
(JR.4 - ! 0 I) X JR.4. Consider flows of the harmonic oscillator 
which pass! 0) XJR.4. Then e '(X *) equals zero along the 
flows. This is because e '(X *) is a constant of the motion and 
e '(X *) equals zero when (x)) = O. We turn to the correspond
ing flows of the conformal Kepler problem which represent 
flows going beyond the domain (JR.4 

- 101) X JR.4. Along the 
flows, ee(X*) also equals zero by means of(4.3). Thus from 
the conservation law of the momentum we may understand 
that the condition ee (X *) = 0 makes sense outside of 
(JR.4 - ! 0 J) X JR.4. We indicate this understanding by 
P.;. = ee(X*) = o. 

Now that we have seen that the conditions 
He = - A 2/8 and ec (X *) = 0 are equivalent to K' = 4k and 
e '(X *) = 0, we are ready to apply Theorem 4.2 in Ref. 10, 

which is a theorem about the sub manifold determined by 
K' = 4k and e '(X *) = 0 for the harmonic oscillator (but the 
notations are slightly different). According to that theorem, 
we obtain 

Proposition 4.1: For the four-dimensional conformal 
Kepler problem, the condition p", = 0 determines a regular
ized "energy-momentum" manifold S.1 X S.1 in the regular
ized energy surface S 7 given by He = - A 2/8. 

We take the next step to get the regularized energy sur
face H ~<I = - A 2/8 of the ordinary Kepler problem. On ac
count of the reduction process which went on in Proposition 
3.3 and Theorem 3.5, we have to construct an orbit space of 
the regularized energy-momentum manifold S.1 X S.1. 

We consider below the conformal Kepler problem and 
the harmonic oscillator simultaneously. By U (1) we mean 
the group exptN* whether it is defined by (3.8) or (4.1). For 
the harmonic oscillator the action of U ( 1) on S 3 X S 3 was 
studied in Ref. 1 0, where S 3 X S 3 is defined by K ' = 4k and 
{} '(X *) = O. On the other hand, for the conformal Kepler 
problem we still have to study the action of U (I) on the regu
larized energy-momentum manifold determined by 
He = - A 2/8 and ee (X *) = O. It is clear that the energy
momentum manifold before regularization admits the ac
tion of UP), since He and (}e(X*) are invariant under Uri). 
Thus the remaining problem to work out is to show that the 
action of U (1) makes sense beyond the domain 
(JR.4 

- (0 j) X R4. 
From the definition (3.8), we may conceive that the 

ideal region 101 xS.1( 00), described already in Sec.2, is invar
iant under U (1). Furthermore, the ideal region is mapped 
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onto! 01 X S 3, the subset of the energy surface of the har
monic oscillator. From (4.1) it appears that the range 
! 0 I X S .l admits the action of U (1). Thus we can interpret that 
U (1) acts outside of the domain of the conformal Kepler 
problem. With this in mind, we apply Theorem 5.1 of Ref. 10, 
which refers to orbit space S' XS'IU(I) = S·l xS 2. From 
Theorem 3.5 and Proposition 4.1 we may conclude that the 
S' X S 2 obtained is the regularized energy surface 
jj;<I = _ A 2/8. Before stating this conclusion as a theorem, 
we verify thatS" X S 2 is indeed constructed by gluing an ideal 
region ! 0 I X S 2( 00 ) to the energy surface H;<I = - A 2/8 in 
(JR.' - 101)XR'. 

Consider Hamiltonian flows on the energy surface 
H ~<I = - A 2/8, which tend to 101 X JR.'. Then the flows will 
arrive in an ideal region 101 XS2( 00) within a finite time. 
This region may be considered as the orbit space 
( I 0 I X S .1( 00 ))1 U (1) of the ideal region for the conformal 
Kepler problem. To see this, we turn to the corresponding 
region for the harmonic oscillator. As was stated in Sec.2, 
101 X S 3( 00 ) is mapped onto 101 X S 3, the subset ofthe ener
gy surface for the harmonic oscillator. The U (l I-action on 
10 J X S.1 is given by (4.1). Then we can obtain the orbit space 
([ 0 1 X S ')I U (1) = 101 X S 2 by the same method as in the 
proof of Proposition 3.3. The space thus obtained corre
sponds to the ideal region 101 X S 2( 00 ) for the Kepler prob
lem. We now state 

Theorem 4.2: The regularized energy surface S 7 of the 
four-dimensional conformal Kepler problem reduces to 
S.1 X S 2 to give the regularized energy surface of the ordinary 
Kepler problem. 

5. REDUCTION OF SYMMETRY 

In the preceding sections we have shown that the con
formal Kepler problem reduces to the ordinary problem. In 
this section we first point out that along with the reduction a 
certain symmetry subgroup for the conformal Kepler prob
lem also reduces to a symmetry group of the ordinary Kepler 
problem. After doing so, we proceed to obtain the symmetry 
group SO (4) of the ordinary Kepler problem. 

Proposition 5.1: Assume that one has a symmetry group 
G of the four-dimensional conformal Kepler problem such 
that the momentum manifold (JR.4 

- (01) X JR.} stated in Pro
position 3.1 is an invariant manifold of G, and G and U (I) 
commute, where U (1) is the group exptN * given by (3.8). 
Then G becomes a symmetry group of the ordinary Kepler 
problem. 

Proof: We denote (JR.4 
- 101) X JR.' by M. By Fg we mean 

the action of gEG. Then G induces the action F;d on M I U (1) 

F~d([m))= (Fg(m)] formEM. (5.1) 

I t is easy to see that F;<I is well defined. In order to prove that 
Gleaves H;d and (U;<I invariant, we require (3.39) and (3.40). 
By using them together with the invariance of He and We 

under F
g

, we can show, after a calculation, that 

H~<I(F~<I([m])) = H;<I([m]), (5.2) 

(5.3) 

where the superscript asterisk indicates the pullback. Thus 
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from Theorem 3.5, G is looked on as a symmetry group of the 
ordinary Kepler problem, as was expected. 

Now we recall that conditions He = - A 2/8 and 
i", = e: (X *) = a are equivalent to K' = 4k and e '(X *) = a, 
from which Proposition 4.1 was deduced. Incidentally, the 
previous paperlO contains the results on groups acting on the 
manifold defined by K ' = 4k and e '(X *) = a. According to 
Theorem 4.2 in Ref. 10, a subgroup G = SU(2) X SU(2) of the 
symmetry group SU(4) acts on the manifold mentioned just 
above. Moreover, G and U(l) commute by Theorem 3.3 of 
Ref. 10. We then see from Proposition 4.1 that G acts on the 
regularized energy-momentum manifold S 3 XS 3 of the con
formal Kepler problem. 

We continue to consider the symplectic forms CUe and 
cu'. So long as CUe is not degenerate, one has CUe = cu' from 
(2.12) and (2.19b). Recall that CUe is degenerate on 101 XR4. 
However, on account of Theorem 2.4 we may conceive that 
CUe = cu' will be true throughout He = - A 2/8 or K' = 4k. 
Indeed, the Hamiltonian flows of respective dynamical sys
tems, which by Theorem 2.4 coincide within a change of 
parameters, leave the respective symplectic forms CUe and cu' 
invariant, so that the equality cue = cu' may be preserved 
even if the flows of X H< reach the ideal region I a I X S 3( 00 ). 

Since Gleaves cu' invariant, we understand that CUe is also 
invariant under the action of G. Therefore G may be thought 
of as a symmetry group of the conformal Kepler problem. 

Theorem 5.2: A symmetry subgroup SU(2) X SU(2) for 
the four-dimensional conformal Kepler problem reduces to 
the symmetry group SO(4) for the ordinary Kepler problem 
which acts effectively on the regularized energy surface 
S3 XS2. 

Proof Since G = SU(2)XSU(2) and U(l) commute, G 
induces the action on S3 XS3 /U(l) = S3 XS2. By the same 
method as in the proof of Proposition 5.1, we can see thatcu;d 
is invariant under G. Incidentally, as was shown in Ref. 10, 
the action of G on S 3 X S 2 is not effective. According to Theo
rem 5.2 in Ref. 10, SO(4) = G ISo acts onS 3 XS 2 effectively. 
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Of course, CU;d is also left invariant under G ISo, so that SO(4) 
turns out to be a symmetry group of the ordinary Kepler 
problem. This completes the proof. 
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Classification of orbits of Fokker's time-asymmetric relativistic two-body 
problem 
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The requirements that the proper velocities of the particles in Fokker's time-asymmetric 
relativistic two-body problem be timelike and future pointing restrict the variables P I and P2 
associated with the distances between the particles as measured in their rest frames. Employing 
these restrictions in an algebraic equation relating P I and P2 to the total angular momentum and 
the total four-momentum, assumed timelike and future pointing, classifies the physical orbits of 
the system. The results include orbits similar to those of the nonrelativistic Kepler problem and 
several new types in which the angular velocity is opposite to the total angular momentum. This 
information is required for the integration of the equations of motion to determine the orbits in 
four-space. 

PACS numbers: 03.30. + P 

I. INTRODUCTION 

In Fokker's time-asymmetric relativistic two-body 
problem, lone spinless electrically charged particle responds 
without self-action to the retarded Lienard-Wiechert field 
of a second, while the second responds similarly to the ad
vanced field of the first. The purposes of this paper are to 
simplify a previously given reduction to quadratures2 and to 
identify and classify all possible types of motion of the sys
tem consistent with the assumption that the total four-mo
mentum is timelike and future pointing. 

Several authors have presented special-case solutions of 
this problem. Rudd and HilV Staruszkiewicz,4 Bruhns,5 
and Kiinzleo obtained solutions for one-dimensional motion. 
Bruhnss also exhibited particular circular motion solutions. 
Kiinzle6 reduced the problem to quadratures and gave nu
merical results for the bounded motion of equal rest masses 
resulting from an attractive force and for circular motion 
with arbitrary mass ratios. The present author gave a reduc
tion to quadratures2 and a general solution for circular 
motion. 7 

The second section reviews previous results,2 presents a 
slightly simpler reduction to quadratures, and expresses the 
important quantities of the problem in terms of just two var
iables. The third section shows that a single algebraic equa
tion relating these two variables to the total energy and angu
lar momentum is a convenient substitute for the 
nonrelativistic equivalent one-dimensional radial energy 
equation; its real and positive solutions for one of the varia
bles in terms of the other characterize the possible motions of 
the system. The results of the analysis of this equation in
clude motions corresponding to the usual nonrelativisitc or
bits and several new types of motion in whi.ch the angular 
velocity is opposite to the total angular momentum. The dis
cussion of these orbits in the fourth section includes a proof 
that they guarantee time like and future pointing velocities 
for the two particles. The analysis also shows that the zero 
angular momentum limit and the limit in which one of the 
masses becomes infinite are singular. 

II. REDUCTION TO QUADRATURES 
This section reviews the notation and results of a pre

vious paper,2 and presents some slight extensions. The 
space-time positions of the particles x n" always have null 
separation r'r Il = 0, where r'=x t - xt and the particle 
leading in time is labeled 1 so that rO > O. The subscripts n, 
f = 1,2 always refer to the particles and are never equal 
when they appear in the same equation. The metric tensor is 
gii = _ gOO = 1, t'Y = 0 for f.l=fv. 

The particle momenta are 

Pn ll = mnun" + gu/,/cPJ - gt/lru/2, (1) 

where C is the speed of light, g=e lezl c is the coupling con
stant in Gaussian units, mn and en are the constant rest mass 
and electric charge of particle n, Un "=dx n "1 d7 n is the prop
er velocity ofn obeying un"unl' = - c2 ,Pn _ - un"r"lc, and 
t/I - UtU21,1c2PIP2' The proper velocities are timelike and 
future pointing; hence, the Pn and t/I are greater than zero. 

The total momentum PI' PI" + P2'" assumed timelike 
and future pointing, and the total angular momentum JI'" 
='!.n (xn"Pn Y - Xn 'pn") are conserved. The scalar m > 0 de
fined by 

m 2c2= - P"P" = I)mn c + gl Pn)2 + 21]1/;, (2) 

where 1]=m Im2c
2pIP2 - g2, is conserved and represents the 

rest mass of the system considered as a composite particle. 
The system possesses a "center of motion" x" with con

stant proper velocity u/'=dxll ld7x = P"lm. The motion of 
the system is simplest in the center of motion frame shown in 
Fig. 1, where x", P", and JI'" have zero components except 
for XO = C7x , pO = mc> 0, and J 12 = -- J 2I ==.13==.1>0. In 
this frame the center of mass zI'- moves in a circle of radius 
z-)z) = J Imc about the origin: 

ZO=XO=C7x ' z=JXrlmcr, 

wherer=)r) =px>O,andJi =¥ijkJjk' 
The particle positions are 

(3) 
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m, 

FIG. I. Geometry of the time-asymmetric problem in the center of motion 
frame: z = J fmc, an = (m~Pf + g)lmc. 

(4) 

where r= - pp.rp. = mcpx'px= - vxP.rp.lc, and rj 
== - p/rp. = m~pj + g. Hence, the particles move in the 
plane perpendicular to J, and r always passes through the 
center of mass perpendicular to z. If J = 0, the center of mass 
coincides with the center of motion. 

The definition of pI" provides one relation between the 
variousp's 

r = mcpx = r l + r l = mlcPI + mlcp2 + 2g. (5) 

A second relation 

m2clJ 2/1/ = m 2c2 - mcpx(mlcPI- 1 + m2cp2 -I) (6) 

and an expression for .,p, 

2.,p = m2c2J 211/2 + PI- 2 + P2 -2, (7) 

both evolve from the definition of JI"V. 
Fokker's problem now reduces to solving the equations 

mncPn = ( - l)nu(m ncPn.,p - mncPn -I + gPj -2) (8) 

and 

(9) 

where a dot above the variable indicates differentiation with 
respect to 'ix, u==mc2/(m\cPI-\ + m2cp2 -I), e is the unit 
vector along J, and e is the angle between z and the x axis in 
the center of motion frame. 

Using (7) to eliminate .,p in (8) yields a pair of coupled 
ordinary differential equations 

mncPnlu = ~mncPn [P1-2 -P2-2 + (- 1)"(mcJ 11/)2] 

+ ( - l)"gpj -2. (10) 

Equation (6), withpx eliminated by (5), is already an integral 
of(lO) and is a cubic equation for Pj in terms ofpn' Using its 
algebraic solution to eliminatepj in (10) yields an ordinary 
differential equation for the single variable Pn' Equation (9) 
for the angular velocity becomes integrable once the solution 
to (10) is known. Alternatively, dividing (10) by (9) yields the 
orbital differential equation for Pn . 

It is also possible to add the two equations in (10) to 
obtain an expression for Px. This approach is more difficult 
because using (5) and (6) to eliminate Pn in favor of Px in
volves solving a biquadratic algebraic equation. 2 
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Once the equations of motion are solved for thepn and 
e, (4) provides the positions of the particles. All the physical
ly significant variables are determined by thepn in combina
tion with m andJ. For example, the scalar product oft 1) with 
pI" yields the center of motion frame values for rn==vn °lc 

mcrn = mnc + m~ptP2.,p + glpn; 

eliminating .,p via (2), (6), and (7) yields 

(11) 

2mmnYn = m2 - m l
2 - m/ +g2mlJ 211/l + 2(mn 2 -gmjlcpj) 

III. GRAPHS OF THE P2,p1 EQUATION 

The last section has shown that the solution of(6) for Pj 
in terms of pn. m, and J is essential for integrating the equa
tions of motion and for determining the other variables in 
Fokker's problem. A third reason for studying (6) is that the 
requirement thatp2 be real and positive imposes limits on the 
ranges of PI and m for given values of J, and vice versa. In 
fact. analysis of (6) yields a complete classification of the 
types of motion of the system. The following substitutions 
conveniently abbreviate the notation in dimensionless quan
tities; reversing them returns the equations to Gaussian 
units: 

mlcpJlgl-Pn >0, mlcpx/lgl-px >0, 

mnlm\-mn• mlml-m>O, 

g/lgl-g = ± 1, 1/lg2-1/. 
J Ilgl-J;>O, mI2c2a/g2-u> 0, 

mlcl'in/lgl-'in, mI2c2'ix/lgl_'ix· 

Substituting (5) into (6) and using the above abbreviations 
yield an equation relating p I' P2' m, and J 

f ==1/mpx (Pl + mlPtl - m2(1/ - J2)PtP2 = 0, (12) 

where both 1/=mlPtP2 - 1 and mpx==tJI + mlP2 + 2g>0 
are now considered abbreviations for combinations of P I and 
Pl' (If g = 0, the abbreviations are still convenient. but divi
sion by Igl must be replaced by division by 1 times the units 
of g, and 1/ is mlPtP2' For now it is assumed that g#O.) 

The inequalities P n > ° result from the assumptions that 
rO > ° and that the proper velocities are timelike and future 
pointing. However, reversing the signs of both PI andp2 in 
(12) is equivalent to reversing the sign of g; hence. it is conve
nient to fix g = - 1 and consider (12) for both positive and 
negative values of PI andp2' The first quadrant ofthep\"o2 
plane then corresponds to attraction, and the third quadrant 
to repulsion. The second and fourth quadrants are not phys
ical in the present context, but they are included because 
they contain connecting links between the physical branches 
of the graph and because they aid the analysis. 

Equation (12) is cubic for Pj in terms of Pn 

p/ + 3anpj2 + bnpj + Cn = 0, 

where 

and 

cn = - (Pn + 2glmn )lm2, 

en = [(1 + m/ - m 2)Pn + 2gmn ]1m2• 

an =(en - lImlPn )/3, 

Donald E. Fahnline 
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The m" appearing in the definitions of Cn and en is equal to 1 
for n = 1. The value of g is - 1 in accordance with the last 
paragraph. Let 

An=a" 2 - bn /3, 

B" -anbn/2 - a" 3 - cn/2, 

and 

D n =B 1I

2 -A,,". 

If D" > 0, (13) has one real root 

Pj=G lI +H" -an 

and two conjugate imaginary roots 

Pj= -(G lI +H")/2±i(3)1/2(G,, -Hn)/2-an, 

where Gn 3=Bn + yD", and H"3=B,, - YD". If Dn .;;;0, 
( 13) has three real roots 

PI = 2An 1/2COS(¢ 13 + 1200k) - an' 

where cos¢ = B"A" -3/2, and k = 0,1,2. These solutions are 
useful for drawing graphs of(12). Figure 2 shows the curves 
for m 2 = 2, J = 1.25, and different values of m. 

For equal rest masses a simpler procedure is available. 
Letting m2 = 1 reduces (12) to a quadratic for Yf in terms of 

Px 
Yf2 - (p,/ + 2pJm - 1 + J2)Yf - J2 = O. (14) 

Where the solu~ion for Yf is real, the values for PI and P2 are 

2p" = mpx + 2 ± (- In(mpx + 2)2 - 4(1] + 1))111. 
(15) 

Neither of the above algebraic solutions is convenient 

2.8 

3.6 

\ 1.2 

FIG. 2. Examples of the locus ofEq. (12) in thepI'P2 plane for g = - I, 
m2 = 2, J = 1.25, and the values of m indicated near each curve. Also 
shownarethelinespx = Oandm1P, + pz = 0; the hyperbolas 1] = 0,1] = J2 
and 1] = 2J2; and the r, and r2 axes. The pOint labeled m = 2.757 corre
sponds to circular motion. 
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-3 -2 

'1):0 

II 

FIG. 3. The regions ofthep,.p2 plane for g - I, m2 = 2, J = 1.25. 

for a general analysis of the types of motion of the system. It 
is easier to consider (12) directly for different ranges of 1] and 
for increasing values of m within each range of Yf. Figure 3 
shows the locations of the various regions ofthepl,pz plane 
discussed in the following. Until the case J = 0 is considered 
at the end of this section, Jhas an arbitrary fixed value great
er than zero. 

a. 1] < - 1: This range of 1] corresponds to the second 
and forth quadrants ofthepl'pz plane. Eq. (12) then requires 

Px(Pz + mzPl) = m(Yf - J2)ptPzl1] <0. 

Therefore, the locus of (12) is further restricted to the regions 
V, VI, and VII between the linespx = 0 andpz + mzPl = O. 
If m 2 > 1, these lines intersect in the second quadrant at 
PI = - 21(m 2

2 
- 1), PI = 2mzl(m12 

- 1) as shown in Figs. 
2 and 3 for m 1 = 2. If m 2 < 1, the intersection lies in the 
fourth quadrant, and the roles of the second and fourth 
quadrant are simply interchanged from the m2 > 1 case. If 
mz = 1, the lines are parallel, and the graphs are symmetri
cal with respect to the linepi = Pl' It will be assumed for the 
remainder of the discussion that m l > 1. 

On the lines P x = 0 and P2 + m2P I = 0 the value of the 
function/defined by (12) is m2(J I -1]lPtP2 <0. Along the 
segment 0 <P2 < 21ml ofthep2 axis bounding region V, the 
value of/is - (mzP2 - 2)P2 > O. Hence a branch of/ = 0 
always exists in region V for all values of m > 0 and 1',0. 
Similarly, there must be a branch in region VI because the 
value of/is - (PI - 2)mzPl > 0 along the segment 0 <PI < 2 
of the P I axis. 

The branch in region V is bounded by the region itself; 
whether the branch in region VI is bounded or unbounded 
depends on the value of m. In terms of the general quadratic 

h =ml
2p/ + m2 [(1 + m/ - mllPl - 2]pz 

+ m/Pl l - 2ml2pl + K, 

where K is an arbitrary parameter, the function/is 

f = (h1] + K)/ml + (m 2J2 - KlPtP2' 
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The discriminant of h is 

D = m22[(1 + m22 - m 2 )2 - 4m 2
2

]. (18) 

For m < 1m2 - II this discriminant is positive; hence the 
curves h = 0 exist and are hyperbolas lying in regions V, VI, 
and VII and in the lower left corner of the first quadrant. 
Their transverse axis lies 4SQ below the P t axis. (The inequal
ity cannot occur for m 2 = 1.) On the particular curve hI = 0 
withK = m 2J2, Eq. (17)showsthat/ = m 2 J 21m2 > O. On the 
curve h2 = 0 with K = m 2J 2 - 1, however, (17) gives 
/ = PIP2 + (m 2J 2 - l)1m2, which is negative for all points 
such thatpIPz <(1 - m 2J2)lm 2· Hence, unbounded 
branches of (12) exist in regions VI and VII for all m such 
that 0 <m < 1m2 - 11· 

In region VII rearranging/ as 

/= 17! mz(P1 + P2f - 2(P2 + m2/ltl 
+ [(m2 - 1)2 - m2]PIP21 + m2J2pIP2 (19) 

shows that/ <Oforal! m>lm2 - II, sincepz + m2/l1 is nega
tive. Therfore, no branches oflI2) exist in region VII for 
m>jm2 - 11. The branches which always exist in region VI 
are still unbounded for m = 1m2 - 11, because h t = 0 and 
hz = 0 are then parabolas in region VI. For m > 1m2 - 11 
and all sufficiently negative PIPz, the term 
[(m z - 1)2 - m 2]PIP2 in (l9) dominates the 2(Pz + m2/ll) 
term and forces/ < 0; hence, the locus of I 12) in region VI is 
now bounded. 

b.17= -l.Thelocusof17= -lconsistsofthep,and 
pz axes. Lettingp, = 0 and solving (12) for pz yield P2 = 0, 
21m2, and ± 00; settingpz = 0 yields PI = 0, 2, and ± 00. 
These solutions are valid for all values of m and J. For points 
near these solutions, the curves are approximately given by 

(P, = 2,P2 = 0), p2~m2(pt - 2)1(m 2J2 + m 2 
- m/), 

(20) 
(P, = 0,p2 = 2/ml)' PI~m2(p2 - 2/m 2 )1(m2J2 + m 2 - 1), 

(21 ) 

(PI = ± 00,P2 = 0), p2~(1 - m 2J zlm/PI 2)1mlPt, (22) 
(PI = O,PI = ± (0), PI~(1 - m ZJ zlm/p/)lm2/lz, (23) 
(PI = O,Pz = 0), Pz~ - m2/lI' (24) 

c) - I < 17 < O. The inequality - I < 17 < 0 defines region IV 
in the third quadrant, and a similar region in the first quad
rant. Equation (12), however, restrictspx to positive values 
in the first quadrant: 

Px = m(71 - J2)(17 + I )lm217(P2 + mIPI) > O. 

Hence, branches of(l2) exist in the first quadrant for this 
range of 17 only in regions IlIA and IIIB. For region IIIBJis 
less than zero on the boundary pz = O,p, > 2; greater than 
zero on the boundary 17 = 0; and greater than zero on the 
boundary Px = O. These and similar inequalities for the oth
er two regions show that branches of (12) exist in regions 
IlIA, IIIB, and IV for all m > 0 and J> O. It is also evident 
from (20) and (24) that the branch in region IlIA extends 
through (PI = 0, P2 = 21m2) to the branch in region V and 
through the origin to region VI. Equation (21) shows that the 
branch in region VI, which may be unbounded, is joined 
through (P I = 2, P2 = 0) to the branch in region IIIB. 

d. 0<71<12. For any value of 17>0, the value of mpx 
(PI + mIPd is positive (except at PI = 1, P2 = 2Im l ): 
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mpx(pz + mlP,) 
= m2(P, - 1)2 + (m2/lz - 1)21m2 + (m/ + l)17lmz>O. 

This and the additional restriction 17<J 2 imply that/> O. 
Hence there is no locus of(I2) in the regions of the first and 
third quadrants where 0<17<J 2. Furthermore, no branch of 
(12) with 17 < 0 can join a branch with 17 > J 2

• 

e. 17 > J 2. In region I of the first quadrant, where 71 > J 2, 

it is more convenient to consider the function 

F f IptP2(17 - p) 
= 17mpx(P, -I + m2/l2 -1)1(17 - J2) - m 2 (25) 

than/itself; the F = 0 and/ = 0 graphs are identical here. 
Setting the combinations PI aF lap, ±PzaF lap2 equal to 
zero yields the following conditions for the critical points of 

F: 
(26) 

and 

(27) 

Equation (26) requires PI > 1 and 

P2 = U2m2 + [U4m/ + p,(p, - I)J 1/2> Um2' (28) 

becausep, < 1 would imply m2/l2< 1 and thuspx <0 which is 
impossible in region I. The algebraic equation for PI in terms 
of the independent variable J resulting from using (28) to 
eliminate pz from (27) is complicated; the existence of a 
unique solution is most easily inferred indirectly. 

First, letpi > 1 be the independent variable. Then (27) 
and (28) give functions for pz and J such that (,o1"oZ) is a 
critical point of F. It is easily checked that the function for J 
is a strictly increasing function of P" Hence an inverse must 
exist: given any J> 0, there exists a unique PI> 1 such that 
(P,,p2) withpz given by (28) is a critical point of F. 

At the critical point, (12) shows that there is a unique 
value me ofm such thatF = O. For this valueofm the critical 
point is an absolute minimum of F as determined by the 
inequalities 

41 ==(d2F lap,dp2)2 - (a2F I dP( 2)(a2F Idp/) 

= - 4(1 - J2117)-lp,- P2- 4! m 2(P2 + mIPd(P/ + p/) 

+ (17 + 1)[17 + (m/p/ + 1)(P1 - 1) + (P/ + I) 
X(mIPz - 1)] 1<0 (29) 

and 
a 2FlapI 2<0. (30) 

Hence,J = F = 0 has no locus in region I for 0 < m < me; for 
m = me the locus is the critical point; and for m > me> the 
locus is a real curve. The m = me critical point locus deter
mined by (12), (26), and (27) corresponds to the circular mo
tion solution of Fokker's problem. This shows that me 
<1+mz·

7 

The region I locus for m > me may be bounded or un
bounded. If me < 1m2 - 11, then m can satisfy me 
< m < 1m2 - 11; in this case rewriting/ as 

/ = 17!m2(P, - 1)2 + m2(P2 - lImlf + 2mIPIPl 
+ [(I - m2f - m 2]PIPz 

- (m/ + l)lm21 + m2J~IPz 
shows that/> 0 for sufficiently large PI or pz and that the 
locus is bounded. For 1m2 - 11 <me < m < m2 + I, the dis-
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criminant (18) of the general quadratic h defined in (16) is 
negative. Hence h = 0 represents an ellipse, a circle, a point, 
or no locus. According to (17), the particular quadratic hi 
with K = m 2

J2 has the value hi = - m2J 2/77 < 0 on the lo
cus! = 0, which exists according to the last paragraph. Since 
hi> 0 at the origin, the curve hi = 0 exists and must be an 
ellipse surrounding! = O. Outside the ellipse h I is greater 
than zero. Hence (17) shows that 

!= (hl77 + m 2J2)/m2>0 

outside the ellipse, and the locus! = 0 is bounded. 
In the third quadrant rewriting! as 

!= 77(m2(P1 - P2f - 2(Pz + mpl) 

+ ((m 2 + If - m 2]P1P21 + m2
J2pIPz 

shows that!> 0 for 77 > J2 and m<;; 1 + m 2• Therefore, (12) 
has no locus in region II for m <;; 1 + m 2 • 

For m>mz + 1 the discriminant (18) implies that the 
locus h = 0 exists in region I as a parabola with its axis lying 
45" above the P I axis or as one branch of a hyperbola with its 
transverse axis at 45°. In either case (17) implies that 

! = m2J2/m2 > Oon the curveh 1 = OwithK = m2 J 2. ForaH 
points such that PlPz > (m 2 

J2 + 1 )lm 2 on the curve h3 = 0 
defined by K = m2J2 + 1, Eq. (17) yields 
!= - PIP2 + (m 2 J2 + 1)/m2 > O. Hence the locus of(12) is 
unbounded in region I for m>m2 + 1. The same analysis 
shows that the locus oft 12) exists and is unbounded in region 
II for m > m 1 + 1. 

The caseJ = 0, which has been excluded above, reduces 
(12) to 77 = 0 and 

(31 ) 

Fig. 4 shows loci of 77 = 0 and (31) for m2 = 2 and various 
values of m. The conditions for the existence of bounded and 
unbounded branches in regions I and II remain the same as 
for J> O. The loci of (12) for fixed m have an interesting 

~ 
0,2 

-3 -2 -I 

'1=0 

~ 
1.3 

FIG, 4. Examples of the locus of Eq. (31) and 1} = ° for g = - I, m2 = 2, 
J = 0. and the values of m indicated near each curve. 
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FIG, 5, The J-O limit of Eq, (12) illustrated for g = - I, m 2 = 2, 
m = 2.42, and the values of J indicated near each curve, 

singularity in the limit J-o, as illustrated for the first quad
rant by Fig. 5 with m 2 = 2 and m = 2.42. For any arbitrarily 
small positive value of J, the loci in regions I, IlIA, and lIIB 
are separated by the region 0 < 77 <J 2

; at J = 0 they merge 
into two intersecting curves. A similar singularity occurs in 
the third quadrant for values of m such that (31) intersects 
77 = O. Fig. 5 also serves to illustrate the general variation of 
the locus with J for fixed m. 

The effect of increasing m 1 is to move the pz axis inter
cept of the line P x = 0 closer to the origin and to move the 
curves 77 = o and 77 = J2 closer tothepi andp2 axes. Figure 6 
shows the first quadrant loci for J = 0.8, 
m - 1 - m2 = - 0.6, and increasing values of m 2 • Also in
cluded is the locus for m2 = 00, i.e., the graph for the relativ
istic one-body Coulomb problem with energy E and rest 
mass such that (E - mocz)lmocz = - 0.6 and with angular 
momentum J = 0.8. It is evident that the form of the locus is 
singular in the limit m c~ 00 , because the two-body loci never 
drop below 77 = J 2 in the first quadrant for any arbitrarily 
large value of m 2• (However, the Coulomb problem locus 
descends below the P \ axis only for values of J < 1.) 

For g = 0, Eq. (12) reduces to a quadratic relation be
tween PI andp2' It is easily shown that the loci of(12) exist 
only in region I and only for m > 1 + m z, and that they are 
unbounded. 

P, -100 

P, 

10 4 

FIG, 6. The m 2---> 00 limit ofEq, (12) il1ustrated for g = - I, J = 0,8, 
m - 1 - m 2 = - 0,6, and the values of m, indicated near each curve, 
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IV. PHYSICAL ORBITS 
The basic requirement for physical orbits in the context 

of Fokker's problem is that the Vn I' be timelike and future 
pointing. The additional assumptions that pl1 is timelike and 
future pointing and that (for definiteness) rO > 0 then imply 
that the p" are real and positive, and thus restrict the solu
tions off 12). Conversely, given that pfl is timelike and future 
pointing, that rO > 0, and that the Pn are real and positive, it 
follows that the u" II are timelike and future pointing. Squar
ing (11) and subtracting (2) yield 

(2tb - pf-2)m 2c2(Yn 2 - I) 

= [(2tb - Pr -2)g + mrCPr(t/J - PI- 2IP 
+ (mrct/JPIP2f(2lj; - PI- 2 

- P2 -2). 

Since 2t/J>Pl -2 + P2 -2 >p; -2 by (7), this shows that Y/> 1, 
that the v n I' are timelike, and that a rest frame exists for each 
particle. In the rest frame of particle n, the assumptions and 
the definition of p" imply that V"fl is future pointing. Hence, 
the first quadrant loci found for (12) with g = - 1 in the last 
section determine physical orbits for the two particles for an 
attractive force. Since changing the signs of the p" is equiv
alent to reversing the sign of g, the third quadrant loci are 
physical for repulsion. The general direction determined by 
(10) for the motion of~I(Tx),pirx)) on the curves as Tx in
creases is clockwise around each quadrant. Equation (4) 
shows that bounded branches of(12) determine bounded or
bits, and unbounded branches determine unbounded orbits. 

According to the last paragraph, the loci in regions I 
and II for J> 0, g¥O determine physical orbits similar in 
many respects to the orbits of the non relativistic two-body 
Kepler problem 

Region I Orbit Type Region II 

Attraction 

O<m <me No orbits 

m = me < 1 + m 2 circular orbit 

me < m < 1 + m 2 bounded orbits 

Repulsion 

O<m.;;;l + m 2 

unbounded orbits 1 + m2 <m 

However, there are several unusual features. For the 
smallest allowed values of m in both regions I and II, the 
branches lie entirely outside the curve 17 = 2J 2

• As m in
creases, the branches enlarge. move toward the curve 17 = J 2, 

and eventually cross 17 = 2J 2 as shown in Fig. 2. Hence, for 
any J there is a value of m such that for larger m every orbit 
contains a segment where 17 < 2J Z and 

(32) 

i.e., iI" is spacelike and the center of mass moves with an 
ordinary velocity larger than the speed oflight.2 Similarly, 
Fig. 3 illustrates that in region I the branches off 12) eventu
ally meet and cross one or both of the lines FI = P I - 1 = 0 
and F z = m2P2 - 1 = 0 as m increases. Along the segment 
of such a branch where Ff passes through zero and becomes 
temporarily negative, (4) shows that particle n moveS 
through the center of mass so that both particles are tempo
rarily on the same side of the center of mass. 

The J = 0 loci in regions I and II correspond to physical 
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one-dimensional motion, and the conditions for bounded 
and unbounded orbits are identical to those for J> O. How
ever, the physical significance of the discontinuity in the 
form of the graphs in the limit J-O is unclear. The same is 
true of the discontinuity in the limit m 2-oo. 

The branches in region IlIA, lIIB, and IV correspond 
to physical motion for all values of m > 0 and J> 0, but they 
have even more unusual features. Since 17 < 0 for these 
branches, (9) shows that the angular velocity of r is directed 
opposite to the angular momentum J. This is due to the 
presence of an interaction angular momentum which is larg
er than and opposite to the mechanical angular momentum. 
In both regions IlIA and IIIB, one of the rn is always nega
tive and the other always positive; hence the particles will 
always be on the same side of the center of mass. Equation 
(32) shows that ii' is always timelike in all three of these 
regions. 

V. DISCUSSION 
The analysis of (12) presented here specifies the rela

tions betweenp I andp2 for all possible orbits for given values 
of J>O, m > 0, and timelike total four-momentum. This in
formation is required in order to integrate (9) and (10) to find 
the angular and temporal dependence of PI and P2' Then (5) 
determines r', (3) determines r', and (4) determines the orbits 
of the two particles in the four-space of the center of motion 
system. This approach usingpl andp2 appears to be easier 
than using the single variablepx alone. The results of this 
continuing work will be presented in a future paper. 

Complications arise because (12) is fourth-order; for 
given fixed values of J>O, m > 0, andg there may be different 
orbits for different initial conditions. These orbits divide into 
two principal types: those with 17 > J 2 corresponding roughly 
to the orbits of the nonrelativistic two-body problem and 
those with 17 < O. In essence, the variable 17 determines the 
relation between the mechanical and interaction angular 
momenta, the sum of which gives the conserved total angu
lar momentum. For 17 > J 2 Eq. (9) shows that the velocity has 
the same direction as J; for 17 < 0 the interaction angular 
momentum dominates the mechanical angular momentum, 
and the angular velocity is in the opposite direction from J. 
The initial conditions determine the initial value of 17, and no 
branch of (12) with 17 < 0 can join a branch with 17 > J 2. 

The last section describes the various orbits possible for 
each of the principal types. Equation (12) plays a role similar 
to that of the equivalent one-dimensional energy equation in 
Newtonian physics: both determine many important fea
tures of the orbits without requiring the ful1 solution of the 
angular and temporal equations of motion. 

The analysis for timelike and future pointing particle 
velocities and total momentum generalizes in two ways. 
First, the continuity of the region lIlA and IIIB curves with 
those in regions V and VI already suggests that the corre
sponding orbits are physical in both sets of regions despite 
singularities at the cross-over points. Such an interpretation 
is easily accommodated within the present formalism and 
simply requires that the particle four-velocities be allowed to 
become infinite and past pointing. Second, for any given ini
tial particle positions and velocities, there are values of g 
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such that the total momentum is not timelike. Even in this 
case, (6) (with m 2c2 J 2 replaced by WI' W;, ;>0) and much of 
the formalism are still valid,2 but the interpretation of the 
centers of mass and motion must be modified. These exten
sions and the singularities in the J __ O and m 2-- 00 limits will 
also be addressed in future papers. 
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Inverse scattering inverse source theory 
Norbert N. Bojarski aI, bl 
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The inverse scattering inverse source problem associated with the inhomogeneous Helmholtz 
wave equation, the (special case) Sturm-Liouville (acoustic wave) equation, and the time
independent Schrodinger equation is treated. To this end, the concepts of a reference wave 
velocity and an associated free reference space Green's function spectrum are introduced. A 
modified Kirchhoff surface integral, containing only the gradient of the real part of this free 
reference space Green's function spectrum and the fields on a measurement surface is formulated, 
yielding an integral equation for the unknown fields and sources in the interior of the closed 
piecewise smooth surface on which the (remotely sensed) fields are known. A well-posed, analytic 
closed form solution of this integral equation for the unknown fields and their Laplacians is 
obtained with the aid of a (modified) spatial Fourier transform in which the reference velocity is 
continually varied in such a fashion that the Ewald sphere shell sweeps to fill the entire transform 
space. The unknown potential or medium properties and the unknown sources are then 
determined algebraically for the inverse scattering and inverse source problems respectively. The 
effects of finite sampling density and incomplete observation domain are discussed briefly. 

PACS numbers: 03.40.Kf, 03.65.Nk. 43.20. - f 
I. INTRODUCTION 

A unified formulation and solution is presented to the 
inverse scattering inverse source problems for the time-inde
pendent Schrodinger equation 

(I) 

the (special case) Sturm-Liouville (acoustic wave) equation 

vV) (x,w) + [W2!c2(X,W)]¢ (x,w) = 0, (2) 

and the inhomogeneous Helmholtz wave equation 

V2¢ (x,w) + (W2/C
2)¢ (x,w) = - p(x,w), (3) 

subject to the constitutive equation 

p(x,w) = V(x,w) ¢ (x,w). (4) 

To this end, the single mixed wave equation 

V2¢ (x,w) + [W2/C
2(X,w)]¢ (x,w) = - p(x,w) (5) 

is introduced, [still subject to the constitutive equation (4)], 
which reduces to (1), (2), or (3), depending on the choice of c 
andp in Eq. (5); i.e., (5) reduces to (3) if c is a known constant, 
(5) reduces to (2) if P = 0, and (5) reduces to (I) if W

2!c2 

= (2m/le)E andp is given by the constitutive equation (4). 

It is argued that the inverse scattering inverse source 
solution presented is an alternative (to the direct 1859 Kirch
hoff) integration of the wave equation. It is thus appropriate 
to review this direct integration of(5), as well as some of the 
properties of this direct integration. 

The direct integration of (5) is accomplished in the fol
lowing fashion: let a reference potential V, , a reference 
source distribution p, , and a total source distribution p r be 
defined, respectively, as 

V, =W2/C2(X,w) - W 2/,.2, (6) 

(7) 

a>rhis research was supported by the Office of Naval Research under 
contract N00014-76-C.o082. 

b)Research contractor and consultant to the Department of Defense. 

(8) 

where " is an arbitrarily chosen constant "free space" refer
ence velocity. With the aid ofEqs (6)-(8) Eqs. (5) can be re
written as 

(9) 

If G is chosen as the free space Green's function associated 
with the constant reference velocity if, then Kirchhotrs di
rect integration of Eq. (9) is 

idV GPr + f,dS.(GV¢ - ¢VG) = {~: ~::~, (10) 

which is an equivalent integral representation of the partial 
differential equation (9). It is assumed that the closed surface 
s is piecewise smooth. 

If the free space Green's function G satisfies the Som
merfeld radiation condition at infinity, then the Kirchhoff 
surface integral in (10) can be recognized as the incident field 
(the field in v due to all the sources not in v);i.e., 

(11) 

If the total source distribution PI is related to the field ¢ by 
the constitutive equation 

(12) 

then Eqs. (10)-(12) can be combined to yield the direct scat
tering Lippmann-Schwinger integral equation 

¢ -idV G VI ¢ = ¢,. (13) 

A brief review of some of the properties of the Kirchhoff 
surface integral 

(14) 

is now in order. Specifically, this Kirchhoff surface integral 
is an equivalence statement relating the field at a field point 
on one side of the closed surface produced by all the sources 
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on the other side of the closed surface, via the fields produced 
by these sources on this closed surface [an equivalence state
ment that permitted the identification of the incident field 
(11) and the formulation of the Lippmann-Schwinger direct 
scattering integral equation (13)]. The inverse scattering in
verse source problem is, however, characterized by both the 
field point for the unknown fields as well as all the unknown 
sources (that produce these fields) being on the same side of 
the closed surface (on which the remote sensing is accom
plished), for which situation the Kirchhoff surface integral 
vanishes, thus rendering this Kirchhoff surface integral use
less for the inverse scattering inverse source problem. A 
modified Kirchhoff surface integral, which does not suffer 
from this pathology, is introduced next. 

II. THE INVERSE SCATTERING INVERSE SOURCE 
INTEGRAL EQUATION 

Let G be the free reference space Green's function satis
fying the inhomogeneous Helmholtz wave equation 

V2G + (u//(,2)G = - 8 (IS) 

and the Sommerfeld radiation condition at infinity where (' 
is any arbitrarily chosen reference velocity. 

Next, let an effectal field () be defined as 

() =fdS.(Gr VifJ - ifJVGr), 

where 

G,=ReG, 

(16) 

(17) 

which, by (15), also satisfies the inhomogeneous Helmholtz 
wave equation 

V2Gr + (W 2/(,2)G r = - 8. ( 18) 

It should be noted that, by Eq. (16), the effectal field () (x) can 
be computed for 'tIxEV from mere knowledge of the field ifJ (x) 
'tIXES. 

By Green's theorem, Eq. (16) reduces to 

() = 1 dv (Gr V
2ifJ - ifJV2Gr), (19) 

which, by Eqs. (5) and (18), further reduces to 

() = 1 dv ( Gr ( - ~: - p) - ifJ (- :: - 8) ] (20) 

= IdV8ifJ - IdVGr(( :: - ::)ifJ +p], (21) 

where it should be noted that c = c(x,w). 
By the very definition of the Dirac delta function 

J,dV' 8(x - x')ifJ (x') = {~,(X), :::v' (22) 

With the aid of Eqs. (6)-(8) 

(W 2/C2 _w2j(,2)ifJ +p=p" (23) 

With the aid of Eqs. (22) and (23), Eq. (21) reduces to 

() = {ifJ - J,dV GrP, ,'tIXEV, (24) 

- ldVGrP, ,'tIx!tv 
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which is a proper (i.e. X,X'EV) inverse scattering inverse 
source integral equation. 

With the aid of the direct integration Eq. (10) and (11), 
this inverse scattering inverse source integral Eg. (24) re
duces to the less general 1973 inverse scattering inverse 
source integral equation of this author, I which was studied 
extensively by Bleistein and this author," Bleistein and Co
hen;' and others. 

III. SOLUTION OF THE INVERSE SCATTERING 
INVERSE SOURCE INTEGRAL EQUATION 

For the purpose of solving the inverse scattering inverse 
source integral equation (24), it becomes convenient to intro
duce the characteristic function y(x) for the volume of inte
gration v, defined by 

{
I, 'tIxEv (25) 

y(x)= 0, 'tIXEtv' 

with the aid ofEq. (25), Eq. (24) can be written as 

() (x,w,(,) = y(x) ifJ (x,w) 

- J"'oo Gr(xlx',w,(.) y(x')PAx',w,l') d"x'. (26) 

Introducing the characteristic source distribution 
py(x,w,(.), defined by 

Py(x,w,(.) y(x) p,(x,w,(,), 

permits the rewriting of Eq. (26) as 

() (x,w,(.) = y(x) ifJ (x,w) 

- I"'x Gr(xlx',w,t')py(x',w,(,)d"x ', 

which, in cartesian coordinates, can be rewritten as 

() (x,w,(.) = y(x) ifJ (x,w) 

(27) 

(28) 

- F" 00 Gr(x - x',w,(,)py(x',w,(,)d"x', (29) 

Since the Green's function Gr in Eq. (29) is a spatial differ
ence kernel in cartesian coordinates Eq. (29) can be further 
rewritten as the n-dimensional spatial convolution 

() (x,w",) = y(x) ifJ (x,w) - G,(x,W,l' )*Py(x,W,(,). (30) 

Taking the n-dimensional spatial Fourier transform of Eq. 
(29) thus yields the algebraic product equation 

It should be noted here that the field ifJ, and its spatial 
Fourier transform <$, does not depend on the arbitrarily cho
sen reference velocity I'. This is mathematically self evident 
since the wave equation (5) does not contain this arbitrarily 
chosen reference velocity (', and physically self evident since 
the physical field and its spatial Fourier transform cannot 
depend on the arbitrary choice of the reference velocity 1'. 

A digression examining some of the properties of the 
spatial Fourier transform of the Green's function is now in 
order. The spatial Fourier transform of the Green's function 
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IS 

- 1 
G (k,w,f' ) = p? 2? 

k - - OJ I,,-
+ (i1r/2k )[b(k - OJI,·) - b (k + OJI,·)]' (32) 

where P denotes the principal value; i.e., 

1 k? 21 2' .,.-VJ 
{ 

1 k 2....L E.,2/,,2 

P = -- OJ " 
k

2
_(t}21,,2 0, 'rIk 1 =OJ2/,,2' 

(33) 

It should be noted that the functional form of the spatial 
Fourier transform of the Green's function in k space is invar
iant to the dimensionality of the space, which is not the case 
for the Green's function in x space. Furthermore, the spatial 
Fourier transform of the real and imaginary parts of the 
Green's function are respectively 

(34) 

G, )(k,OJ",) = (1T12k )[<5(k - wi,·) - a(k + wi,.)]. (35) 

The notation used here for the imaginary part of the Green's 
function and its spatial Fourier transform is consistent with 
the notation used for the real part of the Green's function 
and its spatial Fourier transform; i.e., ReG = Gr++Gr and 
ImG; = G;+-+G; • 

Next, the support of the spatial Fourier transform of the 
real and imaginary parts of the Green's function is exam
ined. By Egs. (32)-(35) 

- 2 2 2 SupGr(k,w,,')E'rI k #W It' , 
- ? 2 2 SupG, (k,W,f')E 'V k - = wi,· , 

(36) 

(37) 

i.e., Gr(k,OJ",) is nonzero everywhere except on the Ewald 
sphere shell k 2 = w2/,,2, and G,(k,w",) is non-zero only on 
the Ewald sphere shell k 2 = w2/,,2; and conversely, 
Gr(k,OJ",) is zero only on the Ewald sphere shell k 2 = w2/,,2 
and G,(k,OJ".) is zero everywhere except on the Ewald sphere 
shell k 2 = w21,,2. Thus (on the Ewald sphere shell) 

Gr(k,OJ". )1, ~ ,,,/k = Gr(k,OJ,OJlk) = 0, (38) 

where k = Ikl. Equation (31), with the aid ofEq. (38), thus 
yields (on the Ewald sphere shell) 

e (k,U),U)lk ) = Y(k)·¢' (k,w). (39) 

It is noteworthy that for far-fields ¢> in Eq. (16), for which the 
volume v is infinite and y(k) = a (k), on the Ewald sphere 
shell in the spatial Fourier transform space, the known effec
tal field is equal to the unknown field. 

Earlier attempts at solving the inverse scattering in
verse source problems have yielded somewhat similar re
sults; i.e., a solution for the characteristics source distribu
tion on the Ewald sphere shell in the Fourier transform 
space. The difficulty with such solutions, however, is that 
the characteristic source distribution depends on the arbi
trarily chosen reference velocity, which precluded the deter
mination of the characteristic source distribution off the 
Ewald sphere shell, whereas the field, as used in this solu
tion, does not depend on this arbitrarily chosen reference 
velocity. It is thus possible to vary the arbitrary reference 
velocity in such a fashion that the Ewald sphere shell sweeps 
to fill the entire Fourier transform space. This is accom-
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plished simply as follows. 
Taking the spatial inverse Fourier transformofEq. (39), 

and recalling the definition (25), thus yields the desired solu
tion for the field ¢> in volume v; i.e., 

__ e - ;k,x8(k,U), w/k )d'lk = 'f' " , (40) I J-'" {'" (x OJ) 'rI XEV 

(21T)'I 00 0, 'rI xE£v 

and, by the Fourier transform differentiation rule, the solu
tion for the Laplacian of the field V2¢> in the volume v; i.e, 

__ 1_ (- oc e -,k-xe (k,OJ,w/k )k 2d '1k 
(21T)" J oc 

= {V2¢> IX,w), VXEV 
0, 'VxEiv 

(41) 

This solution [(40)and (41)] thus has the (previously men
tioned) desired properties converse to the properties of the 
direct Kirchhoff integration; i.e., for the case of the (un
known) sources being in the volume v, a solution is yielded 
for the fields if the field point is also in this volume v, and zero 
is yielded if the field point is not in this volume v; or, more 
generally, a solution for the fields is yielded if the sources and 
the field point are on the same side of the closed surface s, 
and zero is yielded if the sources and the field point are on 
different sides of the closed surface s. 

The above solution [(40) and (41)] depends only on 
elk, w, wlk), i.e., only on the values of the effectal field in 
the spatial Fourier transform space which are on the Ewald 
sphere shell k 2 = W2/,,2. Examination ofEq. (16) which de
fines this effectal field ¢> in real space shows it to consist of 
two terms, the first term depending only on the real part of 
the Green's function and the second term depending only on 
the gradient of the real part of the Green's function. Thus, in 
the spatial Fourier transform space, this effectal field con
sists also of two terms, the first depending only on the spatial 
Fourier transform of the real part of the Green's function, 
and the second term depending only on the spatial Fourier 
transform of the gradient of the real part of the Green's func
tion. However, on the Ewald sphere shell k 2 = U)2/" 2 in the 
spatial Fourier transform space this first term vanishes by 
(38). The second term, however, does not vanish on the 
Ewald sphere shell k 2 = OJ2/,,2 in the spatial Fourier trans
form space, since its support in k space behaves like the sup
port of the spatial Fourier transform of the imaginary part of 
the Green's function (see Eq. (32) et seq.]. It thus follows that 
this first term contributes nothing to the solution, which de
pends only on this second term. For the purpose of the solu
tion (40) and (41), Eq. (16) can thus be redefined as consisting 
only of this second term; i.e., 

(42) 

This is a particularly gratifying result since it obviates the 
need to evaluate (or measure) the gradient of the measured 
field, which in practice is difficult to accomplish accurately. 
It should be noted that solution Eq. (40) and (41) cannot be 
implemented for the D.C. case (i.e., w = a). since OJ = a pre
cludes the required sweeping of the Ewald sphere shell 
k 2 = OJ2/" 2 over all values of k by varying" and locks the 
Ewald sphere shell to the null sphere shell k = O. It should 
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further be noted that because of the functional form of the 
reference potential Vr which goes to 00 as lj- goes to zero (see 
Eqs. (6) and (21) et seq.) and the functional form of the argu
ment writ' of the Green's function G" in practice, 
B(k = W,l') cannot be evaluated numerically for if = 0, and 
hence not for k = 00. It thus follows (from the spatial Four
ier transform relationships involved) that infinite spatial res
olution for the fields and their Laplacian cannot be achieved. 

The entire solution of Eqs. (16)-(41) contains the spatial 
Fourier transforms of the field and the Green's function in 
such a fashion that the effects of finite sampling density [of ifJ 
in Eq. (16)] and incomplete observation domain [partial, 
open, not closed, surface of integration in Eq. (16)] results in 
solution ofEq. (40) and (41) yielding a degraded resolution of 
the fields and their Laplacian. The degree of this degraded 
resolution is determined by the spatial Fourier transform 
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uncertainty principle. Once the field ifJ and its Laplacian 
V2 ifJ has been determined by Eqs. (40) and (41), the unknown 
potential V (x,w) or the unknown medium propagation ve
locity c(x,w) can be evaluated algebraically by the appropri
ate wave equation and constitutive Eqs. (I )-(4) for the inverse 
scattering case; and similarly, the unknown source distribu
tion p(x,w) for the inverse source case. 
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A so-called generalized Weyl correspondence is defined among random variables on one side and 
linear operators in a separable Hilbert space ,}f" on the other. Besides such a correspondence, there 
is a relation among states on cW' (considered as positive nuclear operators on JY) and the 
distribution functions of the random variables. By adding some new assumptions, several 
relations are shown. Later, we study two particularly interesting cases. In the first we connect 
dichotomic random variables with number operators in a Grassmann algebra ,}f", and nuclear 
operators on cW' with probability measures in the set of all sequences made up of zero and one. In 
the second case we relate states between stochastic and quantum electrodynamics. 

PACS numbers: 03.65. - w 

INTRODUCTION 

The aim of the present paper is to present a further 
contribution to the theory which tries to write quantum me
chanics in terms of some kind of probability theory. Some 
attempts have already been made in that direction. The start
ing point of such attempts is usually to establish some rule of 
correspondence between quantum and classical observables, 
together with a further assumption, which allows the estab
lishment of a correspondence between states. (This assump
tion is, of course, that any observable has the same average 
value in any state in both theories.) These rules of correspon
dence were mainly compiled and studied by Agarwal and 
Wolf I One of the most natural was the Weyl correspon
dence. 2 It put in correspondencepjand qj' which are respec
tively momentum and position, in classical mechanics, with 
pjand ijj which are the corresponding variables in quantum 
mechanics by means of the conditions 

(ei(a,p, + {J,q, + ... + UnI'" + (3"q"» av 

t ei(u,fj, + {3,q, + ... + u.,/J" + (3"q") = rp , (1.1 ) 

where the ajand /3j 's are any real numbers, p is the state of 
the quantum mechanical system, and (--) av means average 
on some measure (state) in phase space. This implies immedi
ately that the correspondence between observables must fol
low the "symmetrizer" rule. For instance, the classical ob
servable pJqj under this correspondence is written, in 
quantum mechanics, 

1 (;;:2' "2 "') 
3 V'jqj + qjPj + PjqjPj . (1.2) 

One of the nicer features of the Weyl correspondence is 
that, following Kruger and Poffin, 3 it is uniquely defined by 
the statements of Galilei in variance, unitarity, reality, and 
normalization. Kruger and Poffyn also show that the re
quirement that free particles behave classically and the con
ditions for obtaining the correct mixed distributions also 
lead to the same result. We have also linearity for the sum 
and product by scalars. (That means that the classical vari
able apj + /3qj corresponds to apj + /3ijj' etc.) But we have 
the difficulty that the measure f..l, defined by 

'IPresent address: The University of Texas at Austin, Department ofPhys
ics, Austin, Texas 78712. 

(exp[i jtl (ajpj + /3jqj) ]) av = f exp[i jtl (ajPj + /3jqj) ]df..l 

(1.3) 

is not positive in general, and so with the given correspon
dence we cannot write quantum states as probability mea
sures in phase space; consequently, taking into account that 
this correspondence is the only one with nice physical prop
erties, it follows that we cannot look at the ordinary nonrela
tivistic quantum mechanics like classical statistical theory, 
at least as long as the statistics remains as is the case in the 
present theory. On the other hand, looking for the quantum 
states which give us a positive definite probability measure is 
a rather hard task.4 

In the present paper we extend the above definition to a 
more general set of random variables and linear operators on 
a Hilbert space. The idea of this generalization has been con
sidered previously in attempts to solve some stochastic dif
ferential equations by transforming them into differential 
equation for linear operators on a Hilbert space.5.6 Here we 
do make the generalization, applying mathematical rigor. 
We also describe two application. 

I. THE GENERALIZED WEYL CORRESPONDENCE 

Definition 1: Let J be an arbitrary index set and (Xj )jEJ 
and (Xj )jEJ be, respectively, two families of real random var
iables and linear operators on a separable Hilbert space cW'. 
If it is certain that there exists a nuclear operator p (finite 
trace linear operator) such that 

E ( i(UjXJ + ... +uJxJ » i(a x + .. ·+U x ) e " "" = trpe J,', '" J" , (l.l) 
for any finite set of indices {j1···jn}]CJ and any real num
bers aj , '" aj ,,' we will say that the random variables and the 
linear operators are connected by the generalized Weyl 
correspondence. 

. h (u x + ... + a x ) NotIce t at trpe J, J, J" J" always exists because 
the space of nuclear operators is a two-sided ideal in L (JY) 
(space of linear bounded operators on JY). On the other 
hand, we may consider that the X; have a nonincreasing 
distribution function. That means that the measure Ii on the 
sample space (fJ,fJ ) in which we are defining the X 's is really 

• • J 
a SIgned measure. But we claIm thatf..l(fJ ) = 1 as well, there-
fore trp = E (I) = 1, I being the identity in the space of ran-
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dom variables. However, we will work with the true random 
variables in which the distribution function increases, unless 
otherwise specified. 

The problem of the existence of solutions of the genera
lizerd Weyl correspondence has three different aspects. The 
first is the so-called direct problem, in which we start with a 
set of random variables (Xj )jEJ' and our goal is to find a 
separable Hilbert space ,W, a family (Xj )jEl of linear opera
tors on ,?(', and a nuclear operator p such that the relation
ship (1.1) is fulfilled. Connected with this there is the prob
lem of representation of random variable algebras 
(commutative) on operator algebras (generally noncommu
tative). A particular instance may be found in Ref. 6. 

The so-called inverse problem works reciprocally. Giv
en the separable Hilbert space ,W, the family oflinear opera
tors (Xj )jfJ' and the positive nuclear operator p, we propose 
to find the family of random variables (~)jEJ' which fulfills 
(1.1), assuming its existence. (Here solutions may be found 
with a nonincreasing distribution function.) An interesting 
example of this will be commented on in the second part of 
the present paper. 

Finally, we may start with oW', (Xj )jEl' and the family of 
variables (Xj )jEl' considered only as measurable functions 
from fl to R. We have then to find the set of probability 
measures [or signed measures with /-l(fl) = 1] on (fl,(3) and 
the set of positive nuclear operators p on ,W', which fulfil 
(1.1). A typical example of this is the representation of quan
tum mechanical states on phase space. (Note that the Wigner 
function, like the joint density function of Xj 's, may not be 
positively defined.) The study of this example is given in 
Refs. 7,8. 

Our next goal is to find necessary conditions for the 
existence of solutions of relation (1.1). We shall assert that 
trp = 1. However our definition is too general, so we have to 
introduce new assumptions in order to reach interesting con
clusions. The first two results are given here. 

Theorem 1: Let us asume that there is solution to (1.1) 
with the following properties: 

(a) Xj is a self-adjoint linear operator on ,jy (not neces
sarily bounded); 

(b) p is a positive nuclear operator. 
Then, 

(a) If Gj(x) is the resolution of the identity associated 
with xjand fj(x) the distribution function of the random 
variable Xj , we shall show that 

trpGj(x) = fj(x). (1.2) 

(b) If we call u(Xj ) the set of strictly monotonic points 
of the distribution function fj(x), and u(Xj) is the spectrum 
of xj ' then 

u(Xj ) CU(Xj ). (1.3) 

(c) If xjand Xj are bounded 

trpxi = E (Xi) VnEN. (1.4) 

Proof 
(a) Consider a i = 0 if i=/=j; 

(1.5) 

Since e'G!, is a unitary operator depending on the real 
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number a j , we can write, according to Stone's theorem. 

eia;, = f~ ~ eia,x dGj(x). (1.6) 

This integral is defined in the uniform sense, p is a con
tinuous operator, and the trace is a linear and continuous 
functional. (The continuity holds with the usual operator 
norm.) Therefore, we can write 

trpe
ia

;, = trp,~~=ocf leia,xdGj(x) 

~ -;:- oc k 

=trp I lim I/a,x"[G(x,,)-G(x n I)], 
oc/(-OOn=-_1 

suplxn - x" ,I~O, (1.7) 

with s - 1 = xo';;x, ';;···';;x, = s; XI!E(XI! _ I'X,,). 

Then 

.'i = oc k 

I lim I eia,x"[trpG (XI!) - trpG (x" I)] 
, oc,k "OC n ,,--- 1 

ia! I I = trpe " sup XI! - XI! _ I ~, ( 1.8) 

andsinceG (X),;;G (x')whenx,;;x' andp is positive, then trE (x) 
is a monotonic function. Hence the following Stieltjes inte
gral makes sense. 

f~ oc eia,x d [trpGj(x)), 

which isjust the preceding limit. By using (1.5) 

f= = eia,x dfj(x) = f~ = eia,x d [trpGj(x)]. 

Hence, 

(1.9) 

(1.10) 

Fj(x) = trpGj(x). (1.11) 
(b) This follows from (a). Lety be a discontinuous point 

in fj(x); theny will be a discontinuous point in Gj(x) as well, 
because of the continuity of trp( - ). Hence y belongs to the 
point spectrum of xj • On the other hand, assume y is a con
tinuous point in fj(x), but there is not any neighborhood ofy 
in which Fi(x) is constant. This also happens with Gj(x) for 
the same reason as before, so y will belong to the continuous 
spectrum of Xj' Hence u(Xj )Cu(Xj)' 

(c) Assume Xj and Xj' are bounded; then 

EVa;")=ELto (ia~~j)"]= II~O (i~)"E(Xj), (1.12) 

by the continuity on the mean, and 

.• 00 lao ( . )" 
t Uth '\' J t 'II rpe = £.. --- rpxj' 

II O~ 0 n! 
(1.13) 

and finally by (1.5) and due to the fact that a j is any real 
number, we get 

E (Xj) = trpx}. (1.14) 
Theorem 2: Let us assume the existence of a solution of 

(1.1) with the following properties: 
(a) the index set J is a finite one, 
(b) 'ill the operators Xj IjEJ) are self-adjoint, 
(c) p is a positive trace class operator 
(d) the variablesXj as well as the operatorsxj are bound

ed (VjEJ), 
(e) The range of ~'s is infinite; and 
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(f) The Xj's are linearly independent and so are their 
powers-we may obtain them by choosing the sample space 
n as the cartesian product of ranges of Xj 'so 

Let A be the complex algebra spanned by the variables 
Xj, their powers, and products. Let B be the algebra spanned 
by the Xj under the same conditions. A and B have the iden
tites and they are not necessarily complete. 

Then 
(a) There is a linear mapping g between A and B consid

ered as linear spaces, such that 

g(Xj) = xj , VjEJ. 

(b) (1.1) is equivalent to 

trpg(y) = E (y), VyEA. 

(c) Lety = X~' ... X~" then 

g(y) = (x7""x~')s' 

(US) 

(1.l6) 

(U7) 

where ( ) s means the symmetrized product of the operators 
contained in the bracket, that is to say, the sum of the pro
ducts, carried out in all possible ways, of the 
k = k, + ... + kIV operators divided by the number of such 
products, i.e., 

k! 
(1.18) 

k,! ... k IV ! 
(d) Let (a'i) be a nonsingular real matrix, and let us 

assume that there is a solution to (1.1) with Xj and xj ; 

j = 1 , ... ,N = card J, then there is another solution with the 
same p and with 

(1.19) 

instead of Xjand xj,j = 1, ... ,N. 
Proof: First of all, we give without proof the following 

lemma (see Appendix A). 
Lemma: Any yEA may be written as a linear combina-

tion of elements on the form ct ,AkXk Y where I is a natural 

number and Ak are complex numbers. 
Next, we prove the theorem. 
(a) We shall prove thatgis a linear mapping. Linearity is 

proved in (b). Here we show that it is really a mapping. In 
order to do that, we have to show that when two different 
representations of yEA as linear combinations of vectors, as 
in the lemma, are given, we obtain only one operator y such 
thaty = g(y). g is linear in its arguments, so it will be enough 
to prove our assertion on vectors in A which are of the form 
X ?, .. ,x ~" because any other vector must be a linear combi
nation of those vector. 

Let 

X k, k,,.. -f k/...+ .. +k k. U= ,,,,X n = LA,(ailX,+ ... +a,IVX.'V)'~ 
i= I 

n (k k k! k k~ k k =IA, ailx, + ... + ' ... ,ail', .. a,NX ,""X.v'" 
,~' k,. kJV. 

+ ... + a7,vx~) . (1.20) 

Due to statments (e) and (f) of Theorem 2, in order for 
this identity to be true, if (k ; , ... ,k :v ) is a multi-index differ-
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ent from (k", .. ,kN ), but both with modules k, we must have 

n k! k' k'. ~ k' k' IA a", .. aN'=O=> LAO., ' .. ,aN,v=O, 
i=l 'k'! ... k'N! I I i=1 I I I 

(1.21 ) 

and also 

On the other hand, 

g(y) =y = fA, (adx, + .. , + a'NxIV)k 
;= I 

( 1.23) 

where ( - ) p means that inside the bracket we have to write 
the sum of all products obtained by permuting in all possible 

ways the operators in the monomial x7''''X~N. Then by using 
the above equations on the coefficients we obtain 

(y) , k,! ... k IV ! ('k 'k~) ("k "k,) 
g = y = k! x, '',,xv p = x, ''''x,v s, (1.24) 

but this result is independent of the spanning ofy on vectors 
of the form as in the lemma. 

(b) Let yEA be as given in the lemma, 
M 

y = I c,(y,(, 
,(~, 

where 

YA = ct,a,,(x,)k;. 
We define g as 

M 

g(y) = I c,(g(y", ), 
'" == , 

( 1.2S) 

(1.26) 

(1.27) 

With this definition the linearity of g is guaranteed. On the 
other hand, it is easy to show that 0 (1.1) involves 

(
.'V )k ( IV ) trp ,~,a,,(x, "= E ,~,a,,tX, k", ( 1.28) 

or equivalently, trpg(y,t ) = E (y", ). By linearity 
trpg(y) = E (y)follows. Writingy,t = Xj, wehaveg(Xj) = xj • 

The converse is straightforward. 
(c) We have just shown it. 
(d) We must prove that 

E (e'(f'· Y, + ... + ",Y,,) = trpe'(a,y, + ... + a,;,,), (1.29) 

which is straightforward. 
Corollary: When, under the conditions of Theorem 2, 

there is a linear mapping g from A to B, considered as linear 
spaces, such that 

E (y) = trpg(y) VyEA, 

with 

(Xk'".X k:,)_ ("k" .. ,k'V). J-{12 N} g k IV - XI X.v x' - " ••. , t (1.30) 
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then, 

E (ei«l,X, + .. + a~Xv) = trpef(a,X, + ... " a,vxv). (1.31) 

We do not include the proof, which is straightforward. 

II. APPLICATIONS 

Application I: Representations of quantum mechanical 
states as probability measures in a sample space by using 
countable dichotomic random variables 

In the following we are going to show the possibility of 
representing states in nonrelativistic quantum mechanics 
(usually considered as nuclear positive operators with trace 
one) as probability measures in a sample space. 

Let us consider the sample space n = fiiENn i where il; 
= {O, I}. Here n is the set of all sequences iEN of zeros and 

ones. Let us consider the complex completed algebra A gen
erated by the identity and the projections X; :n_n;, with a 
supremum norm. As a consequence of the Stone-Weisstrass 
theorem, A is the set of all continuous functions over n. In 
addition, we have to construct an operator algebra on a Hil
bert space, *-congruent to the function algebra A. We start 
by considering an infinite-dimensional separable Hilbert 
space 'r, along with the Grassmann algebra 
,W = EB::" oa( r/'$ )P, where a denotes the antisymmetric 
operator in CV'$ )P. If (e; LN is an orthonormal basis in 'P', 
an orthonormal basis in (Jr" will be made up of elements of 
the form 

X , =In'(el\ ... l\e.) 
/ 1"",/" "'\j. 'I I" ' 

(2.1) 

where i , < i2 < ... < in' Since the number of X;, ... ;" is countable, 
,W' is infinite-dimensional and separable. Now we define b + 

(e i )and b - (e;) to be the usual creation and annihilation 
operators. Such operators can be extended to the whole 
space ,;y' by linearity and continuity, and they are indeed a 
representation of canonical anticommutation relations. 

Let us now consider the set of bounded operators 
~ = b + (ej )b - (ej ) associated with each ej in the basis 
chosen in r. Their well-known properties are 

N j + = ~,NJ = Nj , and NjNk = ° V#k). Moreover I, N
" N 2, ••• ,Np, NIN2,N2N" ... ,NI ... Np"'" are linearly indepen

dent. If we consider the closure (with the usual norm in L Py) 
of the linear space spanned by this basis, we reach a complete 
algebra, which we shall call B. We shall call A and E, respec
tively, the algebras generated linearly by projections and op
erators, having identities but lacking completeness. 

In the following we are going to give several lemmas. 
We shall omit their proofs, which are in all the cases 
straightforward. 

Lemma I: A and Bare *-congruent, i.e., they are *
isomorphic and this isomorphism in bicontinuous. 

Lemma II: The above case admits a solution of general
ized Weyl correspondence if and only if 

E(X) = trpg(X), V'XEA. (2.2) 

Let us consider now a state p on .57'"'. Such an object is a 
linear positive operator with trace one (density operator). 
Our aim is to show that one can find a unique probability 
measure on n (endowed with the usual Borel a-algebra) in 
correspondence with p. The more generalform of a density 
operator on ,W' is, 
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p = fA;I¢) (¢il, with fA; = 1, 
i= 1 i= 1 

(2.3) 

where I¢;)E.-W' is the eigenvector of p with eigenvalue A; ;;;.0. 
Let us consider the open set in n of the form 

D = D i, '''ip = (iw",ip ) X fi;"'~ p + t fli ; pEN. The collection 
of such sets makes up a countable basis in the topology on n. 
That D is also closed implies the topology in n is noncon
nected. Consider the characteristic function 8 D of D. 
[ 8 D (w) = 1 if wED; 8 D (w) = ° if wiD. ] Therefore, 8 D is a 
continuous function. On the other hand, because D is depen
dent on a finite number of coordinates, one may write 8 D as a 
linear combination of some elements inA, i.e, I, X 1,X2, ••• ,xp, 
XtX2,.··,XtX2, ... ,XtX2"}{p' 

Hence 8 D EA and 8 D = g (8 D ) EB exists and is the same 
linear combination on I, Nt, N 2 , ••. , N tN2 ... Npas 8D in the 
linear basis in A. , 

Lemma III: The eigenvectors of 8,1 are those making up 

the basis Xk,..k" = ~ n! ek , 1\ ... I\e k ,,' (k , <k2 < ... < k n , so 
such numbers are indeed ordering numbers). If we call 
Vt, ... J,} (l<p) the ordering numbers of the places occupied 
by the nonzero coordinates in (il"",ip), we have 

8DXk, .. k" = Xk, ... k,,' if{}" ... ,},}C{k" ... ,kn }, 

8D Xk, ... k" = 0, otherwise. (2.4) 

We are now ready to construct a probability measure,u 
on il, corresponding to p through the use of the generalized 
Weyl correspondence, which by Lemma II and Riesz's theo
rem exists and is unique. To this end we must show 

E (8 D ) = trp8D , 

whence it follows that 

E(8D ) = 1 d,u = ,u(D) =,u [(it, ... ,ip)X IIi"'..p t til;] 

= ,u{X I = i,; X 2 = i 2, ••• ,Xp = i p }, 

(2.5) 

(2.6) 

giving us the probability of all measurable cylinders, hence 
the probability of all measurable sets. 

Let us calculate trp8 D' 

with 
(2.8) 

it < ... < i" 

Letting D = D;, ... ;", by the foregoing lemma 

trp8D = f I Ai IAi.k, .. k,Y = ,u(D). (2.9) 
;~ I {k, .. ,,,k..}CJ 

The second sum is extended to any set of ordered num
bers containing the setJ = Vt,j2, ... JJofthe orders in which 
are placing the ones in (i" ... ,ip) [for instance if(i" ... ,ip) 
= (1,0,0,1,0,1), J = \ 1,4,6\.] 

We write now the sequence of sets in n. 
Do=D, 

D t = (it, ... ,ip'O)X II;"'~p + 2il.., ... , 

DII = (i" ... ,ip ,0, ... ,0) X I1r p , n f I il;, (2.10) 
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jk<··'<j,. 

ip +" + 1 <jk 

Ik ... ·12. 
'J •• ···JeJk····Jh 

We note that Do:JDI :J···:JDn :J .... Then 

(2.11) 

Let us calculate such a limit. The expression which 
gives us/-l (Dn ) is the sum of two different series. The former 
is common to any /-l(Dn ). The second one is a double series 
which drops out as n goes to infinity. Hence 

(2.12) 

On the other hand, n;; = I D n has only one point, namely 
(il, ... ,ip ' 0,0, ... ,0, ... ). Furthermore, by adding all contribu
tions to the measure of all points of this kind we ge 

~ ~ klk .1 2 = ~kll·"·112= ~k=trp=l. ~ ~ I 'JI •.. ·JI ~ I 'f/t ~ I 
i = Ii. < ... <jf i = I i = 1 

(2.13) 
This implies that the measure is concentrated on points 
which contain a finite number of ones and is zero on the 
others. We have thus obtained a necessary condition for a 
state on A to correspond to a state on JY'. Any other state on 
A which gives us (according to Riesz's theorem) a measure 
which does not satisfy this condition, cannot correspond 
with a state on JY'. 

We now prove the converse. Let /-l be a probability mea
sure on fl, which is of the type described above. Then we can 
choose a state on JY' (but not uniquely) which corresponds to 
/-l according to Weyl generalized correspondence. 

Lemma IV: Let the set of the form 
D = D; ... ; = (i1, ... ,ip)X II;~p+ Ifl;. The set of characteristic 
function; OD of these sets span the algebra by linear combi
nations and products. 

A straightforward consequence of this lemma is that 
proving trlpg D) = E (0 D) is equivalent to proving the exis
tence of a solution ofthe generalized Weyl correspondence 
(by Lemma II). 

Now let us write 

/-l (i I,···,in ,0, ... ,0 ... ) = Aj " .J,' (2.14) 

wherej., ... j[ are the orders of the ip which are different from 
zero, and let 

(2.15) 

A straightforward caculation of trpg D gives immediately 
/-l(D) and hence our result, which we summarize in the next 
theorem. 

Theorem: To a state E on A, i.e., a positive definite con
tinuous functional, there corresponds a state p on JY' accord
ing to the generalized Weyl correspondence if and only if the 
measure /-l on fl associated with the state E (by Riesz's theo
rem) is concentrated in the points in of the form (il,. .. ,in , 

0, ... ,0, ... ). 
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Remarks: 
(1) This correspondence between states is not one-to

one. To a state E on A there may correspond more than one p 
on JY'. Let us takep = };,= IA; ItP;) ItP; 1,ltP; being an orthon
ormal set in JY' with the condition that p does not commute 
with all elementary projections associated with the vectors 
Xj, .... J.· In correspondence with p we will have a probability 
measure /-l which will be concentrated on the points of the 
form (il, ... ,ip,O, ... ,O). By means of the above arguments we 
can associate with /-l another density operator p'lp =!=p' be
causep does not commute with all projections in whichp' is 
spanned). 

(2) The measure/-l on fl which corresponds to a density 
operator p on JY' is not independent of the choice of the basis 
in 'Y. The reason for this is simple; while trpgD is indepen
dent ofany change of basis, the correspondenceg (OD) = gD 
is not. 

(3) We can extend this correspondence in the theorem to 
all density matrices defined in any separable Hilbert space. 
Remember that two separable Hilbert spaces with the same 
dimensions are congruent. The case in which we have a fin
ite-dimensional space is described in Ref. 9 and to. 

(4) Ifwe have a pure state for 1, then the corresponding 
measure is concentrated in only one point. Then we can put 
it in correspondence with a pure state on JY'. The converse is 
not always true. 

(5)Bis not a von Neumann algebra, except if 'Y is finite
dimensional 

(6) The possibility of translating physical states into a 
new representation does not mean the possibility oftranslat
ing physics at all. First, because we have the same "transla
tion" for several states; and second, because we have no 
"translation" for most meaningful observables like position, 
momentum, and Hamiltonians. 

Nevertheless, there are some particular cases in which 
we can find physical applications for this construction. One 
of these is described in Ref. 10. 

Application II: Comparison between the states of the free 
radiation field given by stochastic and quantum electrody
namics with the Coulomb gauge 

(a) Stochastic free radiation field 
As is well-known, the free radiation field is character

ized by a vector potential, which in the Coulomb gauge and 
under periodic boundary conditions is shown to be, at any 
space-time point, 

:#(:t ) _ 1 ~~[ ::On ;(f{jl-w/l + . ::On -;(I<jl-w/ l ] 
/f. r,t - --3LL Cja~ e Cja~ e , 

Y/L j a 

(2.16) 

where L is the length of the side of a cubic box in which we 
have defined the boundary condition, Ea is the polarization 
vector, and !Sand Wj are, respectively, thejth propagation 
vector and frequency ofthejth plane wave, which form the 
wave packet. Finally a = 1,2, and) extends to all natural 
numbers because 

kxj,kyj,kzj = 2rrn/L. (2.17) 

The quantities cja are mathematical objects to be defined. In 
the stochastical theory cja are independent Gaussian ran
dom variables, so}f(r,t) is a stochastic field. A study of such 
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fields is given, for instance, in Ref. 11. If we define 
Qja and Pja as real random variables such that 

Cja = ~ [Qja + ~/ja ]. (2.18) 

C being the speed of light in vacuum, we have the vector 
potential described in terms of functions of real random var
iables. The states of the stochastic radiation field will be the 
joint distribution functions fo the variables Qja and Pja . Ifwe 
further assume that Qja and Pja are independent, we find 
that they are Gaussian also. Nevertheless we can assume 
from the beginning that the Qja and Pja are jointly Gaussian. 

The states of the stochastic radiation field can be also 
described by probability measures on a sample space in the 
following way. Consider il = I1t~ I ili.a where ilia are iden
tical copies of the real plane. Since wEil ia = (q ia ,P ia ), Qia 
and Pia are the projections Qia (qia,pia) = qia and 
Pia (qia'Pia) = Pia' IfQi and P, are jointly Gaussian, we can 
define a probability measure ,uiaOn the Borel sets Bia of ilia 
by 

where 

(Q . P ) = - a(Qi" + P:" + (3Q",P", + ,\Q", + rP", + /j). P la' fa e , a>O, 
(2.20) 

and 

(2.21) 

By means of the hypothesis that cia are independent we 
conclude that if B = Bi,a, X··· X Bi"a" XII: + I ili is a measur
able rectangle in il, 

,u(B)=,u. (B )X···X,u· (B ), 
flat fla. Ina" Inan 

(2.22) 

and therfore the measure,u can be extended in a unique way 
to all Borel sets in il. 

Finally note that the Hamiltonian becomes 

(2.23) 
j a 

so it is the sum of an infinite set of independent random 
variables, any of which represents a stochastic harmonic os
cillator. Remember that in the classical theory the free radi
ation field, with the Coulomb gauge, can be regarded as a 
countably infinite sequence of noncoupled harmonic 
oscillators. 

(b ) Formulation of the states in quantum mechanics 
We are looking for a formulation of the quantum free 

field which enables us to compare it with the stochastic one. 
The basic idea is that written above: consider the free radi
ation field as a sequence of noncoupled harmonic oscillators. 

Let A be the subset of the product ni~ I Ei (we should 
call them E ia but we do not do that in order to avoid unnec
essary complications in the notation) with Ei = Y 2 (R ), 
built up out of elements of the form (Vi, , ... ,vi",¢o,·",¢o",) 
where Vi, E.Y 2 (R ) and 

[ ]

1/4 
A. _ ~- ,,,,,,'/21l 
'/'0 - e , 

7Tfz 
(2.24) 
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is the ground state of the harmonic oscillator. Then a se
quence of square-summable functions belongs to A if and 
only if all its terms, except possibly a finite number of them 
are equal to ¢o' 

We now construct the tensorial product in the usual 
way: build up the C-free module T over A. T is the linear 
space spanned by the points in A regarded as linearly inde
pendent vectors. Let us pick in T elements of the form 

and 

+ ( - 1) (Vi"",Vip"",Vik'¢O'''' ) 

+ ( - 1) (Vi, "",Vip"",Vik ,¢o, ... ,), (2.25) 

(Vii "",Vip,o",Vik'¢>O""'<PW"") + (Vii , •. "Vil.,··"Uik,CPO'···)· 
(2.26) 

These elements span a subspace in T which we will call 

The factor space T ITI is the infinite tensorial product 
defined by Ei and ¢O> and we can prove easily that these 
elements behave like those in a usual tensorial product. The 
element (vI"",vp,¢o,""¢O>"') + TI E T ITI will be called a 
tensorial product ofvl, ... ,vp,¢o,""¢o,'''' and we will write 

VI ® ... ® Vp ® ¢o ® ... ® ¢o ® .... (2.27) 
The inner product is defined on T ITI as usual. If 

x = XI ®x2 ® ... ®xp ®¢o® "'®¢o® ... , (for instancep:>q) 

Y =YI ®Y2 ® ... ®yP ®¢o®'" ®¢o® ''', 

then 

(2.28) 

(xIY) = (x IIYI ),,,(xq IXq )",(xp I¢o)(¢ol¢o)"'(¢ol¢o) ... , 
(2.29) 

which is well defined and it is in fact an inner product in 
T ITI. The complexation of this space will be a Hilbert space, 
which we will call ,W'. Furthermore it can be shown that if' 
is separable. 

Let us now define observables on ,W', and in particular, 
the positions and momenta. 

By definition 

Qj'v = Qj ( V I ® ... ® v) ® .. , ® VI! ® ¢o'" ) 

= V I ® ... ® xv) ® ... ® v n ® ¢o'" and we extend the 
definition to the linear combinations of vectors in this form 
[of course XVj(x) must be square-summable]. 

On the other hand, thejth momentum operator will be 

, , d 
Pjv = VI ® ... ® ( - tli) dx vp ® ... ® VI! ® ¢O· .. , (2.30) 

and extensions by linearity [vp(x) must be an absolutely con
tinusous function with square-summable first derivative]. 

Since Qjand Pj are essentially self-adjoint operators, 
they can be extended to a bigger domain in which they are 
self-adjoint. Furthermore, in the common domain 
[y) Qp[yj p) (which is dense in ,W) we have 

[Qj,Pj] <iii!. (2.31) 

We also may define the ladder operators in the usual way. 
They are a representation of the canonical commutation re
lations over JY, with vacuum state given by 
¢o = ¢o ® ¢o ® ... ® ¢o ® ... as can be shown, 
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lPo = lPo ® lPo ® ... ® lPo ® ... as can be shown. 
(c) Relationship between both formalisms: We are going 

to compare both formalisms and look for the states which 
they have in common. The means of such a comparison will 
be our Weyl generalized correspondence. 

Pick a state P on JY'. A case of particular interest is that 
in which 

P = PI ® ... ®p" ®po®'" ®po"', with Po = IlPo) <1/101, 
(2.32) 

because then 
trpei(a,Q, + (3,P, + ... + a"Q" + (3"P,) 

= trplei(a,Q, + (3,D,) X ... trpnei(a"Q" + (3"P,,) 

= [1 ,ei(a,Q, + (3,P, )df.1l] x .. · [1 ,e'(a"Q" + (3,P")df.1n ] 

(2.33) 

= ( ei(a,Q, + ... (3"P·)df.1, (by Fubini's theorem). (2.34) 
J.o 

(The caret means we are working with operators, if it is not 
used we deal with random variables.) 
f.1 is uniquely defined by f.11 "·f.1n"· but is no longer a probabil
ity measure, because thef.1i 's are not. Therefore the quantum 
states described by P will not ordinarily be in correspondence 
with a "stochastic state." Furthermore, we know that only if 
every f.1i is jointly Gaussian in Q,and Pi will we have a "sto
chastic state." Conversely, if we start with a probability mea
sure on fl which is the product of probability measures on Il i 

(product of ranges of Qiand Pi)' we will find by using the 
generlized W ey I correspondence that a state P on £' of the 
above form isf.1 = III X"·Xlln X nk= "f.1k' where Ilk =Ilo, 
f.10 being the measure corresponding to Po, if 
.:1Pi.:1Qi ;;,fz12, 'rIi. (If f.1i is jointly Gaussian in Piand Qi' we 
are sure that the last inequality holds.) States different from 
these will be very difficult to compare. 

Let us begin with the ground state of the quantum field: 
P = 11/1) (1/11 with 1/1 = 1/10 ® lPo ® ... (or P = Po ®po ® ... ). Our 
questions are: What is the corresponding probability mea
sure f.1 on fl, given a state for the stochastic field, and what is 
the physical meaning of such measure in the context of sto
chastic electrodynamics? The answer is easy to reach, taking 
into account that our problem reduces to the one-dimension
al problem, as we can infer from the above formula by writ
ingpj =Po' 

The problem in one dimension is well-known and in the 
present case correspnds to the classical Weyl correspon
dence. Ifwe define the Wigner function (in one dimension) 
corresponding to the state Pk as 

Sei(a,Q, ~(3,P,)d", = Sei(a,Q, +(3,Pklf(Qk,P
k 

)dQkdPk' 

(2.35) 

it is well known that ifpk is a pure state, i.e·,Pk = IlPk) (I/Ik I, 
then 

fCQk'Pk ) 

1 foo 'TP 
= - e '¢k (Qk - ~fz7)¢k *(Qk + ~fz7)dr, (2.36) 

21T - 00 

and, dealing with pure states,j (Qk 'Pk ) is defined positive if 
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and only if I/Ik is a Gaussian function in its argument (Hud
son's theorem).4 

Coming back to the case in which every Pk equalspo we 
compute the Wigner function and find 

(2.37) 

and then df.1k =f(QK,Pk )dQkdPk is jointly Gaussian in 
Qk and Pk for all k. That means we have found a physical 
state of the stochastical radiation field. Furthermore, if we 
compute 

E ICk 12 = c
2 

E (Q n + _1_E (P~) 
4 Wk 

c2 fz 1 Wk fz 1 fzc2 =--+--- =--, (2.38) 
4 2wk Wk 2 4 Wk 

we see that this state behaves like background electromag
netic radiation, i.e., the ground state of the stochastic field. II 

If we now consider this ground state plus a planewave, 
whose potential vector is given by 

Il(!,t) = (fzc2/2Vwj )l2b€'cos(kj.r - Wjt + {) ), (2.39) 

the new variables Cu. become 

<1. = Cu. + b (_fzc_)I/2el~. 
2wj 

That implies that the new Wigner function is 

f(Q P ) 
- 1 { Qk - [(2fz/Wk) 1/2b cosbfwk 

k' k - £xp - ------fz----"--

_ [Pk - (2wd l
/
2
sin8 fl· 

Wk fl 

(2.40) 

(2.41) 

It can be shown that to this Wigner function there cor
responds a pure state in the quantum formalism, which is 

I/Ik(X) = C;~)1/2exp{ - ~~ [x - (2fz/Wk)1/ 2bcos8 ) y 

+ i(2wk/fI) 1I2bsino [x - (2fz/Wk )1/2bcos8 ]}. (2.42) 

If now the operator 

(2.43) 

acts over¢k(x) we get finallyakl/lk = be'blPk' which is a co
herent state of the one-dimensional oscillator. Thus we see 
that the stochastic field state, made up of the background 
radiation plus a plane wave (well known), corresponds by the 
generalized Weyl correspondence to the state 

tf; = ¢o ® .. ·1/10 ® lPk ® ¢o ® ... ® ¢o ® .... (2.44) 

If instead of one we have a finite number of plane 

waves, we get 

M. Gadella and E. Santos 1657 



                                                                                                                                    

ation in the quantum theory. 
We may try to improve this result by trying to put in 

correspondence more general states in both formalisms. But 
it does not seem possible. We do not know, for instance, how 
to represent the most general coherent state, and we are 
afraid that the quantum formalisms proposed here prevents 
us from further generalizations. E. Santos II proved in a non
rigorous way that any coherent quantum state can be put in 
correspondence with a state of the stochastical field, and we 
conjecture that the coherent states are the only ones for 
which this correspondence is possible. 

APPENDIX A: PROOF OF THE LEMMA IN THEOREM 2 
OF SECTION I 

The essential points of the proof are the statements (e) 
and (f) of Theorem 2. 

Let us first prove the lemma for A generated by XI = x 
and X2 = y. A is spanned by elements of the form xk',yk" kl 
and k2 being integers. 

If k = kl + k2' we have 

xk'yk, = AI(a l x + b l y)k + ... + Al (a/x + b/y)k. (AI) 

Here I is the number of terms in the span of (a + b t 
xk'yk, = Al [a~xk + (~)a7 - Iblxk- Iy + ." + b tyk ] 

+ ..1./ [a/xk + (~)a7 - Ib/Xk - Iy + ... + b 7yk] 

= (..1. la7 + A2a; + '" + Alanxk 

(A2) 

x andy are linearly independent and so are their powers and 
products of these powers by assumptions (e) and (f) in Theo
rem 2. From (A2) we obtain the following system of equa

tions inA I"",..i/: 

A1a7 + A2a~ + ... + AJa7 = 0, 

k-I (k) ..1. k-J (k) AJa l b l 1 + ... /a/ bl 1 =0, 

Ala~'b ;{:J + ... + A/a7'b 7{:J = 1, 

..1. I b 7 + ... + ..1. / b 7 = 0, 

which has a solution if and only if 

(A3) 

(A4) 

Now if we take b l = b2 = ... = b l = 1, the last determi
nant is a Vandermonde which is nonzero if and only if all the 
a, are different. We can always do this. Hence our problem 
has at least one solution (in fact more than one), which can be 
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found by applying Rouche's theorem and substituting the 
values found in to (AI). 

The result is now proved by induction on N. We assume 

M (N-I ) 
X7' ... X~N_: = ,?/' j?1 aj ,J0 k/. 

Now write 

Then 

N-I 
WI = L ajlXj , 

j~1 

k, kN' kN (M k/) kN X I .. ·X N _ 1 X N = ,?/' WI X N 

M 

= LAIW~/X~N 
I~ I 

M 

= LAI LJ.l;(a;WI +b;XN)k/+kN. 
I~ I i~ I 

(AS) 

(A6) 

(A7) 

(AS) 

(AS) follows from the independence of W1and X~ for allj 
and h. Hence (A 7) and (AS) imply the lemma. 

APPENDIX B: PROOF OF THE LEMMAS IN SECTION II 

Lemma I: If we can show this result for A and B, we 
have proved the lemma, because of the uniqueness of the 
closure of a normal *-algebra. Let Fbe an element of A. 

"1.···.Nk 

FEA ifF=AclA + L Ai" .. i,Xi .. ·Xi" (BI) 
il ..... i k = 1 

where IA is the identity in A. 
We define now the mapping from A onto B in the fol

lowing way. 

n 1,···,NI.; 

g(F) = Acln + L Ai, .. ,;,Ni, ... N i" (B2) 
i 1 ... ,i", = 1 

where In = g(IA) is the identity in B. 
It can be easily proved that g is an *-isomorphism be

tween the algebras. We claim that, in fact, g carries the topol
ogy in both directions. We prove it if we show that 

= 11..1.01 n + n'~f' Ai, "'i, N i, .. oNi, II· (B3) 
il' ...• i/,;= l 

The former of these two norms is the supremum of F. 
The variables Xi, , ... ,xi" may take only the values zero and 
one. Such a supremum must be the maximum of the positive 
numbers obtained with all possible sums of the following: 

(B4) 

It is only a matter of calculus to show that this is also 
equal to the right hand side of (B3). Then the lemma follows. 

Lemma II: This is straightforward if we take account of 
the continuity of expectation and trace. 

Lemma III: Let Ov be equal to F(I, X I,x2"'" XI .. ,xp, 
where Fmust be linear in its arguments. Then 

Ov (Di, .. ,;p) = 1 = F(I, XI' X 2,···,xI·"Xp )' 

[ UI''',iP)X fIni =F(I,i l ,i2 , ... ,i l ... i n )]. 
p+1 

(BS) 
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On the other hand, 

F (1,l,.12, .. ,I, ... lp) = 0, if (l,,l2, ... lp)# (i"i2, ... ,ip ).(B6) 

Then 

F (I,N"N2, .. ,N, ... Np )Xh, .... h, 

= F (x h, .... h"N,X h, .... h"N, ... NpX h, ... ,h, ) 

= F (l,O'h, ,02h, , .. ,O'h ,02h, .. ,Oph
p

)' 

wherever r;;.p. If r <p then 

Nr+ ,Xh" ... ,h, = 0, 

NpX h" ... ,h, = 0, 

Accordingly, the first row in (B7) must be 

Xh,,. .. ,h, ifo;h, =i" ... ,Oph
p 

=iporifr<p, 

ir + 1 = .. , = ip = 0, 
or ° otherwise, 

(B7) 

(BS) 

Lemma IV: Let C{! be the algebra spanned by the fuc
tions of the form 0D' Obviously (ft CA. 

Consider now X k : 

Xk[ (i" ... ,ik -"I)X;JI+
2 
nil = 1, (B9) 
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Then 
, 

'" {jD . , L 1 ••.••• '1; \. 
(BlO) 

i p .• ,i/( I=-O 

henceXk EC{!, The random variablesXk spanA, Consequent
ly A C C{! =>A = cr;, 
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We construct sesquilinear forms which are invariant under the similarity groups of the Klein
Gordon and Helmholtz equations. These give rise to positive definite inner products on subspaces 
of solutions of these equations. For the Klein-Gordon case, the known Poincare-invariant inner 
product for positive-energy solutions is recovered. For the Helmholtz case, a new Euclidean
invariant inner product is presented which involves the function and its normal derivative to a 
line, integrated non locally over that line. 

PACS numbers: 03.65. - w, 11.30. - j 

1. INTRODUCTION 

The Klein-Gordon and Helmholtz equations can be 
written in the form 

(I) 

where (T = - I for the Klein-Gordon case and (T = + 1 for 
the Helmholtz case. The use of t as a "time" variable in the 
Helmholtz equation is somewhat unusual, but it will be help
ful to think of it as generating an evolution in one direction in 
the q, t plane. 

Each of these equations can be rewritten as a system, 

'fi,·mljf(q,t) = a,Jf(q,t ), (2a) 

'fla.ml _ ( 0 
2 - _ (Ta 2 _ m2 

q 

( 
I(q,t)) 

jf(q,t) = J,(q,t)' (2b) 

For many applications it is important to have a positive 
definite inner product on the space of initial data If (q,O) in 
which the evolution described by (2) will be unitary. For the 
Schrodinger equation of quantum mechanics, for instance, 
such a time-translation invariant sesquilinear form is simply 
they2(.1'?) inner product, which gives rise to a positive defi
nite norm and which allows us to regard time evolution as a 
unitary process. 

For (1) and (2) we will consider inner products defined 
through sesquilinear forms, 

C"(Jf,g) = JX '" dq J~ CfC dq'(f(q,t)* J,(q,t J*) 

X (M~I (q,q') M<:2(q,q'))( g(q',t)) 

\.M~I (q,q') M~2(q,q') \g,(q',t) 
(3) 

with a metric kerneIIIM~k(q,q')II· 
In Sec. 2, the problems we address are: 
(a) To find all metric kernels such that (3) is invariant 

under the similarity group of transformations-including, 
of course, time evolution-which leave (1) invariant. 

(b) To find all subspaces of the solution space of (1) for 
which the invariant (3) is positive definite. 

The similarity group of (1) will then be isometric in (3), 
meaning in particular that the double-integration line in (3) 
may be translated and rotated in the q, t plane (in the Euclid
ean or Lorentz sense, for the Helmholtz or Klein-Gordon 
case, respectively), without changing the value of the 
integral. 

If 

j(w,t) = (21T)-1/2 Joc oc dq I(q,t)e ''''q (4a) 

is the Fourier transform of/(q,t) with respect to q, then the 
solution of (1) can be explicitly written as 

I(q,t) = (21T) - 1/2 f: '" dw e'",q [j(w,O)cos( [m 2 - (T(u
2] 1I2t ) 

+ ], (w,OHm" - (TW 2 ]- I nsin( [m 2 
_ (TW2] I 12t )!. 

(4b) 

For the Klein-Gordon case ((T = - 1) this formula shows 
that the initial value problem is well posed. For the Helm
holtz case ((T = 1), on the other hand, the possibly complex 
argument of the trigonometric functions implies that the ini
tial value problem for (1) is ill posed. I The evolution defined 
by (2), consequently, cannot be unitary in the usual sense. 
However, ifj(w,t) = 0,], (w,t) = Of or iwi > m, then the initial 
value problem is well posed. Such solutions will be called 
"oscillatory" (or finite-energy) solutions. 

In Secs. 3 and 4 we condense the results for the Klein
Gordon and Helmholtz equations, respectively. Some fur
ther comments on the interest of conserved sesquilinear 
forms in the context of group theory and integral transforms 
are offered in Sec. 5. 

2. SIMILARITY ALGEBRAS AND INVARIANT 
SESaUILlNEAR FORMS 

The differential equations (1) of second order in time, 
when written in a two-component first-order form (2a), dis
play the operator 1l'~,.ml in (2b) as generating translations in 
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the second argument of the solution two-vector f(q,t). Trans
lations in the first argument of f(q,t ) are generated by 

TI = (~ :). 
q 

(5) 

Lorentz transformations (u = - 1) or Euclidean rota
tions (u = 1) in the q, t plane are generated by 

R la.ml = q (6) (
-uta q ) 

- ~!q,m2 + ua~ I + - utaq , 

where [A,B I + =AB+BAistheanticommutatorofAand 
B. These three operators obey the commutation relations 

[T I,Tt;·ml] = 0, [Rla,ml,T I] = - Tt;·ml, 

rRla,ml,Tt;·ml ] = uTI' P) 

We thus identify the three operators as the generators of the 
component of the identity of the Lie group IO~ [to mean 
10(1,1)'-\ foru= -I,andISO(2)foru= 1]. In addition to 
these we have the discrete generators of space inversion and, 
for u = - 1, time inversion as well. These complete the 
Poincare and Euclidean invariance groups ofEqs. (1) and (2). 
The Lie algebra (7) is the similarity algebra of these equa
tions. Its elements commute with Th",ml - at, and hence map 
solutions into solutions. 2 Initial conditions, of course, need 
not be invariant nor covariant under these transformations. 

In order that an IO~ transformation, exp (a A), be iso
metric under a nondegenerate sesquilinear form (3), the gen
erator A must be skew-Hermitian under it, i.e., C"(AIf,g) 
= C"(If, Ag). Through integration by parts, sufficient differ

ential and boundary conditions can be found to guarantee 
this. The metric kernel matrix elements M ~k' (q,q'), 
k,k' = 1,2 in (3) are then determined by differential equa
tions from the matrix elements A kk , (q,aq ) of A, as 

=0, (8) 

where T is the operator transpose: qT = q, a; = - aq and 
(AB)T =BTAT. 

Sufficient boundary conditions-which will determine 
suitable classes offunction pairs f(q,t I-are (deleting the ar
gument t) 

f~ 00 dq ,ffk(q)* );".%' [M~k" (q,), Ak "k', gk' I = 0, (9a) 

f"x dq'~& .. ~) [MZ"k'(' ,q'), A t"k' ftlgk,(q') = 0, (9b) 

wherefl(q) andf2(q) aref(q) and/, (q), respectively, and 

,j"j! u,A,v I = foo 00 dx [u(x)A (x,ax )v(x) - v(x)A (x,ax)T u(x) J. 
(9c) 

Equations (9) will be analyzed once the consequences of the 
formal equation (8) are drawn. 

We shall examine now the implication of(8) for the IO~ 
algebra generators. Substitution of T I into (8) yields 
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(aq + aq,)MZk, (q,q') = 0, k,k' = 1,2 

and hence 

(lOa) 

MZk,(q,q') = M~k,(q - q'), k,k' = 1,2, (lOb) 

i.e., the in general noolocal metric kernel must be diagonal in 
the integration varifbles q and q'. Invariance under space 
inversions may be seen separately to lead to the requirement 
that M ~k' (Iq - q'l) be even functions of their argument. 

Invariance under t -translations results from substitut
ing Th"·rnl from (2) in:o (8), leading to 

Mf2(q,q') = -M~I (q,q'), (lIa) 

[ua~ + m2]M~2(q,q') = Mfl(q,q') 
= [ua~, + m2]M~2(q,q'), (lIb) 

(a~-a~,)M~k,(q,q')=O, k,k'=I,2. (lIc) 

The last equations mean that aJl M ~k' (q,q') can be written as 
a function of q - q' plus a function of q + q'. The latter is 
zero due to (10). 

Finally, invariance under boosts/rotations (6) leads, to
gether with (10) and (11), to 

- + - - + um M 22 Z = , [ 
d 2 1 d 2] (]" () 0 
dz2 

Z dz 

Mfl(z) = - ~!!.... M~2(Z), 
z dz 

(12a) 

(I2b) 

(12c) 

for z = q - q'. Equation (12a) is the Bessel (u = 1) or the 
modified Bessel (u = - 1) differential equation of order 
zero, while (12b) displays the raising operator for these func
tions. The solution of (12c) is a Dirac t). 

Invariance under the Poincare or Euclidean group thus 

determines the metric kernel, for arbitrary constants a ± , 

b ±, C ± as foJlows. For the Klein-Gordon equation case 

M III(Z) = m2[a-Idmz)lmz - b -KI(mz)lmz], (13a) 

M; I(Z) = a-Io(mz) + b - Ko(mz), 

M 12 I(Z) = c- t)(z) = - M 211(z), 

while for the Helmholtz equation case, it is 

(l3b) 

(13c) 

M 1\ I(Z) = m2 [a+ JI(mz)lmz + b + Ydmz)lmz], (14a) 

M 2; I(Z) = a+ Jo(mz) + b + Yo(mz), (14b) 

Mlil(Z)=C+t)(z)= -M;/(z). (14c) 

Now, if the solutions f(q,t ) and g(q,t) are only assumed to 
be differentiable and 2'2(.09) functions of q, then the bound
ary conditions (9) for (13) and (14) disqualify the modified 
Bessel function term, on the basis of its exponentially grow
ing asymptotic behavior. This forces us to set a- = O. Under 
the same assumptions of the solutions, the requirement that 
(3) be finite implies that M kk , (z) be in ,'.I' I (,'ll). This disquali
fies the Macdonald and Neumann function terms KI(z)lz 
and YI(z)lz, which have a Z-2 singularity at the origin, thus 
forcing b - = 0 and b + = O. 
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3. THE KLEIN-GORDON CASE 

For the Klein-Gordon case we areleft with the antidia
gonalterm (13c). Choosingc- ~ - ~t.c ins~re that C .-.I(f,f) 
be real, we obtain the unique POIncare-Invanant sesqulhnear 
form 

C K 
- G (f,g) = - J: 00 dq (f(q,t)* f,(q,t)*) 

x( ~ 1 ~)~(~:/J (15) 

leading to an inner product where the 1hree generators of 
10( 1, 1) t+ are skew-Hermitian in the space of ,!£,2 solutions. 
This invariant inner product for the Klein-Gordon equation 
is known . .1 It appears to have been first recognized by Klein 
and Gordon,4 who considered conserved current densities 
derived from the continuity condition. 

As to the positivity of (15), the Fourier transform with 
respect to t of the solution space .yK - G of the Klein-Gor
don equation, is the space of y2(9P) functions of a variable 
E, whose physical interpretation is that of energy, with sup
port on (- 00, - m]u[m, (0). Finite 10(1,I)t+ transforma
tions map this space onto itself. Further, under space inver
sion, yK - G maps onto itself and (15) is also invariant under 
this transformation, and hence under 10( 1,1) t. Time inver
sion, on the other hand, is not an in variance transformation 
of the sesquilinear form (15). For t = 0, time derivatives will 
change sign and (15) does so likewise. Time inversion ex
changes the two parts of .yK - G having Fourier transforms 
with support on (m, (0) and ( - 00, - m]. We call them 
,YKt- - G, respectively: Positive- and negative-energy solution 
spa~es. The sesquilinear form (15) on y~ - G is positive defi
nite, i.e., C K - G(f, f) > 0 for 0 =lfEY":-- G. The usual proof of 
this statement.l makes use of the Fourier decomposition of 
if(q,t) with respect to t. A positive definite sesquilinear form 
on the function space .yKf - G allows for the introduction of a 
nondegenerate inner product defining a complex Hilbert 
space and an associated norm. The known innerproduct.( 15) 
for the Klein-Gordon solution space has been thus redertved 
and validated as the only such 10 (1,I)t invariant form. 

4. THE HELMHOLTZ CASE 

Regarding the Helmholtz equation case, the require
ment of skew-Hermiticity in ,y2(Sf) of the Euclidean alge
bra generators T I' T~,m), and 1R1',ml, and invariance under 
space inversions led to the forms (3)-(14) with b + = O. The 
exponentiation of these generators to finite Euclidean tra~s
formations, however, differs in two respects from the Klem
Gordon case. First, time inversion, multiplied by space in
version, is an element of the finite group: A rotation by 1T. 

The antidiagonal part (13c) of the metric kernel changes sign 
under this operation and must therefore be absent from a 
Euclidean-invariant form. This leaves us with the only possi
ble sesquilinear form 
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C H (f,g) = c f'" 00 dq J: 00 dq' (f(q,t)* f, (q,t )*) 

(

m2JI(m[q-;,]) 0 )rg(q"t)) 
X m [q - q 1 \g (q' t) . 

o J()(m[q-q']) t, 

(16) 

For real c, C H(f,f) is real. 
Second, the solution space yll of the Helmholtz equa

tion contains both oscillatory and "exponential" solutions. 
The former have a Fourier transform, with respect to any 
line in the q,t plane, which is in ,y2(.'3?) with support on the 
interval[ - m,m]. They are elements ofa subspace which we 
denote by .Y;". The latter, whose behavior is exponentially 
growing in some direction on the q,t plane, are elements of a 

b ('If Th . . f ,/,f{ d ,/'11 subspace we denote y,'/", e mterseCtion o. "an . " 
is empty, and each is invariant under Euclidean transforma
tions. The Euclidean algebra generators are thus skew-Her
mitian under (16) for JJ~I and this sesquilinear form is invar
iant under all 10(2) transformations. 

Finally, the form (16) is positive definite on .Y;", as can 
be verified noting that the Fourier transforms of .:.1' 1(:19) 
functions m 2J I(mz)lmz and Jo(mz) have support on 

. 1 (/ )'/2( 2 2) + 1/2 h' h [ - m,m] and are, respective y 2 1T m - p . W IC 

are positive definite functions. The positive definite sesqui
linear form (16) on .Y';: (with c > 0) thus allows for the intro
duction ofa nondegenerate Euclidean-invariant inner prod
uct defining a Hilbert space and an associated norm. In 
contradistinction to (15), (16) appears to be new. 

5. DEFORMATION OF 102 AND NEW REALIZATIONS OF 
SO(2,1) 

As all separable Hilbert spaces are unitarily equivalent, 
the 102 generators given in (2b), (4), and (6), in the Hilbert 
spaces fK - G and f~/, may be mapped unitarily on the 
usual realization of the 102 generators on the hyperbola and 
circle and .:/2 spaces thereupon. In the latter spaces 1Ri",m l is 
realized as d /df/J, where for the Klein-Gordon case 
¢E/:Jl -+- .'19 (the two branches of a hyperbola), while for the 
Helmholtz case cpES I (the circle). The two other generators 
T I and T~7,m) become, respectively, operators with hyperbol
ic and trigonometric functions in cpo The corresponding Hil
bert spaces are .:/2(,;1'/) + .:/2(.'1?) and ..;/'"(SI)' respectively. 
The intertwining operators are easy to find as generating 
functions built out of the generalized plane-wave eigenbases 
of T I and T,;"m" and Dirac b 's for .f2(./I) -+- /2(,'19) and 
./"(S,). The Helmholtz case was analyzed in Ref. 5, while 
the Klein-Gordon case isjust as simple. The I02-invariant 
inner products (15) and (16) are then obtained from the corre
sponding ..;/'2 inner products with measure dcp. ! Note that 
for the Helmholtz case, the disqualified weight function in 
(14c) corresponds to the Euclidean noninvariant measure 
sign (f/J )drb, f/JE( - 1T,1T] I. 

In Ref. 5 we set out to deform 10" through 

00, = - im - IIRT 2 + rT " 
I¥.l;> = aim-'JRT I + TT2, ~l, = JR, 

S, Steinberg and K, S, Wolf 
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obtaining (for a = 1) 2 X 2 matrices of up to third order oper
ators, generators of a group SO(2, 1) with the well-known 
commutation relations 

[M1,M21 = aM3 
[M2,M3 1 = - aMI> [M3,M1l = - M2 (18) 

We also found the exponentiated action of ( 17) on :7;:, as a 
group of integral transforms on the two-component space 
function. The operators (17) for T = P + iaI2m,pE&/ are 
now skew-Hermitian under the inner product (15) or (16) for 
a = - lor 1, respectively. The corresponding group of in
tegral transforms 5 will be isometric under the same inner 
product. The group representation obtained in this way be
longs to Bargmann's continuous principal series6 C~ with 
p = ! + p2m 2,pE&/. The striking feature of this realization is 
that the kernel corresponding to the group unit element re
duces, not to a Dirac 8 as is usual for group realizations on 
£2 spaces, but to the reproducing kernel under (2). For the 
Helmholtz inner product (16), it is a diagonal matrix with 
elements sin (m[q - q/))/1r(q - q/). 

Under the action of the group of integral transforms 
generated by (17), we unitarily map solutions of (1) into solu
tions of the same equation. This is another example of trans
formations more general than the Lie transformations. 7 In 
the classical theory, we recall, groups of transformations 
may be generated only by first-order differential operators. 
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It should be stressed that the realization of the SO(2, 1) 
covering group given in this section remains to be studied in 
detail, on a par with the Bargmann realization6 of this group 
on S, (local measure for the continuous principal series, non 
local measure for the continuous exceptional6 and discreteH 

series) and the integral-transform realizations on 
&/+:2'2(&/+) for the discrete series9 and 2X2 matrices on 
the same space for the continuous series. to 

1 L. E. Payne, Improperly Posed Problems in Partial Differential Equations 
(SIAM, Philadelphia, 1975). 

2G. W. Bluman and J. D. Cole, Similarity Methodsfor Differential Equa
tions, Applied Mathematics Series, Vol. 13 (Springer, Berlin, 1974). 

'J. D. Bjorken and S. D. Drell, Relativisic Quantum Mechanics (McGraw
Hill, New York, 1964), pp. 6 and 186; P. Roman, Advanced Quantum 
Theory (Addison-Wesley, Reading, Mass., 1964~pp. 118-119. 

4W. Gordon, Z. Phys. 40, 117 (1926); O. Klein, ibid. 41, 407 (1927). 
'So Steinberg and K. B. Wolf, Nuovo Cimento A 53 149 (1979), Sec. 5. 
"Y. Bargmann, Ann. Math. 48,568 (1974). 
"V. I. Fushchich and A. G. Nikitin, J. Phys. A 12, 747 (1979). 
"C. P. Boyer and K. B. Wolf, J. Math. Phys. 16, 149311975). 
9K. B. Wolf, J. Math. Phys. 15,210211974). 
10K. B. Wolf, J. Math. Phys. 21, 680 (1980). 
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A recent paper established technical conditions for the construction of a class of induced 
representations of the nonrelativistic current group Y A cW, where Y is Schwartz's space of 
rapidly decreasingC "'functions, andY is agroup ofC oc diffeomorphisms ofRs

• Bose and Fermi 
N-particle systems were recovered as unitarily inequivalent induced representations of the group 
by lifting the action of ,5Y on an orbit L1 ~ Y' to its universal covering space J'. For s;;. 3,3 is the 
coordinate space for N particles, which is simply connected. In two-dimensional space, however, 
the coordinate space is multiply connected, implying induced representations other than those 
describing the usual Bose or Fermi statistics; these are explored in the present paper. Likewise the 
Aharonov-Bohm effect is described by means of induced representations of the local observables, 
defined in a nonsimply connected region of RS

• The vector potential plays no role in this 
description of the Aharonov-Bohm effect. 

PACS numbers: 03.6S.Bz 

I. INTRODUCTION 
Nonrelativistic quantum mechanics can be described 

by means of the local operators p(x}, the number density of 
particles, and J(x), the particle flux. When integrated with 
test functions having components in Schwartz' space ,Y' (C 00 

functions of rapid decrease), these operators form a Lie alge
bra. We definep(() = fp(xlf(x) dx and J(g} = fJ(x)·g(x) dx; 
then the commutation relations (at fixed time) become 

[P((I)' P((2}] = 0, ( 1.1) 

[P((), J(g)] = ip(g·Vf), (1.2) 

(1.3) 

where (gl' g2] = g2'Vgl - gl·Vg2 is the Lie bracket of the 
vector fields gl and g2' Exponentiation of the current com
mutators leads to the consideration of continuous unitary 
representations of the semidirect product group Y A .)f'; 
where Y' is Schwartz's space under addition, ,;V is a group 
of diffeomorphisms of Euclidean space under composition, 
and the group law is given by ((I' l\!1)'((2' l\!2) = ((I + f2°l\!I' 
l\!2°l\!I) for f"f2E.Y' and l\!1l\!2E.)f,·1-3 

The formalism of Gel'fand and Vilenkin4 describes a 
representation of Y' A ,)f' by means of a measure f.1 in .Y" 
(the space of tempered distributions), quasi-invariant under 
the action of ,5Y. For representations describing finitely 
many identical particles, f.1 is concentrated on a single orbit L1 
in .Y". In a recent paper the authors established technical 
conditions permitting the construction of a class of induced 
representations for the case of a non locally compact group 
such as the diffeomorphism group. 5 Induced representations 
of Y' A ,;V are obtained by lifting the action of ,;V on an orbit 
L1 to its universal covering space J'. In this way Bose and 
Fermi N-particle representations are recovered as induced 
representations on the same orbit, and it appears that repre-

"IWork supported by the U.S. Department of Energy. 

sentations describing parastatistics are similarly obtained. (, 
Thus the representations of Y A ,W depend importantly on 
the connectedness (more specifically, the homotopy) of the 
orbit on which the measure is concentrated. 

In three or more dimensions, the coordinate space for N 
particles is simply connected, even after removal of the set in 
which two particles have the same coordinates. In two-di
mensional space, however, the coordinate space is multiply 
connected, leading to induced representations other than the 
usual Bose or Fermi representations. These are described in 
Sec. II of the present paper. 

In Sec. III we apply our results to describe the Ahar
onov-Bohm effect 7 for a single boson or fermion exclusively 
in terms of observables. The reader who wishes to bypass the 
mathematical description of induced representations can 
proceed directly to this section. Excluding the particle from 
access to the region of non vanishing magnetic field results in 
a nonsimply connected orbit, and consequently a one-pa
rameter family of inequivalent induced representations of 
the current group. Our prescription leads to the choice of an 
irreducible representation which is equivalent to that ob
tained by requiring a phase shift A. in the wave function when 
the excluded region is circled once, where A. is proportional 
to the magnetic flux inside the excluded region at the instant 
that the particle is excluded. The vector potential for the 
magnetic field plays no role in this description of the Ahar
onov-Bohm effect. 

Our conclusions are discussed in Sec. IV. 

II. INDUCED REPRESENTATIONS OF THE CURRENT 
GROUP DESCRIBING PARTICLES IN TWO
DIMENSIONAL SPACE 

For a representation of ,,/ A ,;V describing N particles 
in s-dimensional, space, we have the .J)' -orbit 
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LI ~ = {FEY'!F= jt, F xJ ' xi'l=xj ('ii'l=j)}, 

where XiE RS, yll is the space of continuous linear function
als on Schwartz's space Y(R'), % is the diffeomorphism 
group of R' obtained by exponentiation of the current com
mutators, and Fx denotes the evaluation functional 
(Fx /) = f(x) for/EY. For ¢ E % we have ¢: Y'---+Y' given 
by 
(¢* F /) = (F /o¢) in the notation of earlier papers. 203•5 Then 

N N N 

¢* I Fx, = I ¢*FxJ = I FljI(X) 
j=l j=l j=' 

establishes LI ~ as a .)f·-orbit. LI ~ may be identified with the 
configuration space r ~ consisting of all (unordered) sets of N 
distinct points in R'. 

In Ref. 5 we showed how induced representations of 
. Y /\ % could be obtained by lifting the action of .5Y on an 
orbitLl to its universal covering space.J. For s;;;.3, the univer
sal covering space of LI ~ is the coordinate space ]RsN \D 
consisting of ordered N-tuples of distinct coodinates in R'. 
Here D is the set I (x"",x,,,) E ]R,N IXi = Xj for some i'l=j]. 
The projectionp:R,N \D---+L1I~ is given by p(x" ... , XN) = 
F x , + ... + Fx ,. The fundamental group 1T(L1 ~,F) for FELl ~ 
is just the symmetric group for N objects, S N' Let .5Y F de
note the stability group of F; i.e., % F = I ¢E.%/I¢*F = F]. 
Then there is a natural homomorphism from.5Y Fto SN' The 
two distinct one-dimensional representations of SN induce 
representations of ,:/ /\.5Y corresponding to bosons (repre
sentation of SN by + I) or fermions (representation of SN by 
± I). 

For s = 2, however, the covering space R2N \D is not 
the universal covering space of LI ~I. This is easily seen by 
considering the case of two particles with coordinates X,, 

Xo E ]R2. With y, = _I_(x, + xo) and Y2 = _I_(x, - x o), 
- \12 - \12 -

the condition x, '1= X2 is the condition Y 2'1= (0,0), while y, is 
unrestricted. Thus R2N \D is the space ]R4 without the two
dimensional subspace y 2 = (0,0). This space has the connect
edness of the Euclidean plane without the origin-a closed 
loop shrinks to a point if and only if the loop in]R2 defined by 
its Y2-coordinates does not enclose the origin. Consequently 
SN for N = 2 is not the fundamental group for LI i21, and there 
will be induced representations of ,Y /\.5Y other than the 
Bose and Fermi representations. 

For the case N = 2, denote the universal covering space 
of]R2N \D by C. Then C is the product ofR2 (the y,-coordi
nates) with a helical covering space H of]R2\ I (0,0)]. Writing 
Y2 in polar coordinates (r,O), with 0,;;; 0 < 21T, an element of 
H may be written Y 2 = (r, iJ), with - 00 < if < 00 • The projec
tionp is given by p(y"r,if) = (YI,r,O) with O~if(mod 21T). 

p p 
Thus we have C --+R4\D--+L1 i21 . The fundamental group 

1T(L1 i21, F x , + F x ,) is isomorphic to the additive group ofinte
gers l; the closed path ybased at the (unordered) pair I X"X 2 ] 

in r i21 is associated with n E l, where n is the (signed) number 
of half-turns of the vector x, - X2 as the path is traversed. 
The fundamental group 1T(]R41 D, (x, ,X2)) is isomorphic to the 
additive group 'Ii' of even integers. A one-dimensional repre-
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sentation of l induces a representation of Y' /\ ,5Y corre
sponding to bosons or fermions only when the subgroup go is 
represented by unity. In that case we have a representation of' 
ll'li = l2 (the integers mod 2); i.e., the permutation group 

S2' 
Let us look at the representation of Y /\.5Y induced by 

a general one-dimensional representation of l. Let 
TA (n) = eiAn for a ,;;; ;l. < 21T; thus;l. = a corresponds to our 
Bose representation and;l. = 1T to our Fermi representation. 
The Hilbert space JY' for the induced representation is the 
space of measurable and square-integrable functions 
Ij/ (y" r, if) which transform in accordance with the represen
tation TA ofl- th~t is, Ij/(y"r,if + n1T) = eiAnlj/(y"r,if); 
while the product Ij/.Ij/ (independent of n and thus defining a 
function on the orbit LI ~l) must be square integrable with 
respect to the normalized quasi-invariant measure f-l on LI ~l 
(locally equivalent to Lebesgue measure) . 

In writing down the representation U (()V (¢)ofY /\.5Y 
in .;Y', we recall that if ¢, is a continuous path connecting the 
identity e to ¢ in %, for 0 ,;;;t,;;; 1, then the path 
¢*, (Fx + Fx.) in LI ~l lifts to a unique path in C commencing 
at (y" ~,if), where (y" r,if) is any point in C such that 
(p0p)(y" r,if) = Fx, + Fx •. We denote by ¢*(y" r,if) the ter
minal point of such a path in C. The fact that this terminal 
point is independent of the choice of ¢, follows from Ref. 5 
(Lemma 1, p. 657). Then the representation is given by 

~ ~ i(F + F JI ~ -U(()«ft(y"r,O)=e x, •• «ft(y"r, 0), (2.1) 

and 

V(¢)Ij/(YI' r,if) = Ij/(¢*(y" r,if)) [ ~: (Fx, + F x ,)),12, 
(2.2) 

where Fx , + F x , = (P0p)(y"r, if), f-lw is the transformed 
measure on LI hll given by f-lljl (X) = f-l(¢* X) for a measurable 
set X, and df-lwldf-l is the Radon-Nikodym derivative. 

Let us examine what the representation ofEqs. (2.1) and 
(2.2) implies about symmetry under the exchange of particle 
coordinates. Suppose that ¢ either leaves fixed or exchanges 
the points x, and x2 in ]R2. The path ¢, from e to ¢ allows us 
to keep track of the number of times Xl and x 2 are "wound 
around" each other by ¢. This is not a well-defined quantity 
for RS with s > 2, because then RsN \D is simply connected, 
and for N = 2, any path describing an exchange of x, and x2 
can be continuously deformed into any other. Now if ¢ ex
changes x, and X 2 in ]R2 by means of (let us say) a counter
clockwise rotation by 1T, then ¢*(y, ,r, if) = (y, ,r, if + 1T), and 
Ij/ *(¢(y "r, if)) = eiA Ij/ (y "r, if) where). is not necessarily 0 or 
1T. Thus in two-dimensional space, quantum mechanics per
mits species of particles which are neither bosons nor 
fermions. 

In polar cordinates (r,O ), the angular momentum opera-
tor about the origin is (l/i)(a lao) (in appropriate physical 

units). Since 0 is the angle describing ;2 (x, - x2) in polar 

cordinates, ( 11 i)(a laO) describes the center of mass angular 
momentum of our two-particle, two-dimensional system. 
Now in L 2 ([O,1T]),(l/i)(a lao) may be defined on the domain 
of absolutely continuous functions <P whose derivatives be-
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long to L 2 and which are zero at 0 and 1T. This operator has 
deficiency indices (1,1), and hence has a one-parameter fam
ily of self-adjoint extensions, corresponding to domains of 
functions satisfying the boundary conditions 
(/> (1T) = eiA

(/> (0),0<..1. < 21T (Ref. 8). This establishes the 
condition required above on IjI (0). {Because in our case we 
are considering indistinguishable particles (11 i)(al ao ) is de
fined in L 2 ([0,1T]) rather than in L 2([0,21T]), as it would be if 
the particles were distinguishable.} For each distinct choice 
of self-adjoint extension, a different and inequivalent repre
sentation of..Y 1\ % is obtained. The infinitesimal gener
ators of one-parameter unitary subgroups in each represen
tation describe local particle densities and currents, and 
satisfy the same equal-time current algebra. In each repre
sentation the local operators for angular momentum and en
ergy density may be written as functions of the local particle 
densities and currents. 

For 0<..1. < 21T, the eigenfunctions of (1Ii)(a lao) are 
I/In (0) = ei

(2n + A !triO and (1Ii)(a lao )I/In = (2n + A. /1T)l/In • So 
for A. = 0 (spinless bosons) we obtain an angular momentum 
spectrum of even integers, for A. = 1 (spinless fermions) a 
spectrum of odd integers, and for other values of A. a spec
trum shifted from the even integers by A. 11T. Similarly 
- (a 21ao 2)l/In = (2n + A. 11T)2I/1n and the energy spectrum 

is also changed. So in two-dimensional space the quantum 
mechanics of local currents, as interpreted by means of in
duced representations of the local current group, permits 
species of particles with various local angular momentum 
and energy spectra which would not be permitted in higher
dimensional space. We shall observe that the mathematical 
framework used to describe the situation in two-dimensional 
space permits the interpretation of the Aharonov-Bohm ef
fect in terms of the choice of representation of the local cur
rent algebra. 

If the group % were enlarged to include global rota
tions of]R2, then the condition needed for Lemma 1, Ref. 5, 
would not hold. That is, if"', described a rotation by 21Tt for 
0< t < 1, we would have a closed loop in % for which 
"', (Fx, + F

X2
) could not be shrunk to a point in..:1 ~I. Then 

¢*(y hr, 0) would not be uniquely defined in C. In accordance 
with Ref.5 we must then identify the terminal points of all 
such paths, obtaining the covering space R4'\D instead of C. 
So one physical condition eliminating representations with 
A. :;60 or 1T (in the two- particle case) is the existence of a 
unitary representation of global rotations for which the total 
angular momentum operator is the infinitesimal generator. 
With three or more particles, however, even including global 
rotations does not eliminate the additional (non-Fermi and 
non-Bose) representations. For example, with three particles 
in two-dimensional space, one can still keep track of the 
number oftimes X1 "passes between" X2 and X3 given that 
["'(Xt!,"'(X2)'¢(X3) J = [X1,X2,X3J· The coordinate space is 
then R6 '\D, where 

D = ((X1' X2, x3)lx1 = X2JU[Xl = X3JU[X1 = X3J is the 
union of three four-dimensional subspaces. The universal 
covering space is considerably more complicated than in the 
two-particle case, and there exist additional induced repre
sentations of Y 1\ ,W. 
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In the next section we examine the Aharonov-Bohm 
effect from the viewpoint of induced representations of the 
local current group. 

III. THE AHARONOV·BOHM EFFECT IN TERMS OF 
LOCAL CURRENTS 

In this section we consider an infinite closed cylindrical 
region !l' in R3

, in which there is a magnetic field directed 
along the axis of the cylinder. Outside !l' it is assumed that 
there is no magnetic field. The important feature of !l' of 
course is that the region R3,\!l' is multiply connected. Thus, 
in the usual statement of the Aharonov-Bohm "paradox," 
there exist distinct choices for the magnetic vector potential 
A(x) which describes different magnetic fields 
B(x) = V X A(x) inside !l', but which have vanishing curl 
outside !l'. If a charged particle is excluded from :Y by 
means of a potential barrier, the usual quantum-mechanical 
equations of motion still have physically different solutions 
for different values of the magnetic flux inside:Y. This effect 
can be interpreted locally as caused by the supposedly" un
observable" field A, or alternatively as a consequence of an 
inevitable overlap between the region of non vanishing wave 
functions and the region of non vanishing B field. 7

•
9 Here we 

shall apply the results of the previous section to determine 
the representation of the algebra oflocal currents describing 
this situation. Since the local currents form a complete set of 
observables, we obtain a resolution of the apparent paradox. 

The equal-time current algebra describing charged par
ticles in the presence of an external (e-number) magnetic field 
B(x) is, in appropriate units, 

fp(ftl,P(f2)] = O. (3. I) 

fp(f), J(g)] = ip(g·V!), (3.2) 

[J(g1)' J(g2)] = iJ([g1' g2]) + Ip(B·(g1 xg1)), (3.3) 

as described in Ref. 10. 
In taking account of the fact that the particle is ex

cluded from !l', we restrict attention to test functions with 
support in R3 ,\!l', so that B·(g1 X g2) = 0 in Eq. (3.3). Thus it 
will be appropriate to consider representations of ,;r 1\ ,W, 
where Y is the additive group of Schwartz space functions 
which vanish in :Y, and % is the group of diffeomorphisms 
of R3 leaving points in :Y fixed. For a single particle, such a 
representation is described by a measure concentrated on the 
orbit in Y' given by..:1 = {Fx Ix E R3,\:y j. Since..:1 is not 
simply connected, there exists a family of inequivalent in
duced representations of Y 1\ ,W analogous to that found in 
the preceding section for the two-particle orbit of the diffeo
morphism group of ]Rl. As before, the fundamental group 
1T(..:1 ,Fx) is isomorphic to the additive group Z of integers, and 
representations of Z determine induced representations of 
Y 1\ ,W. The inducing construction gives a Hilbert space of 
wave functions on the universal covering space X, which is 
now parameterized by cylindrical coordinates (r, O,z) with 
- 00 < 0 < 00. The wave functions transform in accor-

dance with a representation of Z: 

1/1 (r,O + 21Tn,z) = eiAn 1/1 (r,O,z) (3.4) 

To make the correct physical choice of A., we consider 
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the situation before the potential barrier excluding the parti
cle from !.?l has been erected. Then we have expressions for 
p(j') and J (g) as differential operators in L 2 (R3

), without ex
cluding any regions, satisfying Eqs. (3.1)-(3.3). These are 

p(j') 1/1 (x) =J(x)l/I(x), (3.5) 

J (g)l/I(x) = {~[g(X)'V + V·g(x)] - g(x)·fdy (CU~1 B)(yr } 1/1 (x). 
~ ~x-y 

(3.6) 

Writing 1/1 = 1/1 (r,O,z) and imposing the usual boundary con
dition 1/1 (r,O,z) = 1/1 (r,217,z) on functions in the domain oU (g), 
we have a representation of Eqs. (3.1)-(3.3) by self-adjoint 
operators. The last term in Eq. (3.6) may be thought of as 
arising from the choice of the Coulomb gauge, 

A(x) = fdy (curl B)(y) . 
417lx - yl 

However, any other choice of gauge leads to a representation 
satisfying Eqs. (3.1 )-(3.3) that is unitarily equivalent to the 
representation given by Eqs. (3.5) and (3.6). 

Next we ask which induced representation of Y 1\ ,Y is 
determined by Eqs. (3.5) and (3.6) when the test functions are 
restricted to have support in R3'\2!. Define the unitary mul
tiplication operator Q in L 2 (R3

) by 

{ 

= 1/1 (x), for XE~ 

(QI/I )(x) = exp [ _ if~df.Sdy (curl B)(y) ] 1/1 (x), 
417ly' - yl 

(3.7) 

for x E RJ ,\.2, 

where y' moves along a path r from infinity to x. In order to 
make QI/I a well-defined function ofx, we specify a particular 
path for one value of x, and let the path vary continuously 
with x without passing through the region fl'. Now if g has 
support in R3,\~ it is easy to see, using the fact that 

B( ')=VXfd (curlB)(y) 
y y 4 I' I' 17 Y - Y 

thatJ'(g) = QJ(g)Q -I is a self-adjoint operatorinL 2 (R') re
presented by 

1 
J'(g) 1/1 (x) = 2i [g(x)·V + V·g(x)] 1/1 (x). 

The domain of J '(g)consists of functions satisfying the 
boundary condition 

1/1 (r,217,z) = e - iJJH1x).dSI/I (r,O,z), 

in R3 '\:.1' . 

(3.8) 

The representation J '(g) is easily seen to be a one-parti
cle induced representation with A = - f fB(x)'d S, if we ex
tend 1/1 from 0,;;;;0,;;;;217 to - 00 < 0 < 00 by 
1/1(0 + 217) = eiAI/I(O). 

Thus we see that in the situation where the magnetic 
field is confined to .2, but the particle is not excluded from 
.:.1', we have a unitary representation of a subgroup y' 1\ ,W 
of the full set of observables, obtained by restricting the sup
port of the test functions to R3 '\ ,'!/. Since this discussion has 
taken place under the assumption that the particle can pene
trate .:!!, there is not yet any Aharonov-Bohm paradox (nor 
does ,/, 1\ ,W generate a complete set of observables). The 
existence of induced representations of the current group for 
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which A is not an integral multiple of 217 is a direct conse
quence of the nonsimple connectedness of R3 '\ fl'. However 
the particular choice of A determining the choice of repre
sentation can be regarded as a boundary condition imposed 
by the penetration of the particle into the region where B #- 0, 
in accordance with Ref. 9. 

Thus a physical system in which B is confined to a cylin
drical or toroidal region establishes an induced representa
tion of Y 1\ ,W in the remaining region characterized by A. 
If we then introduce a potential barrier, the value of A re
mains constant for all values of the potential Vand we have 
the statement that however large the barrier becomes, phys
ical measurements outside it indicate the presence of the B 
field. 

If we permit V to become actually infinite, the represen
tation of ,/, 1\ ,W becomes a representation of the full set of 
local observables, and no longer merely a representation of a 
subgroup. Such a representation having been established, 
changes in B behind the infinite barrier can no longer effect a 
change to a unitarily inequivalent representation. There is 
no paradox; the outcomes of physical measurements simply 
depend on the representation of the current algebra, which 
in turn depends on the history of the system. Likewise there is 
no contradiction between the viewpoint that the effect 
should be described in terms of residual penetration of the 
barrier by the particle, and the viewpoint that the effect 
should be described in terms of the topology of the space 
outside the barrier. 

Remarks: 
1. Casati and Guarneri II have indicated that an exami

nation of hydrodynamic variables (e-number currents) can 
explain the Aharonov-Bohm effect without ascribing extra 
physical significance to A. In this section we have shown 
how a similar conclusion emerges naturally from the rigor
ous representation theory of local current operators. 

2. The induced representation theory described here 
can be applied directly to the case of more complicated non
simply connected spaces, with more than one cylinder or 
torus (possibly intertwined), or with knotted regions, within 
which there is a magnetic field and outside of which the field 
vanishes. The one-dimensional irreducible representations 
of the fundamental group will be described by means of an 
ordered set of parameters (Aj) associated with windings 
about the respective excluded regions. These representations 
will induce representations of.Y 1\ ,~/" describing the phys
ical situation outside the region of non vanishing B. 

In the case of intertwined or knotted regions, higher
dimensional irreducible representations of the fundamental 
group may induce representations of,/, 1\ .;,V in which there 
is no vector cyclic for the representation of ,Y' alone (i.e., for 
the particle density operatorsp(j') alone). It appears that such 
higher-dimensional induced representations could not be 
prepared physically by confining a magnetic field to the 
knotted region and erecting a knotted potential barrier. Con
sequently we do not offer a physical interpretation of these 
representations at the present time. 

IV. CONCLUSION 
We have examined induced representations of the 

group obtained by exponentiating the infinite-dimensional 
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Lie algebra of local nonrelativistic currents. In particular 
these representations arise when the particles are restricted 
to move in two-dimensional space, or when the test functions 
are restricted to have support in a multiply connected region. 
In the latter case, the representation theory oflocal currents 
gives us a useful perspective on the Aharonov-Bohm effect. 
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Hypervirial calculation of energy eigenvalues of a bounded centrally located 
harmonic oscillator 
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The diagonal hypervirial equations for enclosed quantum systems which obey boundary 
conditions ¢ (a) = ¢ (b ) = 0 are applied to calculate energy eigenvalues of a bounded centrally 
located harmonic oscillator. Hypervirial equations were previously derived by us [F. M. 
Fernandez and E. A. Castro, Int. J. Quantum Chem. (in press)), and recurrence rules are easier to 
deal with than previous formulas based on the roots of the hypergeometric series. The comparison 
of numerical results with those given by Vawter [R. Vawter, J. Math. Phys.14, 1864 (1973)] shows 
the greater accuracy of the hypervirial method. 

PACS numbers: 03.65.Db 

I. INTRODUCTION 

We have deduced the diagonal and off-diagonal hyper
vi rial equations for enclosed quantum systems, 

- ~cb "(x) + V(x)cb (x) = Ecb (x), ¢ (a) = ¢ (b) = 0, (1) 

in a previous work. I 
For the diagonal hypervirial theorem we have deduced 

the equations 

([H,f]) = 0, 

aE aE 
([H,jD J> = -f(b)- -f(a)-, 

ab aa 

(2) 

(3) 

wheref fix) is a differentiable function and D =a;ax. 
When the open interval (a,b ) is symmetric with respect to the 
coordinates origin (i.e., a = - b < 0) and V(x) is an even 
function, Eq. (3) is simplified to 

([H,jD J> = - f(b) aE . 
ab 

(4) 

Replacingf(x) by x N in Eqs. (2) and (4), we can eliminate the 
terms D and D 2 according to the Swenson and Danforth 
method. 2 In particular, when the potential function have the 
general form 

V(x) = ex 2m, m = 1,2,.··, e constant, (5) 

we obtain a recurrence relationship which relates average 
values of the coordinate powers with eigenvalues E and their 
derivatives with respect to b: 

+ £N(N - I)(N - 2)A N-3 + 2NEA N-I 

_ 2(N + m)eA ill t- 2m -- 1= _ b N aE 
ab' 

where 
A S=(xN

). 

(6) 

(7) 

As a particular case, Eq. (6) yields the vi rial theorem'.4 when 
N= 1 

2E - 2(m + l)eA 2m = - b aE . (8) 
ab 

From the expansion of E and A ill in power series of e, 

E = f Elsie" AN = !. A~e" (9) 
.<;=0 ~=-O 

and from the Hellmann-Feynman theorem"" 

aE =A 2m , 

ae 
(10) 

we can obtain a relation which determines E 1M I as a function 
ofb: 

aE(MI 
2(1 - (m + I)M)EIMI = - b ---;)b' (11) 

Eq. (11) assures us that a perturbational series for the energy 
can be written 

E= f e'k,b2((m + Ils- II (12) 
.<;=0 

where 

ko(n) = E~I(b = 1) = (n + I)21T2;8=e~, (13) 

kM(n) = E~\fl(b = 1) = A ~_ I (b = I)lM, M> O. (14) 

The elimination of aE lab from (6) and (8), the expansion of E 
and A N in power series of e, and the application ofEq. (10), 
allows us to deduce a set of equations which let the calcula
tion of the whole set of matrix elements (b = 1) I: 

A N= _1 __ N(N-I)AN-2 AO=I (15) 
° N + 1 8E (01 0 , 0 , 

A~= (l-(m+I)M)A 2m _N(N-I)A N - 2 
M(N + I)E(O) M-I 8E(()) M 

+ (M + m + 1) A N 1 2m __ 1_ ~ A;~ I A ~ s 

(N + I)E(O) M- I E(O) '~I S 

A ~ = 0, M>O. (16) 

The equations corresponding to the harmonic oscillator 
model are gotten at once by setting m= 1. The polynomial 
(12) adopts the folIowiong form (e = !): 

(17) 

Taking into account the asymptotic behavior of the eigenval
ues En (b ) associated with the harmonic oscillator, and con
sidering the limiting properties of cothz, Vawter7 proposed 
the approximation of such eigenvalues by way of the formula 

En (b) = (n + !)cothF(b 2), (18) 
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T ABLE I. Comparison of the exact energy eigenvalues of a bounded harmonic oscillator with other two approximate methods. 

L R ~",tL'1 

" 
1.0 9.90225 
1.5 4.45979 
2.0 2.59691 
2.5 1.77893 
3.0 1.37786 
3.5 1.17497 
40 1.07492 
4.5 1.028293 
5.0 1.00990 
5.5 1.00297 
6.0 1.00076 

where 

x 

F(x) = I C"x 2
" t I. 

" () 

9.90336 
4.46222 

2.60104 
1.7847<) 
1.38497 
1.18232 
1.08133 
1.03358 
1.01269 
1.00436 
1.00136 

R"I1.L I 

9.90226 
4.45979 

2.59688 
1. 77879 
1.37749 
1.17425 
1.07387 
1.02776 
1.00890 
1.00233 
1.000473 

( 19) 

The coefficients C" are calculated immediately by expand
ing cothF(b 2) in the relation (IS) in power series of band 
replacing E" (b ) by the polynomial (17). The formula for the 
first members of the set is 

C()= n + ~ 
ko 

C 1 = 
Ci~ 

3 n+! 
(20) 

C~ klC~ koC~ k ~Ci~ 
C2 = ----- + 

5 n+~ n+i n+~ 

Vawter 7 applied the roots of the confluent hypergeometric 
function to calculate the coefficients k" which constitutes a 
very long and tedious procedure, Instead of that we propose 
in this work the employment of Eqs. (15) and (16) (with 
m = 1). Our procedure has several advantages with respect 
to Vawter's method: (a) Eqs. (15) and (16) are easier to man
age than the roots of the hypergeometric function, from an 
analytical as well as from a computational standpoint, and 
(b) the confluent hypergeometric function can be used only 

R,,12,L) R"IVawter, Ref. 7) 

9.90226 9.90335 
4.45979 4.46221 
2.59692 2.60103 
1.77894 1.78478 
1.37788 1.38496 
1.175025 1.18232 
1.07506 1.08132 
1.02920 1.03358 
1.01028 1.01269 
1.00339 1.00436 
1.00115 1.00138 

for the harmonic oscillator model, while Eqs. (15) and (16) 
are appropriate to calculate coefficients k, of any potential 
function like (5). 

II. CALCULATION AND RESULTS 

Owing to the possibility of calculating just a finite num
ber (s) of coefficients C", 

F,(x) = i C"x 2
" I I, 

" () 

(21) 

we can get the eigenvalues up to a certain degree of approxi
mation 

E" (s,b ) = (n + ~)cothF\ (b 2). (22) 

The utilization ofEqs. (15) and (16) (with m = 1) allows us to 
determine at once as many coefficients k, as we need. The 
first three members of the set are 

I 
kl(n)=-- -0' 

6 Se" 

1 5 7 
k 2(n) = ---- - -- + 

IS0e~~ 96(e~~ f 12S(e~: )3 

(23) 

T ABLE II. First eigenvalue for the enclosed harmonic oscillator R /, calculated from Eq. (24). 

s h 05 2 1" 0.75 1.0 1.25 1.50 

9.902277144 5.000147687 4.460004516 2.598092070 1.783341345 1.390677394 
2 9.902258636 4.999999622 4.459793698 2.596907559 1.778822791 1.3 77185065 
3 9.902258647 5.000000003 4.459794385 2.596919752 1.778936356 1.377888226 
4 9.902258647 5.000000002 4.459794383 2.596919668 1.778934440 1.377863625 
5 9.902258647 5 . ()()()()()OO02 4.459794383 2.596919668 1.778934432 1.377863413 
6 9.902258647 5.000000002 4.459794383 2.596919668 I. 778934434 1.377863525 
7 9.902258647 5 . ()()()()()()()( 2 4.459794383 2.596919668 I. 778934433 1.377863516 
F"'''' -" 9.90225 5 . ()()()()() 4.45979 2.59691 1.77893 1.37786 

s' b 1.75 2.00 2.25 2.5 

1 1.2059231 1.13961 1.1490 1.21 
2 1.1719(X)5 1.06381 0.9953 0.92 
3 1.1751854 1.07629 1.0358 1.04 
4 1.1749725 1.07491 1.0287 1.01 
5 1.1749691 1.07487 1.0283 1.0 I 
6 1.1749724 1.07494 1.0292 1.013 
7 1.1749719 1.07492 1.0289 1.00S 
R""'" " 

1.17497 1.07492 1.208<J3 1.0099 
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Replacing (23) in formulae (20) we get the coefficients Ck 

(k = 0,1,2), and with them the eigenvalues with three de
grees of accuracy: En (s,b ), s = 0,1,2. In Table I we present 
the numerical values Ro(s,L ) = 2Eo(s,b ) as a function of 
L = 2b, together with exact values (R ~xact) reported by 
Vawter.7 The data in the third column [Ro(O,L )] correspond 
to that given by Vawter, and they are obtained by the sole 
inclusion of Co in the expansion (22). The two remaining 
columns show clearly the increase of accuracy when more 
coefficients are used. 

Finally we wish to show in numerical way, the conver
gence of the series (17) by calculating the partial sums 

s k 
R' = I -'-- b 4, _. 2 

n ,~O 2' . 
(24) 

For this purpose we have computed the coefficients k, from 
Eqs. (13)-(16) up to s = 7. In Table II we display the com
parison of eigenvalues R ~ calculated from Eq. (24) with re
spect to those given by Vawter for different choices of 
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b = L /2. For b < 2 our eigenvalues are the most accurate 
ones which have been calculated up to now. Especially, 
when b = 2 -I 12 the exact value of R ~ is 5, which means that 
in this neighborhood, the hypervirial-perturbational scheme 
of calculation is extremely good (exact up to the eighth deci
mal place). Higher eigenvalues are calculated with a similar 
ease. According to the previous discussion, Eqs. (12)-(16) 
permit the determination of any potential with a general 
form (5). In particular, we have recently presented the results 
for a quartic oscillator. 1 

'F. M. Fernandez and E. A. Castro, Int. J. Quantum Chern. (in press). 
'R. Swenson and S. Danforth, J. Chern. Phys. 57, 1734 (1972). 
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'w. Byers-Brown, J. Chern. Phys. 28, 522 (1958). 
;H. Hellmann, Einfuhrung in die Quantechemie (Deuticke, Leipzig, 1937). 
OR. P. Feynman, Phys. Rev. 56, 340 (1939). 
7R. Vawter, J. Math. Phys. 14, 1864 (1973). 
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A non-Hermitian matrix Hamiltonian H appears in the wavefunction form of a variety of many
body scattering theories. This operator acts on an arrangement channel Banach or Hilbert space 
1(;' = Ell ncr where ,r is the N-particle Hilbert space and a are certain arrangement channels. 
Various aspects of the spectral and semigroup theory for H are considered. The normalizable and 
weak (wavelike) eigenvectors ofH are naturally characterized as either physical or spurious. 
Typically H is scalar spectral and "equivalent" to H on an H-invariant subspace of physical 
solutions. If the eigenvectors form a basis, by constructing a suitable biorthogonal system, we 
show that H is scalar spectral on 'C. Other concepts including the channel space observables, 
trace class and trace, density matrix and Moller operators are developed. The sense in which the 
theory provides a "representation" of N-particle quantum mechanics and its equivalence to the 
usual Hilbert space theory is clarified. 

PACS numbers: 03.65.Nk,03.65.Db 

I. INTRODUCTION 
In the theory of many-particle scattering, formal diffi

culties arise because the kernels of the standard Lippman
Schwinger scattering equations are badly behaved (Wein
berg I) for N > 2 particles. This leads to problems with the 
solvability of both the T-matrix and wavefunction forms of 
these equations and with the uniqueness of scattering solu
tions of the latter (Redish2

). The approaches adopted to com
bat this problem implement various forms of channel de
composition for the potentials, T-matrices, etc. In much of 
this work a channel is defined as partition of the particle 
labels into clusters corresponding to physically stable states 
together with a specification of the bound-state quantum 
numbers for these. However, for the arrangement channel 
theory discussed in detail here, the channels are defined as 
any partition of the particle labels (independent of stability of 
the clusters) are are denoted a, (3, .... 

Most of these scattering theories result in T-matrix 
scattering equations which have the generic form 

(1.1) 

where the Tb•u are channel T-matrices, the Kb,c are the com
ponents of the kernel, and the Bh•a are inhomogeneous 
terms. The indices are either partition (i.e., channel) labels or 
chains of partitions (see Vanzani et al.'). Examples of the 
former are the Bencze-Redish-Sloan (BRS)4 equations and 
the Baer-Kouri-Levin-Tobocman (BKLT)5 equations. The 
latter include the Yakubovskii, (, Alt-Grassberger-Sandhas 
(AGS),7 and VanzaniK equations. The wave function form of 
the scattering equations for suitably defined components has 
a similar Fredholm structure. 

The object of these methods is to obtain exact sets of 
coupled scattering equations having the property that some 
finite iterate of the kernel is "connected". Polyzou and Re-

"'Operated for the U. S. Department of Energy by Iowa State University 
under contract No. W-7405-Eng-82. This research was supported by the 
Director for Energy Research. Office of Basic Energy Science, WPAS
KC-OI-OJ-01-2. 

dishY have given the following definition of a connectivity 
for an operator B on the N-particle Hilbert space where a is a 
partition ofthe N-particle labels with n" clusters. B has con
nectivitya if B commutes with the 3n" parameter unitary 
group of translations that describe the motion of the clusters 
of a; and these are the only translations with which B com
mutes. B is "connected" if it has connectivity (12 .. ·N), i.e., it 
only commutes with N-particle center of mass translations. 
One also may think of an a connected operator as one that 
vanishes (in the coordinate representation) as any particles in 
a single cluster of a are asymptotically separated. A techni
cal description of this condition is given by Polyzou Y and 
uses the strong operator topology. There is also a diagram
matic description of this property in terms of graph connec
tivity (Redish2

). Connectivity of an iterate of the kernel of 
some coupled scattering equations then means that each 
component of that iterate is a connected operator in the sense 
described above. 

Clearly, the homogeneous form of a connected kernel 
equation for the wavefunction components can not possess 
any wavelike solutions (as demonstrated by iteration of this 
equation), so uniqueness of scattering solutions is assured. 
The standard operating philosophy in this work is that con
nectivity for some iterate of the kernel leads to compactness 
for this or a higher iterate. This is termed the Fiber Compact
ness Assumption (FCA) by Polyzou and RedishY and from 
the extended form of Fredholm or Riesz-Schauder theory 
(Yosida 10), we know that it guarantees solvability of the cor
responding scattering equations (rigorously, at least for the 
T-matrix equations). The discussion here is somewhat over
simplified since in general it is only reasonable to assume the 
FCA for points of analyticity of the kernel.Y On the scatter
ing cut, the operators may no longer be compact but un
bounded solutions of the scattering equations still exist in 
general. T-matrices only make sense when applied to a dense 
set of initial states. So an analytic Fredholm theory is con
structed by choosing a Banach space norm to exclude other 
states. A proof of the modified form of the FCA has been 
given for a general class of "relatively bounded" potentials 
for the three-particle, two-cluster Faddeev equations. II 
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However, no proof exists in general except for more restrict
ed Rollnik classes of potentials (Reed and Simon 12). 

Vanzani 13 has considered in detail the relationships be
tween some of the different types of scattering equations. 
This analysis leads to an understanding of the origin of spur
ious solutions of the homogeneous form of (1.1) or the corre
sponding wavefunction equations. These are solutions 
which do not correspond to any physical solution of the N
particle Schrodinger equation. If no such solutions exist, 
then the equations are said to satisfy a constrained Fredholm 
alternative. 

A somewhat different approach has been adopted by 
Chandler and Gibson 14 using two-Hilbert space theory. Un
like other approaches, their more recent work 15 does not rely 
on the FCA but demonstrates rigorously that the kernel of 
their scattering equations is A-solvable (Petryshyn 16). This 
constraint is weaker than the FCA, but sufficient to guaran
tee solvability of the scattering equations. For a more de
tailed review of all these aspects of multi particle scattering, 
we refer the reader to Kowalski'sl7 article. 

Some of the above approaches lead to an unusual "re
presentation" of N-particle quantum mechanics character
ized by a non-Hermitian channel space Hamiltonian H.IM.I'! 
This operator acts on a channel space which is the direct sum 
(over certain channels a) of copies of the N-particle Hilbert 
space. Aspects of these time dependent and time indepen
dent wavefunction theories termed "arrangement channel 
quantum mechanics" were analyzed by Kouri, Kuger, and 
Levin20 for the BKL T choices of H. The Faddeev II equa
tions, a transposed form of the BRS21 equations and certain 
hybrid schemes22 also fall into this category. One way to 
view these theories is that they exploit the extra degree of 
flexibility in the non-Hermitian choice of the matrix H to 
achieve connected kernel scattering equations. The theory 
has not only been applied to the determination of multichan
nel Sand T matrices, but also to bound-state calculations. 23 
Hoffman, Kouri, and Top24 have shown how to define a 
channel space density matrix and have derived the corre
sponding von Neumann equation and BBGKY hierarchy. 

These theories are not in general expected to satisfy the 
constrained Fredholm alternative (except for the Faddeev 
case II). Chandler21 has demonstrated the possible existence 
of norma liz able spurious solutions of the three-particle, two
cluster BKLT equations by first considering a limiting sin
gular choice of potentials where the equations become alge
braic and then using Rouche's theorem to extend the result 
to a neighboring class of potentials. Glockle and Adhikari25 

have further elucidated the origin of these solutions. A dis
cussion for the BRS equations is given by Vanzani. 13 These 
normalizable spurious solutions will manifest themselves as 
eigenvectors of H (not corresponding to physical Schro
dinger equation solutions) with possibly complex 
eigenvalues. 

In Sec. II, some observations are made immediately on 
the relationship of the arrangement channel to the normal 
quantum theory, particularly, regarding the imbedding of 
physical solutions and the nature of spurious solutions. The 
latter are defined somewhat more generally here to include 
wavelike solutions and these playa useful role in analyzing 

1673 J. Math. Phys., Vol. 22, No.8, August 1981 

the structure of H. For a rigorous treatment, we choose a 
topology on the arrangement channel space (given by a Ban
ach space norm) which is naturally induced by that of the 
original N-particle Hilbert space. Certain results for the non
Hermitian H follow directly from spectral and semigroup 
theory. General channel space observables are discussed. 

Unlike other treatments, we consider first the arrange
ment channel theory for the spatially confined system in Sec. 
III. This is useful for applications to the statistical mechanics 
of reactive systems24,26 as well as for the introduction of var
ious mathematical concepts. Typically H is real eigenvalue 
scalar spectral (·-self-adjoint) and "equivalent" to H on an 
H-invariant subspace of physical solutions (with a mild tech
nical assumption). If the eigenvectors form a basis, by con
structing a biorthogonal system from these and their duals, 
we show that H is scalar spectral on C(j (with a simple func
tional calculus). Other concepts such as channel space pro
jection operators, trace class, trace, and density matrices are 
developed in a Banach space framework. The sense in which 
the theory provides a "representation" of N-particle quan
tum mechanics and its equivalance to the usual Hilbert space 
theory is clarified. 

These ideas are extended in Sec. IV to spatially infinite 
systems where the wavelike scattering solutions must be con
sidered. They are placed on a firmer mathematical basis by 
the introduction of the appropriate generalization of the 
Gel'fand triplet. In Sec. V some remarks are made on time
dependent scattering theory and statistical mechanics. In 
particular, we discuss the existence of channel space Moller 
operators and certain trace operator topologies. 

II. THE MATHEMATICAL FORMULATION 
We begin with the Schrodinger equation for a system of 

N distinguishable particles 

(A - H) 11/1) = 0 (time-independent), (2.1) 

(ill! -H) 11/1) = 0 (time dependent), (2.2) 

where the center of mass motion is removed from the Hamil
tonian H for spatially infinite systems. As previously, the 
channels (partitions of the particle labels) are denoted by a, 
{J, .... The most cruicial step in the development is the decom
position ofthe Hamiltonian H into channel components H a/3 

such that24 

(2.3) 
a 

(where a,/3 belong to the subset of channels of interest). The 
corresponding matrix structured operator denoted by H is 
called the channel space Hamiltonian (so [H] a/3 = H a/3)' A 
vector in the channel space upon which this operator acts is 
denoted by ~ with components 11/1 a) (so [~] a = 11/1 a ) ). 

The standard structure of H for a spatially infinite sys
tem with no external potential is described below. First de
compose H = K + V, where K is the kinetic energy and V 
the interparticle potentials. Let Va denote the sum of the 
interparticle potentials between particles in the same a clus
ters so Ha = K + Va is the corresponding channel Hamil
tonian. 17 The sum of residual interactions between particles 
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in different clusters is denoted by va = V - Va' so 
H = Ha + va for all a. Typically H is chosen so that 
Haa = Ha for all a. For this class of decompositions, we 
write 

H=Ho+V, (2.4) 

where [Hola(3 = 8a(3 H(3 and V is off-diagonal. For the cases 
mentioned in the introduction, the V is chosen with the po
tentialsin va distributed between [V](3a fordifferent/1 =fa, 
so that each component ofVn [or (Go (z)V)" where 
Go(z) = (z - HO)-I] is connected9 for some n. Such choices 
of V (or H) are usually referred to as "connected". 

For the Faddeev choice a, /1, ... are chosen from 
(12)(3),(13)(2), and (1)(23), and V, for pairwise interactions is 
given by 

(2.5) 

The potentials of the three-particle problems have the prop
erty that..Ea Va = V; hence, (2.3) is satisfied by the decompo
sition (2.5). The BKLT choice is given by 

[V]a(3 = W
U

(3 V(3, (2.6) 

where Wa (3 is any of (Nch - I)! channel permuting arrays5 
corresponding to single cycle permutations of the Nch chan
nel indices Thus (2-3) is satisfied. The transposed BRS21 

choice 

(2.7) 

is more complicated, though it still satisfies (2.3). Here na is 
the number of clusters in channel a, V~ consists of those 
potentials in Ha and not in H(3' and a,/3 range over all chan
nels. The N = 3 case reduces to the Faddeev equations after 
setting the (1)(2)(3) channel wavefunction component identi
cally zero. 

The channel space Schrodinger equation may now be 
written down as20 

(A. - H)qt = Q (time-independent) (2.8) 

(if! !.- - H qt = 0 (time-dependent). (2.9) at -
If qt satisfies (2.8) [resp. (2.9)], then, summing over compo
nents and using (2.3), it follows that24 

(2.10) 
a 

either satisfies (2.1) [resp. (2.2)] or I qt > = O. We return to this 
point later. 

For the formulation in terms of channel space to be 
useful, it is necessary for the channel space Schrodinger 
equation to exhibit at least some properties characteristic of 
the associated Hilbert space equation. The possibility of an 
imbedding of certain solutions of (2.1) into those of(2.8) is 
certainly suggested by (2.10), and in previous work has been 
assumed at least for scattering solutions with two cluster 
asymptotic conditions (and sometimes more generally). An 
imbedding of any scattering solution I qt l ) of energy E with 
channel/1 asymptotic clustering 1t,h(3) [where.8 consists of 
stable clusters and is contained in the decomposition (2-3)] is 
obtained from the solution to the equation [cf., (1.1)] 

~l = ¢!.p + Go±(E)V~l (2.11) 
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(should it exist). The asymptotic form ¢!.p of this solution 
satisfies 

(2.12) 

Here Ga(A. ) = (A I - Ho) - I, so [Go(A. )] u(3 = 8 a,(3 0(3 (A. ), 
where 0B(A) = (A. - H/n)-I. Also 
Go± (E) = "lim" E .u Go(E ± iE) and + ( - ) denotes a choice 
of pre- (post-) collisional asymptotic condition. The associ
ation of channel component with particle clustering is also 
clear. 

Let us now develop the mathematical concepts appro
priate to the theory of arrangement channel quantum me
chanics. We impose a rigorous mathematical structure in the 
following way. Suppose that the wavefunctions qt may be 
regarded as elements of a separable Hilbert space $". In the 
usual Dirac notation, the elements of $" are denoted by the 
kets I qt ). The Hamiltonians Hand Ha are taken as un
bounded self-adjoint operators (Kat027

) which are assumed 
asymptotically complete with appropriate eigenfunction ex
pansions. As a linear vector space, the channel space CC; has a 
decomposition of the form 

(2.13) 
a 

where the direct sum is over channels of interest, e.g., 
$" EB JY' EB JY' for Faddeev. An element of this space is denot
ed by ~ with components 

(2.14) 

The t7'-type norms may be defined in the following way. Let 
( \ ) denote the inner product on JY' and let \ I-II.K' denote 
the corresponding norm, so 

Illqt>ll:" = (qtlqt)· (2,15) 

Then for 1 <p < 00, define 

(2.16) 

Using the completeness of II-II!!" and the finiteness of the 
number of channels, it is immediate that each of the norms 
(2.16) is complete on CC;. So the space CC; p = (CC; ,\ I-lip) of 
channel vectors with finite II-II p norm is a Banach space 
under the II-lip norm. For the case p = 2, CC; 2 is also a 
Hilbert space with inner product 

(2.17) 

The finiteness of the number of channels is not essential to 
these results. The proof of uniform equivalence of norms on 
a finite dimensional space may be adapted here to show that 
the norms II-lip are uniformly equivalent. So they induce 
the same topology CC; and we may write 

't'r = 't's for I ,;;;;r,s < 00 (2.18) 

in the sense that they contain the same elements. Finally, we 
note that the separability of $" implies that CC; p is separable. 

The channel space Hamiltonian H is now regarded as 
an unbounded operator with domain dense in CC; p' However, 
for the cases described H is not self-adjoint or even normal 
on CC; 2' Let us write H = I\. + V, where (Hola(3 = 8up K. 
Then. if the components of V are bounded operators on $", 
it follows that since Ho is closed, so is H. For various applica-
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tions this condition on V is too severe; however, we may 
usually assume that V is flo -bounded with relative bound < 
1 : 

IIV! lip <allflo! lip + b 11!llp (2.19) 

and least upper bound (a) < 1, 

where a and b may be chosen independent of the value of p. It 
is easily verified from Kato's27 work that (2.19) is valid for a 
large class of unbounded pairwise and external potentials, 
e.g., L ~oc and bounded at infinity in which case the flo bound 
is zero (but b becomes larger as a -0). That H is closed now 
follows from a standard stability theorem for closed opera
tors under relatively bounded perturbations. 27 

Since the solutions to the dual of the channel space 
Schrodinger equation are important for the functional calcu
lus ofH and for the statistical mechanics, the appropriate 
mathemetical concepts are developed here. The dual space 
'{/; of Y; p is the space of bounded linear functionals acting 
on 'f/ p' We adopt the convenient representation of elements 
of 'C; by vectors (' with components (t, IEJYI. The action 
of ('E'{;'; on tEEY; p is given by 

(2.20) 
a 

The norm (and thus topology) of the dual C(j; is induced by 
that on cop. For 1 <p < + 00, the Banach space C(j; is asso
ciated with the ('<I-type norm 

(2.21) 

where lip + 1/q = 1, and for p = 1, the Banach space '6'; is 
associated with the (e<o -type norm 

The spaces '1/; are all equal in the sense that they contain the 
same elements. 

For an operator A acting on (t: p with domain dom(A) 
dense in '("P' we define the Banach space dual A' as follows 
(Yosida 'O). If 

(~',A'{') = (?Z','{'), '{'Edom(A), (2.23) 

then ?Z' is determined uniquely by ~ I, and we define 

A' on (e; by ?Z' = A/~ I. (2.24) 

A' is defined on dom(A'), the totality of f 'EYf; such that 
there exists ?Z' satisfying (2.23). For the case p = 2, Yf 2 is a 
Hilbert space and A' defined as above is simply related to the 
usual Hilbert space adjoint of A. 

We previously elucidated the connection between solu
tions If! of(2.8) and those of the Hilbert space equation (2.1). 
We call those solutions for which I If/) = ~a I If/a ) #0 "phys
ical" solutions since I If/ ) is a solution of(2.1), also with eigen
value A. ( = E )ER. Those for which ~a I If/a ) = 0 are called 
"spurious". For these A. need not be real21 as was first discov
ered by Federbusch and others2R for a different class of scat
tering equations. This classification applies to all solutions 
normalizable and unnormalizable. If we denote the class of 
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channel vectors with components summing to zero in (;;V'by 

./', then clearly Y' is a subspace of '{/ p containing the sput
ious solutions. Any two physical solutions, the difference of 
which lies in Y, are necessarily degenerate and may be re
garded physically as the same. Thus they may be replaced by 
linear combinations, one of which is physical and one spur
ious. In this way the physical eigenvectors may be chosen as 
"distinct." Note that the quotient space CfJ plY' ~jY'. 

It is possible to state some very general results about 
imbedding of Hilbert space into channel space solutions and 
completeness of physical and spurious solutions. By com
pleteness of a set of vectors which may be normalizable (in 
'1/ p) and/or unnormalizable, we mean that any vector in (C p 
can be approximated in norm as a possibly partly continuous 
linear combination of these. Note that for nonorthogonal 
sets, there exists a distinction between completeness and the 
basis property. The latter is stronger requiring that any vec
tor can be represented as a unique, possibly partly continu
ous linear combination of basis vectors (convergence in norm 
implied). 

Theorem 1: If the physical and spurious solutions are 
complete in Y; P' then it is necessary for aU (strictly almost 
all) solutions of the Hilbert space equation (2.1) to be imbed
ded into physical solutions of (2.8). 

Proof The spurious solutions can at most span Y and 
the physical solutions lie outside 'yJ. Now suppose that we 
ha ve a complete set of physical 1/1 r and spurious 1/1 ~, eigen
vectors of H labeled by k,k I (possibly partly contInuous). 
Then these may be chosen to be distinct, e.g., 

~a ['{'~]" #~a [~~']a for k #k I. Set g; = span ! ~~ I so 

({j' P = g; $ Y by hypothesis. Suppose that some H eigen
vector with discrete eigenvalue andlor H eigenvectors with 
continuous eigenvalue for a range of k of nonzero measure 
are not imbedded into the set of eigenvectors of H. Let 
11/10 > #0 be in the subspace spanned by these vectors and let 
11/1 P) be a linear combination of the other (imbedded) eigen
vectors of H, then from orthogonality 

0< III If/o) II 11' < III If/o) - I If/ P) II ¥ . (2.25) 

Consequently, if If/o is any channel vector such that 
~a [ '{'oJ a = 11/10 >, ~ p ~ a linear combination of the 1/1 r (so 
~a ['{' 1'1" = 11/1 P>, a vector described above) and I/I~.Y. 
then -

0< II I 1/10)11 ¥ <111lf/o) -11/1 r)II¥ <I!'{'o - ('{' r + ~S)IIJ' 
(2.26) 

This contradicts the hypothesis that ({: p = ~ $ Y . 
There is also a partial converse to this result. 
Theorem 2: Suppose that all the eigenvectors of Hare 

imbedded into physical eigenvectors If/E ofH necessarily in 
a one to one fashion. Since the eigenvectors of H are com
plete, any vector in jyl can be approximated in norm by a 
certain class of linear combinations of these. Suppose firstly 
that the corresponding linear combinations of the If/£ are 
convergent in C(j p (trivial where all eigenvalues are discrete). 

then we show that 9 $ Y = C(; p' 

Proof Take any ~EYf p '~a [ '{' J a may be approximated 
in % by a linear combination of eigenvectors of H. Let'!: P 
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be the corresponding linear combinacion of eigenvectors of 
H (convergent by assumption), so 

I (<!'L - I (<!,P]" = 11/1<), where 1111/1<)11# <E. 

(2.27) 

We may therefore write 

I/I-I/IP= 0 +1/1' 
(

11/1 '» 
- - 0 - for some <!' 'E./', 

so 

(

11/1'» 
II<!'-(<!'P+ <!")llp =11 ~ IIp<E (2.28) 

as required. From (2.28) it is clear that 't ~ together with any 

complete set in .;I' is complete in 'f; p' 

Theorem 3: Suppose that for any convergent linear 
combination of eigenvectors of H, the corresponding linear 
combination of 1/1 ~ is convergent. Then, under the assump
tion of Theorem 2, 't~ together with any basis for Y' form a 

basis for 1(,' p = ;'1' ftl.;l'. 

Proof: Uses arguments similar to Theorem 2. 
Such linear combinations are, of course, exactly the (2 

for discrete eigenvalues and L 2 for continuous ones. 
We now develop some spectral theoretic results for H. 

It is easily verified that for real potentials, 

Pa(H) = Pa(H)*, Ca(H) = Ca(H)*, 

Ra(H) = Ra(H)*. (2.29) 

Next, observe that for any choice of potentials such that V 
has Hn bound < I, it is possible to show that 

a(H)k [AEC: ReA> D,lImA I.;;; { (b + a ReA) }U{AEC:IA I.;;; _b_}}, 
I-a I-a 

(2.30) 

where a and b appear in (2.19) (see Appendix I). If V is strictly 
bounded (by b ) then (2.30) holds with a = O. It is also useful 
to examine the solutions of the dual channel space Schro
dinger equation 

(H' - A )S:' = 2'· (2.31) 

There are a class of solutions of(2.31) which are of par
ticular interest to us. These are constructed as follows. Let 
11/1 E > be a solution of(2.1) with A = E, and choose s:~: so that 

[S:~·L=<I/IEI, Va. (2.32) 

Then it is easy to show that 

(2.33) 

This was first established by Kouri and Levin. 29 This con
struction applies to both the normalizable (bound state) and 
scattering solutions. 

This construction guarantees the spectral inclusions 

Pa(H) k Pa(H'), Ca(H ) k 1T(H') 

so 

a(H) = Pa(H)uCa(H)k1T(H')ka(H'). (2.34) 

Here 1T( ) is the approximate point spectrum (Appendix A) 
and u means "disjoint union." Approximate eigenvectors for 
H' are constn,lcted just as for H by modulation of the weak 
scattering eigenfunctions. However, ifH is a closed linear 
operator, we have that (Yosida 10

) 

a(H') = a(H), (2.35) 

so 

a(H) k a(H) and Pa(H) k Pa(H') = r (H) k Pa(H)uRa(H), 

where r ( ) is the compression spectrum (see Appendix A). 
The possible·appearance of a residual spectrum Ra(H) here 
results from the fact that H is chosen to be nonnormal. In 
certain circumstances, however, we can guarantee that 
Ra(H) =0. 
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Theorem 4: IfG()(A )V can be extended to a bounded 
operator, and [Go(A )V] n can be extended to a compact oper
ator for some n and for all A, then Ra(H) = 0 follows from 
the Fredholm alternative. 

Proof: See Appendix B. 
Note the appearance of a fiber compactness type as

sumption here. In those cases where Ra(H) = 0, from (2.34) 
and (2.35), we have 

Pa(H)kPa(H')S: Pa(H), Ca(H)S:Ca(H)uPa(HIY')· 

(2.36) 

If also VGo(A ) can be extended to a bounded operator and 
(VGo(A )]n can be extended to a compact operator for some n 
and for all A, a similar argument shows that Ra(H') = 0 (see 
Appendix B). Then, for a finite number of channels, since 
!(J p is reflective and H" is a closed extension of (and thus 
equal to) H, we have in addition to (2.36) that 

Pa(H") = Pa(H) = r(H'jk Pa(H') 

so 

Pa(H') = Pa(H) and Ca(H') = Ca(H). (2.37) 

Even if Pa(H) k Pa(H), Ca(H) k Ca(H)u Pa(HI Y'), we have 
not proved that all solutions of (2.1) are imbedded into the 
physical solutions of (2. 8). However, clearly in this case, if a 
nondegenerate normalizable physical solution is missing, it 
must be replaced by a normalizable spurious solution. 

Some further properties of the operator H can be ob
tained from the general semigroup theory for closed opera
tors on Banach space. One question answered partially here 
is the nature of time evolution in this formalism, e.g., the 
existence and behavior of solutions to (2.9). We thus natural
ly ask if IH generates a group I e'/flH':tER j. Since H is not 
self-adjoint, Stone's theorem can not be implemented. How
ever, in the case where the.components of V are bounded on 
0/' we may utilize the following result (Peters, Pazy~O). 
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Lemma 5: If A is the infinitesimal generator of a Co 
semigroup T(t) satisfying IIT(t )11 <,mew

, and ifB is a bounded 
operator, then A + B is the infinitesimal generator of a Co 
semigroup S(t ) satisfying IIS(t )11 <,me(W + mllRIII'. 

Theorem 5: For V bounded, iH generates a Co group of 
bounded operators V(t ) = eilliH

', and 

IIV(t )IL21 <,e I1V1I (2)i' I Iii, tER. (2.38) 

Proof In Lemma 5 choose A = ± iff! Ho, 
B = ± iff! V, so in the 11-11(21 norm m = 1 and w = 0 (where 
II-Ib is the uniform operator norm for p = 2). 

Such exponential growth may be associated with spur
ious eigenvectors with nonreal eigenvalue. The following re
sult is available for much weaker conditions on the 
potentials: 

Theorem 6: Suppose that V is Ho-bounded with relative 
bound "0", then H generates a holomorphic (Co) semigroup 
e -,{ H in the sector (A: largt{ 1<1712). 

Proof For V bounded, the result follows from a stan
dard perturbation theorem. 3o The more general result is 
proved in Appendix C. 

This result will be useful in the discussion of channel 
space equilibrium density matrices. The existence of a time 
evolution operator V(t) may alternatively be considered in 
terms of the existence of suitable boundary values for e -,{ H 

defined on the open right half-plane. A different approach to 
this existence question is taken in the following sections. 

Next we comment briefly on the general structure of the 
operators that will naturally appear in this formulation. It is 
assumed that for each (Hilbert space) quantum mechanical 
operator A of interest, there is a natural decomposition into a 
channel space operator A which satisfies the summation 
property 

L A"r3 = A for all (3 (2.39) 

(Hoffman et al. 24
). If we consider those bounded operators 

satisfying (2.39) whose domain is the whole channel space, 
then they also form a Banach subalgebra of the bounded 
operators on (6' p as may be seen from the identity 

L (AB)a{3 = AB. (2.40) 

Denote the algebra of such bounded operators by sf. This 
property is expected to be significant in an algebraic formu
lation of the thwry. The operators on (6' p corresponding to 
the bounded observables must be contained in the Banach 
"field" algebra ,rf. They will be associated with a von Neu
mann or C *-algebra in ,rf but not with the usual * = + 
involution (i.e., adjoint) for operators on CC 2 as may be antici
pated from (2.39).31.32 

III. SPATIALLY CONFINED SYSTEMS: DISCRETE 
SPECTRA AND NORMALIZABLE EIGENVECTORS 

Let us consider a system of N distinguishable particles 
confined to a region g;; by an external potential going to 
infinity at the boundary a,Cj( of ,91 and described by a Hamil
tonian H (the full kinetic energy is included here). Then this 
external potential may be chosen to appear along the diag-
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onal ofH. Alternatively, we could assume that the wave
functions are defined on the interior of a box satisfying the 
appropriate equations there and impose periodic boundary 
conditions at the walls. If the potentials have a range greater 
than the box size, then they are regarded as suitably treated. 
These problems are important for applications to the statisti
cal mechanics of reactive systems where a convenient repre
sentation is first required for a confined system of a finite 
number of particles. 24.26 It is anticipated that some aspects of 
the interpretation of the channel space wavefunction compo
nents will carryover from the spatially infinite case. 3,20,26 
Many of the mathematical concepts used to describe the 
structure of H are most conveniently introduced first here 
because of the following result. 

Theorem 7: For spatially confined systems and for rela
tively bounded potentials of the form (2.19), H has only dis
crete eigenvalues with normalizable eigenvectors. Conse
quently, O'(H) = PO'(H) ~ PO'(H) = O'(H) since H is closed. 

Proof This follows essentially as a consequence of the 
compactness of (A - H) - 1 for certain AE p(H) (see Appendix 
D). 

To facilitate the spectral analysis ofH, it is convenient 
to introduce the concept of a biorthogonal system in the Ban
ach space ({,' p (Singer,33 Dunford and Schwartz34). Such a 
system is defined by a pair of sequences (!1~ ,<tn ), where 
!1~ECC;, <tnECCp, and 

(3.1) 

We suppose that some of the <tn are chosen as linearly 
independent eigenvectors ofH.24 These are not orthogonal 
in ((; 2 since H is not normal. We shall denote the physical 
eigenvectors by ~ ~ where La [~~ L, = I t[t ~ > are distinct 
orthonormal H eigenvectors (with eigenvalues A ~) and the 
spurious eigenvectors by ~ ~ (with eigenvalues A ~). For the 
physical eigenvectors, we define the corresponding dual vec
tors ~ ~p using the prescription outlined in the previous sec
tion, i.e., 

As mentioned previously, ~:t so defined satisfies 

H' f' 'P = A P f' 'P 
~n n~n • 

(3.2) 

(3.3) 

With such a choice (3.1) is satisfied for <til E ( ~ ~ ,~~ ) and 
!1;/1 E ( f ;';). The object here is to extend this set to obtain a 
"complete biorthogonal system," if possible, in a way pro
viding a useful functional calculus for H. 

Suppose first that ( ~ ~,~ ~ l form a basis for the chan
nel space in which case it is immediate from (2.10) that exact
ly all (2 linear combinations of ~ ~ converge in norm. It is 
only possible for the normalizable eigenvectors to form a 
basis for spatially confined systems since we know that the 
scattering solutions must be included in any completeness 
discussion for the spatially infinite case. Completeness of 
(Ij/~,t[t~ 1 has been proved for the Faddeev equations in a 
spatialIy confined region (see Evans and Hoffman35 ). Since 
( ~ ~ , ~ ~ 1 is assumed to be a basis, there exists a unique 
associated sequence of coefficient functionals 33 (1J.~P,1J.~s 1 
satisfying (3.1). A biorthogonal system formed from a basis is 
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called regular. It necessarily follows that 71'1' = r '1' Next :.1..11 ~n • , 

we show that 1J.~' = ; ;," so defined, satisfies the dual Schro
dinger equation. Fro-m the relations 

{r"HV" )=A.' {r"V" )-A.'" ~fI' _", m~II'_m - m U I1,m 

- A. ' (r " V" ) - "~/1'_m' 

(~;,',H~~;,) = A.;n (C'''~;n) = 0 

==A ;,(f;I~'~~l)' 

and since ! ~;" ~ ~ 1 is a basis, we conclude that 

(3.4) 

(3.5) 

The existence of a regular biorthogonal system of eigen
vectors for H/H' is significant in developing a functional 
calculus for H analogous to that for normal operators. 

Theorem 8: If ! ~;" ~;,; n = 1,2''''1 is a basis for «(,' p 

and ! ~ ~r,~ ~'; n = 1,2''''1 The associated sequence of coeffi
cient functionals, then 

E(8)= L ~~;~;,r+ L ~;,C,' (3.6) 
A ~ch Ii. ~,f'"b 

(where 8 are Borel sets in the complex plane) is a countably 
additive resolution of the identity\{, for H. Furthermore, His 
scalar spectral 16 and given by 

H~ = .lim ( i A. ~;(~;,',,~)~;, + £ A. ;,(~;,,,~)~;,) 
\ '7_ f1 1 f1 I 

(3.7) 

for ~Edom(H). 
Proof Consider first (3.7). Define 

v ~ 

HN~= I A.;'(~;,I',~)~~; + L A.;,(~;,,,~)~;,, \;I~E'(,p, 
n 1 II 1 

(3.8) 

and let HV' = lim HN ~ for those ~where the limit exists. 
l'/ "X 

From the basis property, for any ~E'(,p' 

V' = ~ cl' V'r + ~ CS V" 
_ ~ f1 11 ~'1 II 

fI 1 - n I -
(3.9) 

for some c~; ,c~. So, define 

N s 
~s = L c;,~;, + L C;I~;t' (3.10) 

n 1 II 1 

Then, if ~Edom(H), 

HN~= H~s = H~v~H~ as N~oo (3.11) 

since H is closed. Thus, HV' exists and 

HV'= HV', - -
(3.12) 

which proves (3.7). Clearly the E(8 ) commute with Hand 
define a countably additive projection valued measure. Also 
0"(HIE(8 ))~8, the closure of 8. Boundedness of these possi
bly infinite sums follows from the basis property and the 
Banach-Steinhaus theorem. Thus the first part of the theo
rem is proved. 

A functional calculus may be defined for H (under these 
conditions) by 
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f(H)~ = ,~i~ i IIII/" (A. )E(dA.)~ 

~i~ CI/(A. ~;)(C,'''~)~;, 
+ i f(A. ;,)(~;,,,~)~;,), 

II 1 

(3.13) 

for those ~ where the right-hand side is convergent. Herefis 
measurable, .1 (H) is an open set containing O"(H), and 

/,,(A.) = {fo(A.,)' If(A. )I~n} (3.14) 
If(A. )1 > n 

(see Dunford and Schwartzv'). Suppose thatf( ) is also 
bounded. Then since (~~r, ~) = <;;, I L" V'" >, clearly 
! f(A. ~;)(~ ;,1', ~) I,~ 1 E( 2, so the first term in (3.13) is conver
gent for all ~. Convergence of the second term for all V' 
follows for example if the basis is Besselian and Hilberti;n 11

, 

i.e., exactly the (2 linear combinations of eigenvectors, and 
thus, in particular, of spurious eigenvectors, converge in 
norm (e.g., the Faddeev case'S). The choicef(A. ) = eilMt pro
vides an alternative approach to the analysis of the time evo
lution operator U(t). 

Secondly, we consider the case where ! ~;" ~ ~ 1 do not 
form a basis. For example, there could be a normalized non
degenerate eigenvector I V';'. > of H which is not imbedded 
into the set of physical eigenvectors of H, but we still have 
PO"(H) ~ PO"(H) (Theorem 7). Degeneracies for a spatially 
confined system are, in general, not expected ifthe boundary 
conditions are chosen to break all geometric symmetries. 
Then for the dual eigenvector ~;s :(~ ;,~ L, = <!£:;. I, for all a 
with eigenvalue A. ;,. , there corresponds at least one spurious 
eigenvector ~;,. with the same eigenvalue. However, this 
correspondence is not in the biorthogonal sense since 

(3.15) 

Furthermore, without the basis property, there is no need for 
the physical duals to be uniquely specified by the equal com
ponent form although this is still a valid (and the most natu
ral) choice. If ! ~~; ,~;, 1 can be extended by ! ¢II 1 in 
. I . = ! ~Ef,,, :(~ ;,;, ~) = 0, \;1m 1 to form a basi~, then a regu
lar biorthogonal system may be constructed and the coeffi
cient functionals associated with ~;, are given by ~ ;,". How
ever, those associated with the ~;, are not expected to all 
satisfy the dual channel space Schrodinger equation. This 
problem will be discussed in later work. Again the appropri
ate linear combinations of the ~;, are exactly the (2 ones. 
Further results incorporating this case are described below. 

To show the "equivalence" of the channel and Hilbert 
space formulations, it is necessary to demonstrate an agree
ment in corresponding expectation values calculated from 
different theories. Since in the channel space theory only the 
physical eigensolutions contribute, it is appropriate to con
struct of projection operator P corresponding to the sub
space spanned by these, preferably, so that [P,H] = O. If the 
physical eigenvectors of H can be extended in. I . to form a 
basis '(,,, then we define P to be the projection operator asso-

ciated with the decomposition 'f, p = span( ~;,) ttl. I '. P is 
then not self-adjoint but has the simple representation 
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P'f = I 'f~ (~~P, 'f), V 'fE'G' p' (3.16) 
n 

~aPa{3 = P is the projection operator onto the correspond
ing physical states in J¥'. Clearly, H restricted to the H
invariant subspace Range( P) is real eigenvalue scalar spec
tral and is *-self-adjoint with a suitable choice of involu
tion. 31 This amounts to defining self-adjointness with re
spect to a duality mapping D:'G' p_'G' ~ naturally induced 
by any basis that includes the 'f ~ and the ~ ~p as their associ
ated coefficient functionals, i.e., D is conjugate linear and 
maps all basis vectors to their corresponding coefficient 
functionals. Then 

(D'f,(H P)cl) = (D (H P)'f,cl), V'f,clE'G' p (3.17) 

[cf., the theory of accretive operators on Banach space 
(Pazy30)]. Further, a simple construction shows that H on 
Range (P) is equivalent (via a similarity transformation) to H 
on Range ( P ).35 If H is also scalar spectral on 'G' p' then P is 
naturally obtained from the resolution of the identity and 
P=I. 

The injection operator imbedding H eigenvectors into 
physical H eigenvectors may be defined in terms of P as 

(3.18) 

where ~ is a numerical vector and ~a()a = l. The bounded
ness ~f Jfollows from that ofP. Consequently, the 'f~ are 
uniformly bounded with respect to n. This last property fol
lows directly from the assumption that 'f ~ form part of a 
basis, since then there exists a constant M (independent of n) 
such thae3 

(3.19) 

and we have chosen I/~ ~Pl/q = N ~~q for all n. 
To calculate expectation values for general (mixed) 

states, an appropriate concept of "trace class" and "trace" is 
needed. Since 'G' p = 'G' 2' we could try using the standard 
definition for operators on Hilbert space. However, a more 
natural definition for our purposes has been developed by 
Ruston37 in the Banach space framework. Here we consider 
first finite rank operators of At he form ~7~ I cli'!lJ with 
cliE'G' p,!J.:E'G';. Then ~7'~ I cli~: is said to be equivalent to 
~7~ I cli''l.: ifit represents the same operator. We define the 
cross norm 

r p Ctl cli !1:) = inf C~I II~i II p II~: I/q ). (3.20) 

with 1/ p + 1/q = 1 where the infimum is taken over 
~7'~ I ~i~'~ in the above class. The closure of the finite rank 
operators in the r p ( ) norm is called the trace class of the 
Banach space '{f p (actually independent ofp here). Clearly, 

rpCtl cli!1:»11 itl cli!1:IIIPI' (3.21) 

where II-III pi is the uniform operator norm. If A is a bound
ed operator on 'G' p and T is in the trace class, then AT and 
T A are in the trace class and 

r p(AT)<r p(T)I/AII IPi' r p(TA)<r p(T)IIAl/ lpl ' (3.22) 

For an operator of finite rank, we define the trace "tr" by 
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(3.23) 

Equation (3.23) is independent of the choice ~~ I ~i~: of 
representation. Clearly, 

(3.24) 

so by a standard limiting procedure we can uniquely define 
the trace of any operator in the trace class. It is easily proved 
that for A, T as above, 

tr(AT) = tr(TA). (3.25) 

For any regular biorthogonal system (~:, 'f;) we may alter
natively express the trace of an operator T (in the trace class) 
as 

(3.26) 

The proof of the in variance of the rhs of (3.26) for different 
choices of a biorthogonal system follows easily from their 
regularity. This definition of course agrees with the usual 
one where an orthonormal basis is used. 

We are now in a position to define a class of operators 
corresponding to the density matrices for mixtures of dis
crete states. As observed by Hoffman et al. 24 (assuming P 
may be defined as previously), if AEd and 

PAP( = PA P) = A, (3.27) 

then (A)a{3 is independent of /3. In fact 
d p = [AEd:P AP = A J is a subalgebra of d. The phys
ical channel space density matrices are elements p of this 
subalgebra of the form 

p= PpP, (3.28) 

where p is a positive self-adjoint trace class Hilbert space 
density matrix for a mixture of the "imbedded" physical 
states, so P p P = p. Normalization is chosen so that 
Tr p = l. Using an explicit representation for 
P = ~m Pm 1 !{1m ) (!{1m I, where Pm >0 and ~m Pm = 1, one 
may show that p is trace class using the boundedness of J, 
and that 

tr p = l. (3.29) 

Of course p so defined is not "self-adjoint" or "positive" in 
the usual sense but is *-self-adjoint and *-positive with re
spect to a suitably defined involution*.31 In terms of the du
ality mapping D described previously, 

(3.30) 

and 

(D'f, p'f»O, V'fE'G'p. 

The equilibrium form of the channel density matrix is given 
by 

peq = Pe~{3HP/Zc 

= Pe~{3H/Zc' 

where Zc = Tr( Pe ~(3H) and 

Pe~{3H = I e~{3A:'f~~~p. 
n 

(3.31) 

(3.32) 
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Note that the existence of e - /3H follows without any basis 
property assumption and for quite general potentials (Theo
rem 6). 

Finally, we show how the channel theory makes contact 
with the Hilbert space quantum theory in the calculation of 
expectation values. In any representation, the observables 
correspond to the *-self-adjoint elements of a Von-Neumann 
or C * algebra where * is the appropriate involution. Real 
expectation values are then calculated by acting on them 
with *-positive linear functionals, e.g., Tr( po),tr( po). The 
agreement of expectation values of the Hilbert and channel 
space theories is guaranteed by the special summation struc
ture (2.39) of the Banach algebra containing the observables 
together with the extra structure of p (independence of Pu{3 

on {3). This correspondence may be written as24 

(A) = triA p) = Tr(A p) = (A ). (3.33) 

Note the restriction P p P = P (we have not proved that 
P = I in general). 

IV. SPATIALLY INFINITE SYSTEMS: WEAK 
(SCA TIERING) EIGENVECTORS 

For a spatially infinite system, we expect that H will 
have a variety of unnormalizable (weak) scattering eigen
functions. Here we shall assume the existence of these in a 
suitably large auxiliary space (Amrein, Jauch, and Sinha3H

) 

rather than attempting to prove their existence, e.g., from 
the integral equations and appropriate technical assump
tions. These are associated with Ca(H). Here the center of 
mass kinetic energy is removed from the Hamiltonians. 

It is first useful to characterize the (weak) solutions of 
the equation 

(Ha -A )IW) = O. (4.1) 

This is done as follows. The channel indices a were defined 
to be certain partitions of the labels 1,2, ... ,N for the N parti
cles of the system into appropriate clusters. We say aC{3 or 
{3-:Ja if a can be obtained from{3bybreaking up some (possi
bly 0) clusters of a. This relation is a partial order. We can 
also define the meet ar{3 as the coarest partition satisfying 
ar{3Ca and ar{3C{3. Similarly the join au{3 is the finest par
tition satisfying ar{3-:Ja and au{3-:J{3. (1 and u endow the set 
of partitions with a lattice structure (see Polyzou and Re
dish9

). Now the solutions of (4.1) are labelled by 

IA.±,· k)' 'f' a,a,m j ._, 
(4.2) 

where + (-) refers to a precollisional (postcollisional) 
choice of asymptotic condition, and at C a represents an as
ymptotic clustering of particles into stable (bound-state) 
clusters at. The ~i are a suitably chosen set of relative mo
mentum labels for the asymptotic motion of the clusters in 
this scattering state. If f..li are the corresponding reduced 
masses for these clusters and if m j label the bound-states of 
energy Em

j 
of those clusters of more than one particle, then 

(4.3) 

Consider now the equation (H - A ) ~ = Q. One may 
look for scattering solutions ~ = ~ :'a':mj~;' a' Ca, which 
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have the asymptotic structure [~ ± ]/3 ~Oa/3l¢ ;:'(l':mj'~') in 
the appropriate regions of coordinate space (i.e., the a' and 
also the a tubes). For fixed at ,m j '~i' these correspond to the 
same H-eigensolution I W a~:mj'~') = };(3 [~ :'a';m,,~.l(l and sat
isfy the integral equations 

(4.4) 

where [~a~a':mJ'~; 1/3 = o"/3I¢ a~"':mi;)' 
These equations generalize (2.10). There may also be 

solutions of the differential equations corresponding to a to
tally bound cluster ofthe N particles with quantum number 
m. In the above notation these would be represented as 

~11.2 .. NI.m· Clearly the ~ !.a':mj.l" do not lie in 'i: p but the 
components are expected to be bounded wavelike functions. 
A rigorous proof could involve an analysis of (4.4) with suit
able conditions on the potentials. A set of eigenvectors for H' 

with eigenvalues Aa':mi'~" denoted ~ ;t~j'~" are given by 

(4.5) 

where I W tm k ) are also assumed o-function orthonormal. 
Clearly ~ a::±;:~:"~,j are not in ~ ~ . 

In a discussion of completeness and spectral theory, it is 
convenient to partition the eigenvectors into distinct phys
ical ones together with the remaining set of spurious eigen
vectors. So from the ~ :'a';mj'~; for different a -:J a', we pick 
one, say a = a*, to be the physical eigenvector and from the 
rest construct weak (unnormalizable) spurious eigenvectors 
as follows. For any partition at consisting of stable (bound
state) clusters, assuming W a±a'm k exist, we set 

- • , J'_l 

(4.6) 

with };a :::la' e a = O. Then ~ ± S is a spurious weak eigensolu
tion of H with eigenvalue Aa' m. k • These are obtainable di
rectly in the Faddeev case.3~· "., 

These ideas are presented most naturally in a math
ematical framework which generalizes the Gel'fand triplet 
(see Amrein, Jauch, and Sinha3H

). We introduce an auxiliary 
Hilbert space E dense in ciY'so that its Banach space dual Ed 
contains the bounded measurable functions. Imbedding ,)Y' 

into Ed (using the duality of d¥J we write 

(4.7) 

Channel spaces E p and (E d) P may be constructed as in 
(2.16), but using the appropriate Hilbert space norms. Their 
elements are also denoted by W with components I Wa )· 

E ~ [resp.(E d)~ ] is the dual orE p [resp.(E d) p ] where the 
action of the dual is given by 

(~',~) = L (~a I Wa ) E (resp. = L (Sa I Wa ) E d ).(4.8) 
a a 

Note that (Ed)~ = (E p)' where the action of an element of 
(E p)' on E p is given by (2.20). We have the inclusion relations 
(analogous to the usual Gel'fand triplet): 
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(Ed)p = (Ed)'p 

U U 

'f," p = ({;'p (4.9) 

u u 

Ep= E~ 
where for the equalities we have made the identification 
of 11f/) with (If/ I. The countably normed space Y, dense in 
,W' of Coo fast decreasing functions (Gel'fand and Shilov39

), 

could be used rather than E. The elements of its dual yd 
(continuous in the countably normed topology) are the gen
eralized functions, cf., the rigged Hilbert space treatment of 
quantum mechanics (Gel'fand and Vilenkin40

, B6hm41
). 

The operator H may be extended uniquely to a dense 
subspace of (E d) P or (yd) p which includes the wavelike so
lutions discussed previously. So these are solutions of the 
channel equation in the larger space, termed as weak solu
tions of the original equations. Similarly H' may be extended 
to a dense subspace of(E d)~ or (yd)~ including such vectors 

r +' as ~ d;mJ.~I' • 

It is useful to introduce the concept of a generahzed 
biorthogonal system [7J.~v,Px I where normalizable 
P..k ,E(r;' p' unnormalizabie p"~vE(E d) p' normalizable 
!l~' EC(; ~, unnormalizable !l~ vE(E d)~. [~V I is a discrete 
and/or continuous label for the vectors, e.g., 
~ v = I a';mj'~i I and ~vs d~ v represents the corresponding 
sum and/or integral. The biorthogonality condition may be 
written (loosely) as 

(!l~' ,P..k" ) = 8v ,v' 8 (~v - ~ "). (4.10) 
Again ~e choose some of the P..1s' to be distinct physical ei
genvectors of H denoted ~ ~ with eigenvalues A. ~ •. The cor

responding 7J.~., denoted G~, are constructed as in (4.5). 
Some of the remaining ~. are chosen as spurious eigenvec
tors of H denoted ~ ~ v, with eigenvalues A. ~ v, and the object 
as previously is to su"itably complete this set. 

Suppose first that these form a basis in CC; p' Specifically, 
we mean that any vector in C(; p can be represented as a suit
able linear combination of basis vectors. Convergence in 
norm of the integrals in the limit-in-mean sense is implied. 
Further we suppose that the subspaces of such linear combi
nations with eigenvalues in specified Borel subsets of the 
complex plane are closed. For the physical scattering eigen
vectors, these linear combinations are precisely the L 2 ones. 
If the spurious wavelike eigenvectors are constructed as in 
(4.6), then any convergent linear combination must also be 
L 2 (i.e., the basis is "generalized" Hilbertian) and we expect 
that all L 2 linear combinations are required ("generalized" 
Besselian). This is certainly true where a' is the complete 
breakup channel. 

We may then automatically define (strictly almost ev
erywhere) a generalized associated sequence of coefficient 
functionals !l~' denoted [~~~,~ ~sv J (using obvious notation). 
The ~ ~~ are defined as in (4.5) and thus lie in (E d)~ under 
suitable conditions on the potentials. 38 Suppose that all the 
wavelike ~ ~. are generated by the procedure described in 
(4.6). Then certain wavelike features of the asymptotic struc
ture of the ~ ~sv are easily determined from those of the corre-
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sponding ~~v and ~~v using biorthogonality (Appendix E), 
This suggest"s that the ~ ~sv also lie in (E d)~. Further, know
ing these features of the asymptotic structure of the dual 
vectors, we can easily write down the appropriate integral 
equations for them and analyze the solutions of these equa
tions directly. The eigenvectors and their duals provide in 
this case a generalized regular biorthogonal system which 
leads to the following results: 

Theorem 9: If [~~.,~~. J is a basis for CC; p and 
[~~~,~ ~s.l the generalized associated sequence of coefficient 
fun"ctionals, then 

E(8)=I{ d~v~~v~~~+I{ d~v~~.~~s. 
v J;. ~ vEO - v JA: vED 

(4.11) 

(where 8 are Borel sets in the complex plane) is a countably 
additive resolution of the identity for H. Furthermore, H is 
scalar spectral and given by 

HIf/ = lim (I i d~ vA. %.(~~~,~)~~. 
N-voo v IIsVI"N 

+ I ( d~VA. ~.(~~s.,~)~~.) (4.12) 
v J1I;vl"N 

for If/Edom(H). Here I~ vI is defined in some natural way. 
Proof Formally the proof is the same as for Theorem 8. 

Boundedness of the E(8 ) follows from closure of the corre
sponding subspace. Uniform boundedness follows from 
their countable additivity.36 

A functional calculus may be defined for H (under these 
conditions) by 

I(H)~= lim ( In (A. )E(dA.)~ 
n~oo J.:1(H) 

= lim (I f.. d~V/(A. %.)(~~~,~)~%v 
N_oo v J1i5 Y I<:N 

+ I f d~V/(A.~.)(~~Sv,~)~~.) (4.13) 
v J11s'i<N 

for alllf/ where the right-hand side is convergent. Herein ( ) 
and.::l (0) are defined as previously. If ~EE p' then (; ~~(Sl, ~) 
is well defined. For a rigorous theory this definition must be 
extended to ~ECC; p adopting a suitable limit-in-mean inter
pretation of the integral. 38 The integral in (4.13) is similarly 
treated. In later work35 we give the explicit form for the 
Faddeev case of the expressions presented here. 

Even if the eigenvectors ofH are not complete on CC; p' it 
is of interest to construct an H-invariant projection operator 
P onto the imbedded physical solutions (where P = ~a Pa{3 

is the corresponding Hilbert space operator). Suppose the 
physical eigenvectors can be extended in ,.11 = [ ~ECC; p 

:(~ ~~, ~) = 0, 'v' ~ v J to form a basis for CC; p' Then P is associ
ated with the decomposition CC; p = span( ~ ~.) $. /y" and has 
a simple representation analogous to (3.16). Again H re
stricted to Range( P) is real eigenvalue scalar spectral, *-self
adjoint (with a suitable choice of involution), and equivalent 
(via a similarity transformation) to H on Range( P). Physical 
channel space density matrices may be defined in a fashion 
analogous to the previous section and the corresponding re
sults on agreement of expectation values established. 
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V. TIME DEPENDENT SCATTERING THEORY AND 
NONEQUILIBRIUM STATISTICAL MECHANICS 

The Moller operators playa central role in scattering 
theory as they relate the asymptotic form of the wavefunc
tion to the full scattered state wavefunction. The channel 
space Moller operators may be expressed formally as20 

n:tc = "lim" e + iH'e - Ill"" 
, • =+= 00 

(5.1) 

assuming that IH generates a Co group and that the limits 
exist in some sense. Note that cr; may be decomposed into a 

. P 
direct sum of orthogonal subspaces associated with Ho and 
with projection operators given by E ±. where a,a' 

(Ea~a' )(Jy = D{JyDa{JE a~a" (5.2) 

Here a' Ca corresponds to stable clusters and 

(5.3) 

If na~a' = n ± El,a' is the corresponding restriction of n ± , 

then formally, 

(5.4) 

If there exist nonreal eigenvalue spurious solutions, then 
(5.1) can not be used to represent the operators in (5.4), as a 
divergence results in the t---+ ± 00 limit. The inclusion of the 
Ea~a' is not expected to circumvent this problem. In the Hil
bert space theory existence of the Moller operators in the 
sense of the strong limit may be demonstrated in some cases 
by a combination of Cook's method and a stationary phase 
analysis (see Reed and Simon42). With an extra assumption, 
this approach may be adopted here. 

Theorem 10: (Modified Cook's method): Suppose IH 
generates a uniformly bounded Co group, and suppose there 
is a set !iJ C dom(Ho)nEa±a' cr; p which is dense in E ± . cr; , so . a,a p 

that for any ~E!iJ, there is To satisfying: 

(a) for It I > To, e - llI"t~Edom(Ho), 

(b) {~ dtIIVe=+='H"'~llp < + 00. 

Then na~a' exist in the sense of the "strong limit" on cr; p' 

Proof Analogous to the Hilbert space version42, except 
the uniformly bounded Co group assumption rather than a 
unitary group property is used. 

This result may also be extended in the direction of the 
Kupsch-Sandhas theorem.42 If there exist any spurious so
lutions with nonreal eigenvalues, then the conditions of the 
theorem are not satisfied since e'H', if it exists, will not be 
uniformly bounded. It remains to control liVe ± 'H"t~ II p' In 
the Hilbert space theory, this is where a stationary phase 
analysis is used together with some extra "rate of decay" 
assumptions on the potential. This approach should extend 
to the channel space problem at least for the case where we 
consider only two cluster channels. This problem will be 
dealt with in more detail in later work. 

Let us now present the fundamental equation of non
equilibrium statistical mechanics. Define a physical channel 
space density matrix P = P P P as previously, so P P P = P 
[where P is the projection operator onto the physical solu-
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tions defined in Secs. III and IV and p = P P P is a Hilbert 
space density matrix with P = }'.a ( Pa{J)]. The channel space 
von Neumann equation24 

ifU)/Jt P = [H, p] (5.5) 

may be easily derived from the Hilbert space version4' and 
the commutation relation [ P,H] = O. The algebra 
.if p = I AE.if: PAP = A I is invariant under (5.5), however, 
there will be a more general class of solutions. 

The calculation of expectation valuc:s is of central im
portance in the theory. As noted by Jauch, Misra, and Gib
son,44 the distance between two states manifests itself in the 
calculation of expectation values of observables: the states 
are "close" if the expectation values are close. This dictates 
the physical choice of topology for the density matrix states 
to be the weakest in which we have continuity of expectation 
values. It is convenient to define, for some algebra .1J , the 
corresponding trace operator topology 

;.~ (Pi' P2) = sup Itr(A( PI - P2))1, (S.6) 
AE.il 

IIAII,,,,~ 1 

with Pi' P2 in the trace class of'G' p' Then the physical topol
ogy is given by; ~/ ,.( ). Clearly, using (3.25),; p/ p( ) only 
involves P P, P as expected. 

In the formulation of the asymptotic condition of scat
tering theory [prescribing the "physical" sense of the limit in 
(5.1 )],44 it is necessary to consider approximations to P of the 
form e + IlIte - ,H"'paSyme + 'H"'e - Ill' not in .if p. The sense in 
which this is close to p seems more appropriately described 
by a stronger topology, say; p,/ ( ). It is easily verified that 

(5.7) 

In a Hilbert space formulation, the distinction between the 
appropriately defined metric and trace norm does not arise. 
For in that case, there is no restriction corresponding to 
AE[iJJ in (5.6). Also the density matrices are positive self
adjoint (in the usual sense) so their trace and the (appropri
ately defined) trace norm are equal. 

We have noted previously that, essentially since H is 
not normal, there is no significant advantage in the Hilbert 
space choice p = 2 of channel space norm. In fact the choice 
p = 1 is in a sense more natural. This is suggested by the 
summation property of operators in .if [since 
IIAllo) = sUP{J(}'.a II(A)a(3ll\ W)), where ll-lilw) is the operator 
norm on JY] and by the equal component nature of the phys
ical dual eigenvectors (p = I gives an (k structure for the 
dual norm and Ilf ~PII 00 = II I '!:. ~ > II.w = I). Although there 
is little significance in the choice of p for a small number of 
channels, as the number increases, only lif ~Pllq for q = 00 

(corresponding to a choice p = 1) remains bounded. This is 
presumably also true only for r p ( ) restricted to .if p for 
p = 1. This regime is important in the consideration of the 
thermodynamic limit for spatially confined systems.20 
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APPENDIX A 
Some of the operators appearing in this theory are un

bounded on the channel space CI{ _. Futhermore, these opera
tors are characteristically not seif-adjoint or even normal 
when regarded as acting on '{;' 2' A definition of the resolvent 
and spectrum suitable for handling such operators is given 
below (cf. Y osida 1(1). 

We say thad is in the resolventp(A) of A if Range 
(A I - A) is dense in '{;' p and a continuous inverse, denoted 
(A I - A)- I, exists. All complex numbers A not in pIA) form 
the spectrum c:r(A) of A. The spectrum is decomposed into 
disjoint sets, Pa(A), CO'(A), and RO'(A) with the following 
properties: 

Pa(A) is the totality of complex numbers for which 
A I - A does not have an inverse. For such A we can find 
«/! #Q in YJ p such that (A I - A)«/! = Q ... the point spectrum. 

Ca(A) is the totality of complex numbers A for which 
A I - A has a discontinuous inverse with domain dense in 
((/ p (A I - A must have a range dense in '(;' p) '" the continu
ous spectrum. 

Ra(A) is the totality of complex numbers A for which 
(A I - A) has an inverse whose domain is not dense on '{;' p 

(the range of A I - A is a proper subset of '(;' p) ••• the residual 
spectrum. 
Define the compression spectrum 

r (A) = IAEC: Range(A I - A) '" '(;' p J . 

It is clear that RO'(A)kr(A)kPa(A)uRO'(A). Now from the 
Hahn-Banach theorem r(A)kPc:r(A'). A more usual state
ment of this result is given for operators on Hilbert space by 
Weinberg. I It is easy to show that alsoPc:r(A') kr (A), so these 
sets are equal. Thus Rc:r(A) is the set of A which are eigenval
ues of A' [AE PO'(A')J but not of A [Ae Pc:r(A)]. It is also useful 
to define the approximate point spectrum 

1T{A)= IAEC:3«/!n with II~nllp = 1 and II{A-A)~nllp----+OJ, 

which in general overlaps PO'(A), CO'(A), and RO'(A). 
Let us now try to locate O'(H) for V as in (2.19), i.e., Ho

bounded with relative bound < 1. First consider the opera
tor V(Ho - A ) -I. Note that Ho is a positive self-adjoint oper
ator on (C 2' 

For ReA ;;;. 0, ImA # 0, we have for any ~E'{;' p' 

IIV(Ho -A )-1~1I2 

<aIlHo(Ho -A )-ICJlII2 + b II(Ho -A )-ICJlII2 - -
<[a(I + ReA lllmA i) + b lllmA IJII «/! 112' 

so IIV(Ho - ..1.)-111(2) < I for lImA I> (b + a ReA )/(1 - a). 
For ReA <0, 

IIV(Ho -A )-1~1I2 

<all(80 - ReA )(80 -A )-1~1I2 + b II(Ho -A )-1«/!1I2 

«a + b 11..1. 1)11 ~ 112; 
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using that since Ho is positive self-adjoint, 
IIHo~ 112<II(Ho - ReA,)~ 112' so IIV(80 - ..1.)-11112) < 1 for 
1..1. I > b I( 1 - a). 

Consequently for AEC subject to the above constraints, 
1 + V(Ho - A ) -I has a bounded inverse defined on all of 
cr; p' so for such A, 

(H-A)-I =(8
0

-..1.)-1[1 +V(Ho-A)-I]-1 

exists as a bounded operator defined on all of '(;' p' i.e., such 
AEp(H). 

APPENDIX B 

Let us consider the equation 

(A - H)«/! = tt, 
for CJI,l/J in cr; . This equation may be rewritten in integral 

- - p 
form as 

where Go(A ) = (A - Ho)-I is the inverse or the semi-inverse 
of A - Ho on cr; p' If A is in the resolvent ofHo then the above 
equation is valid for all tt in cr; p' and if A is in the continuous 
spectrum, then it is only valid for ttERange(A - Ho), a dense 
subset of cr; p' 

We shall assume that (Go{A )Vr can be extended to a 
compact operator for some n = n*, for all A. Consequently, 
c:r((Go{A IV)"") is either a finite set or a countably infinite set 
accumulating at 0. Since it is easy to check that 
(Pc:r(Go(A )V))"o kPO'((Go(A )VtO)koi(Go(A )VrO), the same is 
true of PO'(Go(A IV). 

On iterating the integral equation for ~"n* - 1" times, 
we obtain 

n* - I 

(1 - (GeM )VrO)«/! = L (Go(A )VtGeM Itt, 
m=O 

where tt is in the domain g; of I~:: ~(Go(A )v)mGo(A ) which 
is either all or a dense subset of '{;' p' Since (Go(A )VrO can be 
extended to a compact operator, it follows from the Fred
holm alternative that either the above equation has a unique 
solution for all tt in 9), or the corresponding homogeneous 
equation 

has a solution. 
Let us suppose first that the former is the case. This 

solution is written as 

n* -1 

~ = (1 - (Go(A )Vro)-I L (Go(A )v)mG(l(A Itt, 
m=O 

where (1 - (GeM )VrO)-1 denotes the inverse of the operator 
(1 - (G(l(A )v)nO). We must determine whether this solution 
satisfies the non iterated equation. Therefore we calculate 
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Ii· 1 

= [1 - (Go(A )V)"'] [Go(A )V - 1] [1 - (Go(A )V)"'] - I I (Go(A )v)'nGo(A )¢!.. + [1 - (Go(A )V)'" ] Go(A )¢!.. 
H1-0 

= [(GO(A)V -1) :t(: (Go(A )v)m + (1- (Go(A )Vr')]GO(A)¢!.. 

=0. 

Since we have assumed here that the homogeneous equation 
has no solutions. we conclude that If/ satisfies the noniterated 
equation and ¢!.. is an arbitrary channel vector in // . Conse
quently MRa(H). 

Secondly. we consider the possibility that the homogen
eous equation has a solution. By a standard extension of the 
usual Riesz-Schauder theory. 10 it is possible to show that 
e217imln'. for some m = O.I •...• n* - 1, must be in the point 
spectrum of Go(A )V [where we have now used the assump
tion that GeM )V can be extended to a bounded operator, for 
all A. together with the identity (A "I - A n)- I 
X (A n . I I + ... + A" I) = (AI - A ) - I for n = n *.) If this is 
the case for m = O. then we have shown that AEPa(H). So in 
these circumstances ArtRa(H). If the above only holds for 
m #0, then we must iterate the integral equation one further 
time. Using compactness of (Go(A )V)"' + I, we show that ei
ther the corresponding inhomogeneous equation has a solu
tion for all <P [so ArtRa(H)), or Go(A )V has eigenvalues 
e2rriml,,' I I for some m = 0, l ..... n *. If this is true for m = O. 
then AEPa(H). so the result ArtRa(H) is proved. If it is only 
true for m #0. we must iterate again. Repeating this proce
dure ad infinitum. we show either that ArtRa(H) or that 
Pa(Go(A )V) contains an infinite set of points on the unit cir
cle. If the latter is the case, there must exist an accumulation 
point for these eigenvalues on the unit circle. This contra
dicts a previous assertion that the only accumulation point is 
zero. Thus we have shown Ra(H) = 0. 

A similar analysis applies for the dual of the channel 
Hamiltonian H'. We can show that Ra(H') = 0 provided 
that Go(A )'V' can be extended to a bounded operator. and 
(Go(A )'V')" can be extended to a compact operator for some 

n = n**. for all A. Since (VGeM ))m' = (GeM )'vr. it suffices 
to assume bounded ness of VGeM ) and compactness of 

(VG(M ))"". since this guarantees boundedness (compact
ness) of the dual. 10 

APPENDIXC 

We show here that if V is Ho-bounded with relative 
bound '0', then - H generates a holomorphic (Co) semi
group in the sector \ A: I arg"t I < 1T !21· We observe that - Ho 
generates such a semigroup, so if 0 < w < 1T!2 in 
S = !A:larg"t 1<1T!2 + wI, we have 

lIeRo + A ).11111') <milA I. 

where m > 0 depends on w. An analysis similar to that of 
Appendix B shows that for AES. 

IIV(Ho + A )-I~llp<[a(1 + m) + bm/IA 1]11~llp· 
So choosing 0 < a < 1I( I + m). it follows that 
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'i + V(Ro + A ) - I has a uniformly bounded inverse if 
1,1 I> bm/(l - all + m) - e). wheret > OandAES, Soin this 
region 

II(H+A)-IIL p) 

<IICRo + A )-IILp)11 [1 + V(Ho + A )-1] -IIIIP) 

<m'/IA I, 

where m' depends on m.a,b. Thus. clearly, we can choose 
c> bm/[l - a(1 + m) - 10]. m" > 0 such that if 
He = H + eI. then (He + A )-1 exists in 
\A:larg"t I <1T/2 + wI and 

II(He + A )-IIIIPI <m" /IA 1 

for A in this sector. Following Kato,27 we define 

WIt) = _1_. f eA1(Hc +.1 )-1 dA. 
21Tl r 

wherer= \A:larg"t I = 1T/2 + w - ej withO<e<wandin
tegrated for increasing imaginary part. WIt ) exists for 
1 argt 1 < w (since we can deform the contour so that 
larg(tA)1 > 71/2). Kato has shown that W(t) is a uniformly 
bounded holomorphic semigroup in the above sector with 
generator - He' The proof uses the fact that H is closed. So 
for any w such that 0 < w < 1T/2, 

e IH = e,cW(t) for largt I <w. 

and c depends on w. 

APPENDIX 0 

Let us consider the channel Hamiltonian H = Ho + V. 
where V includes an external potential spatially confining 
the N particles to a bounded region :/i along the diagonal. 
Also suppose V is Ho bounded with relative bound < 1. 

If we choose AE p(H) outside the region specified in 
(2.30), then we have that 

IIV(A - H O)-111121 < 1, 

so 1 - VIA - Ho)·· I has a bounded inverse. So we write 

G(A) = (A - H) - I = (A - Ho)- 1[1 - VIA - Ho) - I] - I. 

But Ho may be regarded as Nch copies of the Dirichlet-La
placian on the bounded region M. Since AE p(Ho) it follows 
that (A - Ho) - I is compact (Reed and Simon 12). Therefore 
G(A ) is compact as the product of a compact and a bounded 
operator. So a(G(A II = \ Xn (A ll, where Xn (A )~O as n--+ 00 

[set X oc (A ) = 01. Each Xn except X oc = 0 is an isolated ei
genvalue of finite multiplicity. So there exists ~nEY;'p such 
that 

G(A )'!:n = X" '!:n. n = 1,2, .. ·. 
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We now determine u(H) using this information about 
G(A). Since ~nEdom(H) [G(A ):CtJ'p-dom(H)], 

H~n = (A - X n- I)~n,n = 1.2,3.·· .. 

So !A - X ;-I(A ):n = 1,2, ... ) kPu(H). Now choose 
X~!O,xn:n = 1,2,···j. Then (X - G(A ))isboundedinvertible 
and has a bounded inverse. So it is one to one and onto. 
Suppose A - 1/ X is an eigenvalue of H with eigenvector ~. 
Then G(A )1/1 = XI/I (a contradiction). So A - l/X~ Pu(H). 
Consider next Range(A - 1/X - H). The equation 

(A - 1/ X - H) ~ = ~ 

may be rewritten [since G(A ) has an inverse] as 

[X - G(A )] ~ = XG (A )~, 

and since X - G(A ) is onto, this equation has a solution 
~ [Edom(H)] for all ~E(G' p' So Range (A - 1/ X - H) = CtJ' p' 
Finally, we note that G(A - I/X) = (A - I/X - H)-I is 
bounded since 

G(A - 1/X) =XG(A )[X - G(A )]-1 

We conclude that 

u(H) = Pu(H) = !A -Xn(A )-I:n = 1,2, ... ). 

For the case where the confinement is achieved by imposing 
a periodic boundary condition the analysis is similar. The 
operator H with the property that the resolvent is compact 
for some A is called discrete. 36 

APPENDIX E 

Consider the a' = complete breakup scattering solu
tions where the Hilbert space eigenvector is characterized by 
the plane wave I¢o) in the asymptotic complete breakup re
gion. The asymptotic part of the corresponding channel 
space solution can be chosen in any of the Noh positions a 
since a' Ca for all a. Choose one of these to be the physical 
eigenvector, say a = a*. This solution is naturally associat
ed with the numerical vector f!... 1 where 8 ~ = 8",,, •. Choose 
8 2,8 ', ... ,8 ,'Ieh to be linearly independent numerical spurious 
;-ectors. SPurious wavelike solutions may then be construct
ed by taking corresponding linear combinations of the above 
Neh physical scattering solutions. Thus in the asymptotic 
complete breakup region, the planewave part of these solu
tions is 

f!...'lcPo>. i = 1,2, ... ,Nch • 

Let <!! I, = (1.1, ... ), <!! 2', ... <!! Neh be the set of numerical vec-
tors biorthogonal to the f!... i. Clearly. the only way to achieve 
8-function biorthogonality of wavefunctions is if the plane 
wavelike part of the dual of the channel vector associated 
with f!... i in the asymptotic complete breakup region is 

<!!i'<cPol, i= 1,2, ... ,Nch ' 

Of course, for the physical dual, 

(/J I, <cPol = «<Dol,<cPo)'-.). 
If we consider scattering solutions for general a', corre
sponding to stable clusters characterized asymptotically by 
the planewave I cPa' ), then the analysis is similar. This time 
the asymptotic part of the physical channel space scattering 
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solutions can be chosen in any of M <Nch (say) positions a for 
which a' Ca. Consequently, here suitable M component 
vectors 8 i and their biorthogonal duals (/J i' i = 1,2, ... ,M are 
constructed. These determine the asymptotic planewave 
part of the physical and spurious solutions, and their duals 
which are confined to the M channels described. The dual 
vectors may also have this planewave asymptotic structure 
in other channels (the physical dual has equal components in 
all channels). This structure for the spurious duals is not 
determined from biorthogonality. 

The inhomogeneous term 5 ' in the integral equations 
satisfied by the dual vectors is, however, completely deter
mined by the (/J t. There can clearly not be any nonzero com
ponents in €.' outside the M channels described, or the inte
gral equations 

~ ~-t;, , = €. ' + ~ ~~ 'VGl (E) 

would not reduce back to the differential form on applying 
the operator E - Ho. Specifically, €.' - <!! i' < ¢", I in the as
ymptotic a' tube and €.'.(E - Hol = 2'. 

The equations for the physical duals reduce to LS-GT 
equations after explicitly setting their components equal. 
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We discuss measures of certain sets in Y'(R d) related to the behavior of suPx Iif; (g(. - x))1 
(fl uctuations of if; ) forlarge I x I in an ultra violet regularized infini te vol ume P (if; )d . We in vestigate 
also whether the measure of a set is preserved, when the ultraviolet cut-off is removed. 

PACS numbers: 03.70. + k, 02.S0.Ey 

I. INTRODUCTION 

The P (if; ) models of Euclidean field theory (see Refs. 1-
3) correspond to a measure on Y'(R d) (d <4 if there is no 
ultraviolet regularization). This measure can be defined as a 
limit, in the sense of the convergence of the characteristic 
function or moments, of a finite volume A ultraviolet regul
rized fl: measure defined as 

dfl:(if;) = (Jexp [ -lp(if;K(X))]dflo(if;))-1 

xexp [ -lp(if;K(X))] dflo(if;), 

where flo is the Gaussian measure with the covariance 

(1.1) 

( - L1 + m~) - I (x,y), P is a polynomial of order 2n bounded 
from below, and if;K(X) = jJ (wK(P)eiPX

) with a certain function 
W K such that (if;;) = Sdflo if; ;(x) < co. 

For the small coupling a convergent expansion is 
known for the moments of the limit measure fl 
(K = co ,A = R d; inP (if; hand (if; 4b). Such an expansion deter
mines the measure fl uniquely. However, it is of little use 
when asking the question. what is the value fl(C). which the 
measurefl takes on a set C. The problem is of some (at least 
mathematical) interest. In particular, one would like to 
know the smallest set of measure 1, i.e., the support offl. The 
support properties are known to be a useful tool when solv
ing various (physical) problems in the theory of stochastic 
processes (see, e.g., Ref. 4). As the measureflK(A = R d) is 
the limit of a local perturbation of the Gaussian measure flo, 
one expects that the limit measure will have similar support 
properties as flo. when restricted to the CT-algebra of sets 
generated by if; (I) with supp/CA. So. only "at infinity" we 
can get a non-Gaussian behavior of the random field if; (x) 
(this is known at least for d<,2j.2.5.6 In one dimension the 
behavior of q(t) for It I-co in P(if; )1 has been investigated in 
terms oflim sup by Rosen and Simon,6 who computed this 
limit exactly. The corresponding results for Gaussian ran
dom fields were known before. 7

•
M In this paper we get only a 

bound from above on lim1xl _
00 

sup if; (x)(lnlxl)- y in the infi
nite volume ultraviolet regularized P (if; )d' This extends the 
results of Rosen and Simon [who discussed briefly also 
P (if; hJ· The bound from above is sufficient to distinguish the 
interacting random field from the free one. So we can con
clude that the infinite volume limit (if it exists) gives a mea
sure which has its support disjoint with the support of the 
Gaussian measure. 

In Euclidean field theory one is rather interested in sup
port properties ofthe measurefl and its relation to the cut-off 

measures flK' In Ref. 9 we have got some results in this direc
tion, which are summarized below and will be applied at the 
end of this paper. Consider the CT-algebra ~g generated by 
the cylinder sets in Y'(R d) of the form 

Z:(xl, ... ,xn) = [if;EY':(if;g(xIl, ... ,if;g(xn))CBCR nj, 

where if;g(x) = (g'if; )(x) = if; (g(. - x)) is a mapping Y'-C 00. 

We introduce a 2" -topology in Coo (which can be also con
sidered as a topology in Y', which which is weaker then the 
usual weak topology) saying that if;n-<P if if; ; (x)-<pg (x) uni
formly on every compact sets KCR d. We have proved in 
Ref. 9 that the set of measures [v y = g' - Ifly I, being the 
restriction of fly to the CT-algebra ~g, is under some assump
tions weakly conditionally compact. 10 We formulate this re
sult as: 

Theorem I.l: Assume (i) fly are invariant under transla-

tions in R d; (ii) Sexpif; (g) dfly (if; ) is bounded in r; (iii) lim sup 
lul~oo 

lu I-Pln(Sdfly (if; )expuif; (g)) is bounded in rforcertainp. Then 
any sequence I r I contains a subsequence I r n I such that 
SF(if;g) dflyJif;) converges for all bounded continuous func
tions F. The limit determines a measure fl on ~ and 

• g 

(a) hmsuPfly,,(C)<fl(C) for every set CUg closed in the 
2" -topology; 

(b) lim inffly.!U»fl(U) for every open set UUg; 
(c)limfly.!A) =fl(A ) fora set AUg such that there exist 

an opens set U and a closed set C, UCA C C, with 
fl(C - U) = O. 

In application to the flK measures (1.1), the assumptions 
(i) and (iii) are fulfilled if we use regularizations preserving 
Osterwalder-Schrader (O.S.) positivity I I [wK(P) independent 
of PI or lattice approximation] and if the translation invar
iant infinite volume limit of J.l: exists. The infinite volume 
limit of J.l: is expected to exist on the basis of the uniform 
bound resulting from the chessboard estimates. 5

,12 It seems 
that the unique (and translation invariant) infinite volume 
limit of J.l: could be obtained for the weak coupling using the 
cluster expansion. 13 Finally, if the pressure a:, is bounded in 
K then (ii) is fuflilled. 

II. FLUCTUATIONS OF RANDOM FIELDS 

The L 2 properties 14.15 of the random field if;g(x) 
= if; (g(. - x)), gEY(R d) show that when lxi-co it behaves 

in the L 2 sense like a bounded function. However, as is 
known for the Gaussian 7,8 as well as for the P (if; ) fields6

, the 
sample functions if;g(x) fluctuate and the range offluctu
ations behaves asymptotically like (Inlxl)Y, when lxi-co. 
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For Gaussian case and for P(¢J ),6thelimit as Ixl-+oo ofthese 
fluctuations has been computed exactly. We will be able to 
give here only a bound from above under an assumption, 
which will be checked for ultraviolet regularized P (¢J )d fields 
in the next section. Define first an average over ¢Jg (x), which 
is an analog of S: + 'q(S) ds from Ref. 6 

(11.1) 

where QR is a ring in R d of radius R and volume IQR I. We 
denote E [ ] = S df-l [ ] and assume that the measure f-l is 
translation invariant. We have then 

Theorem 11.1: Assume there exists p > 1 such that 

lim suplul-PlnIE[expu¢J (g)] I < 00; then (withgEC ~(R d)) 
lul-~oc 

the following sets have measure 1: 

if I QR I is fixed; 

(b) [¢J: supl¢Jg(x)1 [In(2 + Ixl)]II-pl/P < 00 I 
Xi 

if the remaining d - 1 variables are fixed. 
We need first the following: 
Lemma 11.2: If 

lim sup lui PlnlE [expu¢ (g)] I <M(g), (11.2) 
lui ~~oo 

then exp(r¢J (g)f is integrable for all r if f3 <pllp - 1) and for 
r<Jo = (a( p)) - '(M (g)) - lip with a( p) = p( p - 1) - I + lip if 

/3 =pl(p -1). 
This lemma was proved in Refs. 16 and 9 using the 

inequality explxlP/(p - II<,b Sdy exp (-Iyl P)exp(aylxl), true 
fora<,a(p). 

Proof of Theorem ILl: (a) From the Jensen inequality 

exp I-r-i dX¢Jg(X)1 pl(p- II 
IQR I Q. 

< _1_ i dx explr¢Jg(x)IPI(p - II 
IQR I QR 

< _1_ ( dx explr¢Jg(x)jP/(p- II 

IQR I JK R 

IKRI 
=--C 
- IQRI R, 

(11.3) 

where K R is a ball containing QR' C R is integrable by virtue 
of Lemma II.2 for r<Jo' Let I QR I be fixed. If n - 1 <R <n 
then 

By the ergodic theorem lim Cn exists, hence CR is bounded 
n-_oc 

by an almost surely (a.s.) finite random variable C. We can 
now rewrite Eq. (11.3) in the form, which implies (a), 

l¢g(QR)I<ro-
1 In __ R_C ; ( 

IK I )P - lip 

IQRI 
(Il.4) 
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(b) Consider first a sequence of points x" = (n,xd _ I) Xd _ I 

= (X2""'X d ). From Lemma 11.2 and the ergodic theorem 

. 1 n 
hm- I,explr¢g(xn )IP/(p-11=9(g,xd _ 1 ) (11.5) 

" "'00 n k = 1 

exists with probability 1 for r<,ro. Hence for every n 

(lIn)explr¢g(xn) I pili' - 11<,~ (g,xd ~~ I)' (11.6) 

Then (b) follows from the inequality 

I ¢Jg(x)1 <I ¢g(xn)1 + 1 ¢Jg(xn) - ¢g(x)1 

<ro I (lniiJ (g,xd _ I )n)p 111' 

+ I¢ IIg(· - x) - g(. - Xn )I y , (II.7) 
where the ,J" norm is less than K Ix - Xn I. 

Remark: We could prove the theorem without the as
sumption that gEC ~ (R d) using the results of Ref. 16 on 
Holder continuity of sample paths. We can get in a similar 
way, 

Theorem 11.3: Let Ti be a unit translation in the ith 
direction. Assume (11.2) and that the measure f-l is ergodic 

under translations T = n1 ~ I T7i; then with probability 1 

l~fP21¢g(n)1 Ctl1nlnilY' -pilI' 

<,r- '(1 + lng r(g))lp - 1I/p (11.8) 

for any 0 < r< ro with§' rIg) = E [explr¢ (g)IP/lp ~ 11] and 
n = (n" ... ,nd ). 

Proof From the ergodic theorem 

~,i~ (fI, ;i ) k~ ,'" k% ,exp\r¢Jg(k)\ pllp - II 

exists and is a constant equal to E [exp I r¢ (g) I pll p - \ IJ. Then 
Eq. 11.8 follows by the same argument as in the proof of 
Theorem 11.2. 

Let us still rewrite Eqs. (11.4) and (11.6) in the following 
form: 

Theorem 11.4: Under the assumptions of Lemma 11.2 
with IQR I and Xd _ 1 fixed the following sets have measure 1: 

(a) [¢: lim sup l¢g(QR.,lI(lnRn)11 -p)lp 
R,. "oc 

<,a( p)(M (g))'/PI; 

(b) [¢:lim sup I ¢Jg(xn)l(lnlx" 1)11 
Ix,,1 '00 

fillp 

<,a(p)(M(g))l/pj 

for any increasing sequence of radii and 

Xn = (n,x2,· .. ,Xd )· 

Remark: With IQR I being fixed ¢g(QR) tends to the 
mean value of ¢Jg (x) on a sphere of radius R. That is why 
¢g(xn ) and ¢g(QR) have the same asymptotic behavior. 

Let us note finally that the theorems proved above are 
true also on a lattice (see Ref. 2) i.e., if the measure f-l is a 
measure on sequences ¢,,(n), nEZd. Denote 

¢,,(g) = !,nEZ d8dg(m5)¢,dn ) 

¢~(g;n) = I,8dg(r8 - n8)¢/j(r) 
r 

and assume (11.2) for ¢,,(g). Then Theorems 11.1-11,4 (b) are 
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truefor¢~(g;x)withxEZd. If¢~(n) = ¢,,(no ) with regulariza-
8--<J 

tion K such that ¢" (x) is a continuous function, then ¢~ (g) -

" '00 

III. BOUNDS ON FLUCTUATIONS OF P(¢) FIELDS 

We shall show first that Eq. (11.2) is true for regularized 
P (¢ ) fields and their powers with M (g) independent of the cut -
off. Then the bounds of Theorems 11.1 and 11.4 hold true 
with probability 1 with respect to every fll(' This does not 
mean that they are true in the lim K - 00 , as the sets of mea
sure 1 of Theorems 11.1 and 11.4 are not closed in the 2"
topology (see Sec. I). We will discuss the lim K- 00 at the end 
of this section. 

As we have mentioned in Sec. I, we consider regulariza
tions UJ,,(p) independent of PI in order to preserve the O.S. 
positivity. I I In such a case we have the following bound in 
P(¢) theory (1.1) coming from the chessboard estimates5

•
12 

E" [exp:Q" :(g)] 

<exp J dx [a: (p - Q(g(x)) - a: (P)] (III. I) 

for any polynomial Q(g,y) = Lj:t1gjY ifgjEC a(R d). Here 

a: (P) = lim _I_InJ exp (- J:P( ¢.-(X)):dX) 
,1.R d 1..1 I 
X dflo(¢ ) (111.2) 

andP-Q(g)meansthattheinteractionP(y) = Lj:t1ajyjhas 
been replaced by Ply) - Lj: t1gjy j. The existence ofthe limit 
(III. 2) is again the result of chessboard estimates5

•
17 i.e. a 

consequence of O.S. positivity. 
Ifwe introduce the lattice approximation2 i.e., replace 

:P(¢): by LrE,18d: P( ¢~(r)): (with¢/i(r) = ¢ (hr.~)' hr.~ being a 
certain test function) and impose periodic boundary condi
tions, then assuming that the infinite volume limit of the 
lattice theory with periodic boundary conditions exists IX we 
can get an analog of Eq. (111.1),17.19.20 

Eo [exp:Q/i(g):] 

<exp~8d [a: (p - Q(g(ro))) - a: (P)], (111.3) 

where 

:Q (g;¢/;(r)): = LOd:¢~ : (r)gj (r8) 
r 

and 

lim 
,1 .R" 1..1 I 

XlnJexp [ - ~8d:p(¢Il(r)):] dflb. 

flb is the Gaussian measure with the covariance 
( - L1 + m~ )p- I with periodic boundary conditions on A. 

Then we have the following "Wick lower bound" Ref. 
21, (Lemma VII. 11): 

Lemma. 111.1: (Guerra, Rosen, and Simon): Let P (y) 
= Lj: I ajy j (a 2n > 0) then there exists a constant A (depend-
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ing only on n) such that: 

:P(¢I«(x)): - :Q(g(x);¢I«(x)):> -a2n A [(¢;)n +a(a,g(x))], 
(111.4) 

where 
2n - I 

a(a,g) = L (la 2n _ j I/Ia2n I )2nlj + (lg2n _ j I/Ia2n I )2nlj, (111.5) 
j= I 

and an analogous bound for the lattice theory. 

Lemma 111.2: There exists a function N of K and aj such 
that 

(III.6) 

Proof This follows immediately from the definition 
(111.2) and the inequality (111.4). 

Asume now thatg2n _j = hb2n _j) = l,oo.,2n - 2 and 
gl = hb 1 + g. From the arithematic-geometric mean in
equality we get 

(lhb2n _j I)2nlj< r-I (Ih 12nljr/(r-ll+ ~(lb2n_jlfnrlj, 
r r 

and from the Holder inequality 

From these two inequalities we obtain the following bound: 

a: (P - Q (g))< NJa,b,€) + A .(a2n ) - 1/(2n - I)lgl 2n/(2n - II 

2n - 1 (Ih I )(1 + <12n/(2n - jl 
+ A2a2n L 8j -- (111.7) 

j = I la2n I 
for any € > 0 and 

{
I if 

OJ = 0 for 

We now allow bj and aj to depend on the cut-off K assuming 
only that a2n (K»a2n > O. Denote 

N(¢~(x)) = rbj(K):¢~:(x) 
j= 1 

and 

N(¢ ~)(h) = L(¢ ~(x))h (x) dx. 

From Eq. (III. 1 ) we have (r < 2n) 

E" [exp I u¢" (g) + vN ( ¢ : )(h ) I ] 

<exp J dx [a:, (P - ug(x)¢ - vN(¢ r(x))h (x)) 

(III.8) 

(111.9) 

- a: (P) ]. (III. 10) 

Applying the estimate (III.6) to Eq. (111.10) we get: 
Theorem 111.3: There exist A IA 2,K I( (I n I,a,b,€) such 

that if h andg have their support in n (and In I < 00), then for 
any €>O, Ivl > 1, and r<2n 
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EK [exp! Uif>K(g) + vN( if> :)(h)l] 

..;KK(IJJ l,a,b,€)exP[A dO'2n ) ~ 1112n ~ IIIul2n/12n ~ Ilf dx Ig(x)12n/12n ~ II] 

[ 
r f (lh(X)I)II+EI2n/12n--jl] X exp A2O'2n Ivl ll + E12,,/12n ~ rlI OJ dx -_- . 

J ~ I la 2n I 
(111.11) 

The same estimate is true for the lattice theory with 

f dx F(x)~ fodF(no). 

Proof The estimate (111.11) follows from Eqs. (III. 7) 
and (111.10) if we note that integration over x in Eq. (111.10) is 
only over the support of g and h. We have also applied the 
assumption that a2n (K);;;'O'2n > 0 for all K. 

For d < 3, KK can be matched with ¢JK - if> 21 by means 
of the Duhamel expansion in such a way that (111.11) re
mains true for K = 00 with a certain constant K. Comparing 
Eq. (111.11) with Eq. (11.2) we get: 

Corollary 111.4: The sets of Theorem II. 1 and 11.4 with 
(p - 1)/p = 1!2n and 

r ( r) € (p - l)1p = - + 1 - - --, 
2n 2n 1+£ 

M(g) =A I (O' 2n ) - 1!(2n - l)fdXlg(x)12n/12n~ II 

and 

- r f (lh(X)I)II+EI2n/12n~jl 
M (g) = A2a2n IOj dx -_-

j=1 la 2n l 

(Mbeing independent of K) for if> and N ( ¢J r) correspondingly 
have for each K, fLK measure 1. If d < 3, the fL measure 
(K = 00) of these sets is also 1. 

The sets in question are not closed in the X ~topology, 
therefore we cannot apply Theorem 1.1 to show that the fL 
measure of these sets is 1 if d > 2. The bounds on fluctuations 
depend on the asymptototic behavior of Eq. (11.2), which 
implies integrability ofexplrif> (g) I pl(p ~ II. We could show the 
inverse statement that integrability implies the bound (11.2). 
Then one expects integrability of exp(vif> (g)fn with 
gEC a(R d), when P is of order 2n, iflim K~oo is nontrivial, 
because of the damping factor exp( - a2n ¢J 2n). 

Let us consider now Theorem 11.3. Applying Theorem 
1.1 we get: 

Theorem 111.5: The set 

C R = {¢J: l~i~~2 I ¢Jg(n)1 Ctl lnln; Ir ~p)lp ..;R } 

if closed in the X -topology. Hence, if 
EK [expi V¢JK(g) Ipl(P ~ II] is bounded in K, then under the as
sumptions of Theorem 1.1 there exists an R such that 
fL(CR ) = 1. 

Proof That C R is closed is a consequence of the 
inequality 

I ¢Jg(n)\..; \ if> :(n) - ¢Jg(n)1 + I if> :(n)1 

for if> N-+</>. Then,fL(CR ) = 1 follows from Theorems 1.1 and 
11.3. 

Let us consider now N ( ¢J :)(x) as defined in Eq. (III. 8). 
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By smearing out we can get a map h ':N (if> :)(x), N (if> :) 
(h (. - x)) = xIx) of Y'(R d) into C OO(R d) equipped with the 
.f' -topology (cf. Sec. I). We define a measure 1\ = h 'fLK on 
C 00 (R d) by means of its finite dimensional distributions 

f dvK(x) ill expiujx(xj ) 

= fdfLK(¢J)iII exp[iujN(¢J:)(h(.-xj ))] 

(111.12) 

Then assume: 
(i). There exists a choice offunctions aj(K) (0<0..;2n, a2n (K) 
;;;'O'2n > 0) and bj(K) (j";r < 2n) such that a: (P) and a: (P') 
[where P '(if> ) = P(¢J ) - hN(if> r)] are bounded in K. Using (i) 
and Eq. (111.10) we can prove an analog of Theorem 1.1: 
There exists a sequence of cut-off's Kn and a measure von 
C 00 (R d) such that v K .. ~v weakly and 

V(C);;;. lim sup v"JC) (111.13) 
K,,--+oo 

for any set C closed in the X -topology. The measure v can 
be defined by its finite dimensional distributions 
lim"" -00 ff"Ju IX 1;"·;Unxn). This defines a random field, 
which we shall denote N (if> r)h (x) (N (¢J r)h if x = 0) having the 
characteristic function 

5Th (U) = feXPiUX(O)dv(x) 

=E [expiuN(if> V)(h )]. (111.14) 

We know nothing about the continuity of ffh in h, therefore 
we cannot apply the Minlos theorem in order to determine 
from Eq. (111.14) a generalized random field N (if> r)(h ) over 
.Y"(R d). [If d = 2 the continuity of ffh in the Y norm fol
lows from Ref. 22. Then Eq. (111.14) defines a generalized 
random field: ¢J r:(h ). However, if d > 2, :¢J : :(h ) is not con
vergent to :¢J r:(h ) in the Lp sense even in the free case. For 
some results on N(¢J r) in d = 3, see Refs. 23 and 24.] 

Consider now the set C L = !Ix (0) I..;L I. We have 

feNI<b:1hldfL,,(if» = fex,O'dv" (x);;;.eLv" !X(O) >L 1 

and 

fe ~ NI<b~lIhl dfL,,(if» 

= fe~¥'O'dv,,(x);;;.eLv,,[ - X(O»L j. 

The left-hand side of these inequalities is bounded in K by Eq. 
(111.10) and the assumption (i); hence 
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vK(CLl;?> 1 - Ke- L. 

The set CL is closed in the c:f -topology. So we get from Eg. 
(III.13) that 

v(CLl = vi Ix(O)I.;;;L I;> 1 - Ke - L (111.15) 

From Eq. (111.15) we can get: 
Lemma III. 6: E [expl,1,N (rp ')h I] < 00 if 1,1, I < 1, and for 

any R > 1 there exist Cn and M such that if p > M 

E [(N (rp ')h )2p
] ';;;Cn (2p)!R 2P. 

Proof 

E[expl,1,N(rp')hl] = fexpl,1,X(O)ldvl¥) 

= - fexpl,1,lxdv(IX(O)I>xi 

= 1 + 1,1, IlooexPl,1, Ix 

Xv! Ix(O)1 >x I dx < 00 

by Eg. (III. 15). Next, due to Lebesgue monotonic 
convergence, 

E [ch(I,1, IN(¢')h)] 

= I ~E [(N(rp')h)2p
] < 00. 

p=O (2p)! 

This implies the bound on correlations in the theorem. 
Next, as Sdflo(¢ ) (:1,6 ':(h ))2P((2p)!)'/2 we have: 
Corollary III. 7: N (rp ')h for r> 2 is not a Wick power of 

a free field of order higher than two. 
Now, making use of Lemma 111.6 and repeating the 

proofs of Sec. II. We can get a weaker form of the statements 
of Corollary 111.4. 

Theorem 111.8: The sets 

(b)! supIN(Ib')h(x)I[ln(2+ Ix,I)]II-Pl/P<oo,xdlfixedl; 
x, 

(e) {1~~P2 \N(¢r)h(n)\ (tln\nilr l'il

P

';;;A 1. 
have v measure 1 (for some A large enough in c). 

Summarizing our results on the behavior of 1,6 (x) for 
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large x we can see that this behavior depends on the damping 
factor exp( - a2n rp 2n) of the interacting measure (1.1). It 
would be useful if we could say something about the depen
dence of the measure fl on a2n after the removal of the cut-
0ffs A and K. From Corollary I1I.4 we can see that a2-~ l/2n 
bounds the fluctuations of rpK' Further statements of this 
section concerning the K-" 00 limit are a weak form of these 
bounds on fluctuations and were proven under rather strong 
assumptions. It seems that it should be possible to character
ize the support of f.1 extracting properly only the fact that 

02" (K»aZIl > O. 

ACKNOWLEDGMENT 

The author wishes to thank Professor T. Balaban for a 
discussion. 

'Constructive Quantum Field Theory, lecture Notes in Physics, Vol. 25, 
ediced by G. Velo and A. Wightman (Springer, Berlin, 1973). 

'F. Guerra, L Rosen and B. Simon. Ann. Math. 101, III (\975). 
'J. Feldman and K. Osterwalder, Ann. Phys. 97, 80 (1976); J. Magnen and 
R. Seneor, Ann. Inst. Henre Poincare 24, 95 (1976). 

"H. Cramer and M. R. Leadbetter, Stationary and Related Stochastic Pro
ce,ses (Wiley, New York, 1967). 
'J Frohlich and B. Simon, Ann. Math. lOS, 493 (1977). 
"J. Rosen and B. Simon, Ann. Prob. 4, 155 (1976). 
7p. Colella and O. E. Lanford III, in Ref. 1. 
'G. A. Hunt, Trans. Amer. Math. Soc. 71, 38 (1951). 
"2 Haba, "Continuity of sample paths and weak compactness of mea
sures" in Euclidean field theory, preprint, 1979. 

"'Yu. V. Prokhorov, Theor. Prob. Apr\. 1, 157 (1956). 
"K. Osterwalder and R. Schrader, Commun Math. Phys. 33, 83 (1973); 42, 

2S \ \\ 975). 

"E. Seiler and B. Simon, Ann. Phys. 97, 470 (1976). 
"J Glimm and A. Jaffe, in Ref. \. 
I'M. Reed and L. Rosen, Commun. Math. Phys. 36, 123 (1974). 
"J Rosen and B. Simon, Duke Math. 1. 42, 51 11975). 
"'2. Haba, Commun. Math. Phys. 69, 24711979). 
I7J Frohlich, R. Israel, E. H. Lieb and B. Simon, Commun. Math. Phys. 6;2, 

1119781. 
"G. A. Baker, Jr., Math. Phys. 16,132411975). 
"'F Guerra, Meth. Math. Th. du Champ Quan., Proceed, Marseille Conf. 

1975. 
'''Yo M. Park. J. Math. Phys. 17, 1[43 (1<)76). 
2'F. Guerra, L Rosen and B. Simon, Ann. InsL Henri Poincare, A2S, 232 

11976). 
"J Glimm and A. Jaffe, Commun. Math. Phys. 44, 293 (1975). 
"J S. Feldman and R. R\lczka, Ann. Phys. 108,212 (1977). 
'"I. P. Eckmann and H. Epstein, Commun. Math. Phys. 64, 95 (1979). 

Z.Haba 1691 



                                                                                                                                    

Strange solutions to field theories in one spatial dimension 
Daniel C. Mattis and Bill Sutherland 
Physics Department, University of Utah, Salt Lake City, Utah 84112 

(Received 11 December 1980; accepted for publication 13 February 1981) 

Many models of interacting particles rely heavily for their solution on restriction to one
dimensional motion and a linearized kinetic energy. We examine this in detail, and find that the 
linearization can lead to patently strange and possible spurious solutions in first quantization. The 
usual, correct solutions are obtained only in second quantization. The strange solutions do not 
reduce to the usual plane wave determinantal solutions, even when the interactions are 
extinguished, and have the character of a condensed phase - a sort of Wigner lattice-for 
arbitrary interactions. 

PACS numbers: 03.70. + k, 11.1O.Ef 

We examine a class of rather simple fermion Hamilto
nians in one spatial dimension. These are exactly soluble, in 
the sense that one can exhibit explicitly their "correct," 
physically acceptable solutions. We also discover a totally 
new class of solutions for which no simple physical interpre
tation exists, which we label "strange." It has been very pop
ular recently to linearize the kinetic energy, so as to obtain 
easy and convenient solutions of difficult problems. We shall 
examine this premise. Let us start with the simplest case, a 
one-component theory for N fermions characterized by the 
following Hamiltonian: 

H = - iiLdX ¢,t(x)ax¢(x) 

+ A,SdxSdx'¢t(x) lb(x) V(x - x')l//(x')lb(x') 

=KE+PE. (1) 

Here ¢(x) is a fermion field operator: 

! lb(x), lbt(x') 1 = o(x - x'), ! ¢(x), ¢(x') 1 = O. (2) 

In terms of momentum operators Ck , ¢ may be written 

¢(x) = L -1/2 2/kXC
". (3) 

k 

We also define the particle-density (or "current") operators: 

While the Ck 's anticommute ([ C,' ck+, 1 = 0", ), the Pq 's 
commute: 

[Pq'Pq'] = 0, all q,q', 

(4) 

(Sa) 

as long as the number N is finite. If however, the Fermi
Dirac sea is filled, thus N = 00, the P q 's satisfy a different set 
of commutation relations': 

(Sb) 

[It is very easy to verify (Sb) when both sides of the equation 
operate on the Fermi-Dirac sea, the state in which all k < kF 
are occupied and all k > kF are unoccupied. The proofof(Sb) 
as an operator identity is given elsewhere.'] In connection 
with (Sb) we define a set of Bose operators G q : 

{

G for q <0 
P =(lqILI21r)'/2 X Iq 

q Gq+ forq>O 
(6) 

the Gq 's- now defined only for q> 0- satisfy the standard 

Bose-Einstein commutation relations: 

(7) 

Before proceeding to the exact solution of (1), we require one 
more algebraic identity, concerning the KE, which takes on 
the following form: 

- zJ dx ¢t(x) ax lb(x) = Ikck+ Ck • (8) 

After subtraction of the energy of the Fermi-Dirac sea, it 
can be written as2 

Ikc/ Ck - I k =!:!!..-. Ipq+ Pq = I qGq+ Gq, (9) 
k " k, L q > 0 q' 0 

The normal-mode operators G q were, in fact, first introduced 
by Tomonaga, 'It is seen that the free-fermion kinetic energy 
can be written as the energy of the decoupled normal modes. 
The solution of (1) comes from the realization that the same 
situation holds for the PE, which is written as follows: 

A J dx J dy lb + (x) lb(x) V (x - y) ¢+ LY)¢LY) 

= (A/L) I Vq(pq+- Pq + pqpq+ ) 
q'() 

= (A/1T) I (qVq)(Gq
t Gq + ~), (10) 

4,·0 

in which V is the Fourier transform of V(x), presumed real. 
q 

Combining the above, we obtain H in the form: 

H = Eo + IWqGq
l Gq, 

q"O 

Ill) 

where Eo is the sum of the ground state and renormalization 
energies, 

Eo = I k + (A,!21T) IqVq, 
k,' ", q" () 

(12) 

and the renormalized normal-mode energies are 

(U
q 

=q(l +A,Vq l1T), 113) 

We now turn to the strange solutions of (1). These are 
evidently confined to the case N = finite, in which the 
Dirac-Fermi sea is unfilled. Nevertheless, such a case is fre
quently considered in conjunction with a cutoff k, below 
which no fermions are to be permitted.4 The limit k,---+ - 00 
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is taken after the solution is obtained, under the assumption 
that many of the properties are cutoff independent. 

The energy eigenstates of (1) are written as 

" tJI = F(x I,X2"",X/V) II 1/'+ (x" )10), (14) 
n--=-t 

where F(x p"') satisfies the partial differential equation 

. N JF 
-/ I-+AI IV(xn -xm)F=EF(x p .•. ) (15) 

n 1 ax" n,m 

and E is the energy eigenvalue. F is recognized as the ordi
nary wavefunction in first quantization. The anticommuta
tion relations applied to (14) limit us to solutions of(15) that 
are totally anti symmetric, i.e., that change sign under the 
interchange of any pair of coordinates x" ,xm . It is these solu
tions that we now determine. The key observation here is 
that the KE operator, identical to the total momentum 
operator, 

(16) 

commutes with the PE operator 

(17) 
n,!" 

An additional simplification comes from the fact that the 
KE involves only first derivatives. IfG (x I'''') is defined as the 
symmetric free field (A I = 0) solution of (15) belonging to 
energy EI and F(x I''') is the solution of(15) with energy E 2 , 

then it is easily seen that G (x I''') F(x p ''') is also a solution of 
(15) belonging to energy eigenvalue E = EI + E 2• 

Taken together, these remarks determine what can be 
shown to be, in fact, the most general form of the solution; 
the argument goes as follows: the kinetic energy depends 
upon a single variable-the center of mass coordinate; the 
potential energy does not depend upon it at all. Thus, we 
may write the eigenfunction as 

F~ exp l' Ix,[E -,{, I VI'. -Xmll; 1 
j(x,v -X,v_I, ... ,X2 -XI)' (18) 

Since the exponential phase is symmetric under permutation 
of particles, the function! of the relative coordinates will be 
antisymmetric. As it stands, this is an eigenstate for any val
ue of energy; these states are the scattering states of our sys
tem. We now impose periodic boundary conditions on the 
system; this has the effect of fixing the phase so that 
[E - AI~ V(x" - x m )] L =KL = 1TX (even integers) for N 
odd and 1TX (odd integers) for N even. This, however, can 
only hold if L V (x" - x m ) is constant, and thus the function 
f of the relative coordinates is required, by periodic bound
ary conditions, to be a product of delta functions fixing the 
relative separations x" - x" I = rn' We then arrive at our 
final form: 

.'Ii 

F= e iKx
, II 8(x" - x" _I - r,,) 

II - 2 

( 19) 

for x I < Xl'" < xx' For any permutation on this ordering one 
introduces a factor ( - I (to satisfy the Pauli principle. 
Thus, as previously derived, the periodic boundary condi-
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tion requires KL = 1TX (even integer) for N = odd, and 
1TX (odd integer) for N = even. The rn 's are a set of arbitrary 
nearest neighbor separations, subject only to d =~r n < L, 
and can be used to compute x" - x m , which we may define 
as r llm , constants of the motion. (Note: rN I = L - d, by peri
odic boundary conditions.) The energy eigenvalue corre
sponding to the solution (18) is 

(20) 
fI,fn 

In a calculation of the partition function, the kinetic and 
potential energies contribute separately just as in classical 
physics; quantum mechanics seems to playa negligible role 
in discretizing K. The spectrum of energies (20) bears no 
discernible relation to (11)-(13). 

These "strange" solutions may be viewed as the con
densation offermions into a "Wigner lattice" (the value of 
the r"m which minimizes the total energy (20)]. 

The "strangeness" is compounded when it is seen that 
these solutions do not reduce to the expected determinantal 
wa vefunctions, 

(21) 

when AI~O. Such determinantal functions are only valid at 
precisely AI = 0, where they can be constructed by taking a 
linear combination of F 's belonging to different sets of ! r" l, 
which are degenerate only when the PE is extinguished. So 
the "intuitively obvious" eigenstates (21) of the noninteract
ing system are not even the natural limiting functions! This is 
a particularly clear example of the "tracks of the vanished 
dinosaurs" that Klauder' has remarked in various examples 
of field theory: The influence of interactions persists in the 
strange form of the solution even after the coupling constant 
vanishes. 

Our second example concerns Luttinger's modet· of a 
two-component field theory. This example is nontrivial in 
the sense that KE and PE do not now commute. Neverthe
less, a set of "strange solutions" persists, differing qualita
tively from Luttinger's own solutionsO in the same way that 
the strange solutions found above differed from the deter
minantal functions. But this discrepancy may be academic, 
for none of these are physically acceptable; the physically 
acceptable solutions are obtained quite differently, by first 
filling the Fermi-Dirac sea and then examining the opera
tors in the manner first prescribed by Mattis and Lieb. 1 The 
model Hamiltonian is now 

H = - if dx[I/'+(x)Jxl/'(x) - ~ + (x)Jxc,? (x)] 

+AJdx [dx' 1/'+ (x) I/'(x) V(x -x') I/'+(x') w(x')] 

+ A J dy f dy' ~ + (y) ~ (y) V (y - y') c,? + (y') ~ (y') 

+ 2A2 J dx J dy l/J+ (x) I/'(x) u (x - y) ~ + (y) ~ (y) . 
(22) 

The exact eigenstates-found by first filling the Fermi
Dirac seas (k < kFI for the I/' particles, k > kF2 for the ~ parti
cles) and then following the prescriptions ofEqs. (5b)-( 13)-

D. C. Mattis and 8. Sutherland 1693 



                                                                                                                                    

now involve a complete set of q's (positive for the density 
fluctuations in the'" particles, negative for ¢ 's). The relevant 
Hamiltonian is 

H=E~ = Iq(l +11" Vql1r)(aq+aq +a:+:qa_ q) 
q>O 

+ (Azltr) I Uqq(at a:+: q + Rc.), (23) 
q>O 

where 

E ~ = I k - I k + (A/1T) I Vqq. 
k < k t "\ k> kf'l q > 0 

(24) 

The final step is a Bogoliubov transformation to a new set of 
normal modes diagonalizing (23): 

aq =coshuqbq +sinhuqb ~q' 

With 

we obtain 

H=E~ + I6J~b/bq, 
all 

where 

(25) 

(26) 

(27) 

6J~ = Iql [(1 + A, Vq/1T)z - (A zUq/1T)z]'/2 (28) 

and 

E~ =E~ + I,(6J~ -6Jq). (29) 
q>O 

Turning next to finite N, and N 2, we find only solutions 
of the strange variety. First, write the eigenstates in the form 

1[/ = F(x" ... ,xN,; Y"""YN2) I1",+(xd .. , ¢ +(YJ .. IO), 

(30) 

and study the eigenvalue equations for F 

-iI, aF +iI, aF +11" VF+U z UF=EF, (31) 
aXil aYm 

where 

n,m 

n,m 

Borrowing from the previous procedure, we fix x1, .. "x/V, 
relative to x, and similarly for the Y's: 

Xz=x,+rz, x 3=x,+rZ +r,,. .. , 

Yz =y, + r~, Y3 =y, + r; + r;,,,', 

where the r's are constants of the motion. Thus, V, which 
depends only on the r's, is itself a constant of the motion 
while U depends on the coordinates only through x, - y,. 
We write this dependence explicitly as U(x, - y,), 

The partial differential equation (31) reduces then to the 
simpler problem: 

-i(~- ~)F+2A2U(X,-YdF=(E-A' V)F. (32) 
ax, ay, 
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With 

W(z)= fdX U(x) (33) 

we obtain the most general solution: 

x II8 (x" - x" ,- r" 1 8(y", - y", ,- r~,,). (34) 

Periodic boundary conditions onx yield the magnitude of k I: 

k,L-Az W(L)=p,1T, (35) 

where p, is an even/odd integer depending on whether N, is 
odd/even, A similar equation is constructed for k 2, and the 
energies are found to be 

(36) 

independent of A2 except through the quantization condition 
(35). Note the interesting consequence that whenever A2 is 
increased such that A] W (L 1 increases by a multiple of 2IT, 
there is no effect on the eigenstates save a relabeling. Again, 
the strange solutions appear to have no discernible physical 
interpretation, The more plausible states guessed by Lut
tinger6 can be obtained only if A ,=0. Luttinger was, of 
course, careful to make this restriction in his original paper" 
as well as the simplifying assumption W (L ) = 0, By lifting 
these restrictions, we have pointed out some of the difficul
ties that might not otherwise have been apparent. 

The analysis can be generalized further, in two signifi
cant ways, which preserve the dichotomy between accept
able and strange solutions. 

First, we can relax the requirements on the potential 
energy that it depend on differences x" - x'" or x" - y", of 
the coordinates, and consider two-body forces that depend 
in an arbitrary way on the coordinates x" andy",. On the one 
hand, the Hamiltonian remains a quadratic form in Tomon
aga operators regardless of the nature of the two-body 
forces, and can always be diagonalized by standard methods. 
On the other, the strange solutions can always be found be
cause in the (N, + Nzl-dimensional coordinate space, the ki
netic energy is effective only along one axis, viz" 
S, = (NI + N2l-'n (XI + Xz + ... - YI - Yz"'), whereas it 
commutes with all coordinates S2, S" .. ·,;'" I I N 2 along the 
orthogonal axes, Therefore, the eigenvalue equation for F 
can always be transformed into an ordinary first-order, lin
ear differential equation in the variable S, and solved exactly 
(albeit, with a physically unacceptable resuW) 

Second, we can introduce spin as a variable, The parti
cles are then labeled according to their spin component (up 
or down) as well as their motion (right- or left-going). As long 
as the numbers of particles in each component are con
served, the models remain soluble in both second and first 
quantization, with the strange solutions found in the latter. 

We have found no simple prescription that "heals" the 
strange solutions, The introduction of a cutoff does not re
store a proper form to the eigenstates nor a proper set of 
dispersion relations to the excitations. Proceeding to the lim
it N~ 00 does not help the situation. 

In a future paper we plan to explore other facets of this 
interesting area in mathematical physics, and analyze mod
els which are somewhat more complex and interesting than 
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the above, having applications in field theory as well as in 
condensed matter theory. 
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W~ de~elop an exte~sive set ofineq~alities which apply to the surface ofa relativistically rotating 
flUid ~I.th asymptot.lc~lly flat ex~enor. We explore the physical content of these inequalities by 
exam.lnmg the restnctlOns they Impose on the existence of rotating fluid models with Kerr 
extenors. In that case, t~e dominant set of inequalities can be expressed in a simple analytic form. 
We find for all mod.els wIth Kerr par.ameter a> m that there is a finite maximum redshift between 
observers at the flUid sur~ace and at Infinity. However, for all models with 0 < aim::;; 1 there is no 
u~per b?und to the redshlft. In the static limit, as alm----..O, a finite redshift maximum emerges in a 
dlsc.ontlnuous manne~. The v~lue of this maximum depends upon the moment of inertia of the 
statIc background flUId. We dISCUSS the implications toward the possibility of a high redshift 
quasar model. 

PACS numbers: 04.20.Cv 

I. INTRODUCTION 

According to general relativity, astrophysical systems 
with rotational velocities close to the velocity of light should 
exhibit distinctly non-Newtonian behavior in the analogous 
way that magnetic systems differ from electrostatic. Of 
course, the nonexistence of negative mass precludes the dras
tic case of a purely "gravimagnetic" system whose only 
sources are pure matter currents ha ving no net mass. Yet, for 
extremely relativistic, rotating systems, one might still ex
pect such matter currents to playa role of equal importance 
as mass. Various theoretical investigations have borne this 
out, although observational evidence is lacking. In the rela
tivistic regime, an increase in the angular velocity of a rotat
ing fluid leads to a decrease in its eccentricity, just opposite 
to the Newtonian effect. New phenomena, such as ergore
gions, arise. For reviews, see Refs. 1-4. 

One way or another, it would appear probable that rota
tion leads to distinctly relativistic effects for systems with 
sufficient mass to necessitate collapse. If angular momentum 
were conserved, then rotational velocities would eventually 
become relativistic with the ultimate collapse to a black hole, 
at which stage dragging-of-inertial-frame effects become 
overwhelming. If angular momentum were not conserved 
as might be expected in view of the instabilities present in;ll 
rotating fluid systems,5 then general relativistic effects 
would appear in the form of gravitational radiation which 
carries off angular momentum. In reality some mixture of 
these cases is likely to occur. 

Stationary, axisymmetric, rotating fluid models have 
provided one means of investigating such systems, the un
derlying idea being that sequences of such models should 
approximate quasistationary evolutionary stages. Many 
such models, incorporating various equations of state, have 
been constructed, some by slow motion perturbation the
ory6-11 and some by fully relativistic numerical solutions. 12-20 
In this paper, rather than constructing detailed models, we 

"Supported in part by the NSF Contract PHY·800823. 
hlPart-time graduate research assistant at the Theoretical Applications Di
vision, Los Alamos Scientific Laboratories. 

investigate some general restrictions which limit the range of 
such models. These restrictions arise from Einstein's equa
tions under certain global assumptions, namely asymptotic 
flatness and Euclidean spatial topology. Without global con
siderations, the construction of a local fluid model in some 
neighborhood of any pressure-free fluid boundary is always 
possible. 21 However, such models, unless they could be ex
tended globally, would not be of physical interest. We fur
ther simplify the problem by considering only the case of a 
rigidly rotating fluid whose boundary has spherical 
topology. 

In Sec. II we discuss the inequalities which restrict the 
range of these models. In addition to previously known re
sults,22-25 we formulate a new class of integral inequalities. 
All these inequalities apply directly to the exterior geometry 
at the fluid boundary. They assume no details of the equation 
of state of the fluid interior other than positive energy densi
ty and pressure. 

In Sec. III we examine the physical content of these 
inequalities, determining which are strongest, in a special
ization to fluid models with Kerr exteriors. It would be inter
esting to known how the ensuing results would be modified 
by other choices of exterior geometry. Choice of a Kerr exte
rior leads to tremendous mathematical simplification com
pared, say, to the more general Tomimatsu-Sato exterior. A 
Kerr exterior might seem unphysical for describing astro
physical objects because of the special relationship26 

Q = J 2 1M it implies between the quadrupole moment Q, the 
mass M, and the angular momentum J. However, several 
investigations indicate that a Kerr exterior, or at least the 
above Kerr relationship, is attained by astrophysical systems 
in the extreme relativistic limit.x- 13

•
2o Even in the slowly ro

tating case, there are no known arguments, including the 
restrictions of the present paper, which prohibit a Kerr 
exterior. 

In Sec. IV we present graphs which display the allowed 
parameter values for these models and we discuss the phys
ical significance of the restrictions. Given some quasistatic 
evolutionarly process, the motion of a systems position on 
these graphs determines whether the quasistatic evolution 
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must end before reaching an extreme relativistic stage. Our 
most interesting results concern the maximum surface red
shift allowed by the inequalities. For rotating fluids with 
Kerr parameter a « m, we find, in the extreme relativistic 
limit, that the angular velocity must approach the angular 
velocity of the Kerr black hole which would result were the 
fluid absent. As a consequence, the fluid boundary must ap
proach the Kerr horizon and the surface redshift is un
bounded. However, in the nonrotating limit a-O, a finite 
redshift maximum emerges in a discontinuous manner. The 
value of this maximum depends upon the moment-of-inertia 
of the non rotating fluid. All fluid models with Kerr param
eter a > m also have a finite redshift maximum. 

II. INEQUALITIES 

We consider stationary, axisymmetric, asymptotically 
flat space-times with Euclidean topology, whose matter 
source is a rigidly rotating fluid having positive energy densi
ty 11, positive pressure p, and constant (positive) angular ve
locity n. Einstein's equation may be written in terms of the 
scalars constructed from the Killing vectors T" + <P": 

Ap=(Aoo,Ao"A11)=(raTa,Ta<Pa' <pa<pa), (1) 

where Ta'V a = alat and <p 0 V 0 = ala¢i define the time co
ordinate t and azimuthal coordinate ¢i. Einstein's equation 
then reduces to~4,25.27 

and 

(3) 

where Dm denotes covariant differentiation in the 2-space 
orthogonal to TO and <p a, the bracket denotes antisymmetri
zation, 1/1' = SI' Ap with Sf' = (1, 2n, n 2),72 = - A P AI' 
= 2(Aol ~ - AooA11)' and SI' = (n 2, - 2n,!), (There is a 

natural metric ga{3 in the space of Killing scalars27 which 
serves to raise and lower Greek indices, e.g.,Sp = gpO" S CT.) In 
the Newtonian limit, with gravitational potential V, we have 
Aon- - 1- 2V Ic2,Am-O,A\\_r2 sin2e, r_(2)1/2 rsine, 
and 0- - ! - 2 V le2 + n 2; sin2e 1c2

, with respect to spe
herical coordinates. (In the remainder of this paper we set 
G=e= I.) 

Certain inequalities follow directly from the require
ments on the spacelike or timelike character of the Killing 
vectors: 

(4) 
with equality holding, in both cases, on and only on the sym
metry axis. 25 The former of these inequalities expresses the 
demand that the closed circular orbits of P a be spacelike and 
the latter, that the 2-space spanned by TO and <p a be time
like. Note that Aoo may be positive since we do not exclude 
the possiblity of an ergoregion. Our conditions do exclude 
the existence of a black hole. (Otherwise? would vanish on 
the horizon as well as on the axis.) 

As recognized by Boyer,22 (3) implies that I/J is constant 
on the pressure-free boundary of the fluid. In the Newtonian 
limit this reduces to the weB-known result that, on isobaric 
surfaces, the fluid particles have a constant difference be-
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tween their kinetic and potential energies. Boyer established 
an inequality on I/J by noting that 
I/J = (ra + n¢i a)(Ta + npa), where Ta + n<p a is tangent to 
the fluid world lines. The timelike character of the world
lines then implies 

(5) 

throughout the fluid. The Boyer inequality actually assumes 
a stronger form for an exterior Kerr metric, as discussed in 
the next section. From (3), (5), and the assumption of positive 
pressure, we also have on the fluid boundary 

(6) 

where na is the outward normal. 
An additional set of inequalities follow from the elliptic 

nature of (2). Contracting (2) with an arbitrary constant "bi
vector" A \p B 0"\, we obtain 

where a = A PAp and/3 = BPAp' A choice of A p and BP for 
which the right side of (7) is positive (negative) rules out the 
possibility of a local maximum (minimum) for the corre
sponding function /3 I a. The inequalities follow from com
bining this result with the boundary conditions on/3 la. The 
major results are24

,25 (for n > 0): 

Ao I « 0, 17 = Ao I + nA I I ;. 0, and 
V=Aoo+nAol < 0, (8) 

where, for AOl and 17, equality holds on and only on the axis. 
These three inequalities are trivially satisfied in the Newtoni
an limit. The first inequality states that the direction of iner
tial frame dragging agrees uniformly with the direction of n. 
The second makes the same statement about the sense ofthe 
fluid's angular momentum density. The third states that the 
fluid elements must have positive energy, even in the pres
ence of ergoregions. All three inequalities apply throughout 
the space-time as well as in the fluid interior. 

A new set of integral inequalities also results from (7), in 
the following way. Multiply (7) by F(j3 la) where Fis, for the 
moment, an arbitrary function of /3 la. Next, integrate this 
product over the volume of the fluid minus a small tube 
containing the axis, where the integrand might be singular. 
After taking advantage of the axial symmetry to carry out 
the ¢i-integration, this gives 

i FD m [r- Ia2Dm (/3 la)] dA = 87T i FI}.i + p)7I/J-I 

(aBp - /3A ")SI' dA, 

where A is the cross-sectional area of the fluid in the 2-space 
orthogonal to Ta and <p a, between the fluid's boundary and 
the curve 7 = E. which approaches the axis as E~O. Gauss' 
theorem then gives 

+ 87T 1 FI}.i + p)7I/J-I(aBP - /3A P)S" dA, (9) 

where F' is the derivative of F with respect to its argument 
/3 la, C is the one dimensional boundary of A, and dIm 

J. Schendel and J. Winicour 1697 



                                                                                                                                    

= E mn dxn in terms of the displacement dxn along C and the 
alternating tensor Emn of the 2-space orthogonal to To and 
<p a. We now obtain an inequality for the line integral over C 
by choosing A P and D P such that the second integral on the 
right side of (9) is positive (negative), while choosing F to be 
an increasing (decreasing) function of {3 la so that the first 
integral on the right is also positive (negative). For this in
equality to be useful it must be possible to eliminate the con
tribution from the curve l' = E by passing to the limit E-O. 
Then the left side of (9) reduces to a line integral over the 
profile of the boundary of the fluid, which necessitates no 
knowledge of the fluid interior. At issue here is whether the 
factors of 1'- I in (9) permit this limit without a contribution 
from the axis where l' = O. 

As an example, consider Ap = S p and DP = NP 
= (0, I,ll). Then (9) reduces to 

LF1'-'¢2Dm (~)dlm = 1 F'1'-1¢2Dm(~)Dm(~)dA. 
(10) 

In the case, there is no matter contribution so that any in
creasing or decreasing function F leads to an inequality for 
the integral over C. The conditions necessary to eliminate 
the axis contribution from C follow from considering the 
behavior of 1] and ¢ near the axis: 1] = 0 (1'2) and ¢ = 0 (1). 
Then, since dla is parallel to Dar along the l' = E curve, the 
axis contribution vanishes provided F vanishes on the axis. 
Thus, for example, we may choose F(1]I¢) = ( -1]/¢)Q, for 
q > O. Thereupon (10) reduces to 

i(-1]/¢)Q1'-'¢2Dm(1]I¢)dlm <0, (11) 

where D is the profile of the fluid's boundary. The choice 
q = 1 is equivalent to the inequality in Eq. (3.3) of the work of 
Abramowicz, Lasota, and Muchotrzeb.23 The inequality 
(11) also holds in the limit q-O, as may be checked either by 
considering the sign of the axis contribution or, alternative
ly, choosing in (10), Fto be a unit step function which vanish
es for ( - 1]1¢) < E. This gives 

i1'-'¢2D m(1]N) dim < O. (12) 

In the application to Kerr interiors, treated in the next sec
tion, we find that (12) is the strongest inequality which re
sults from (10). 

While a host of integral inequalities may be extracted 
from (9), by the analogous process that led from (9) to (10), 
there appears to be no simple algorithm to decide whether 
they might yield addition restrictions on fluid models. How
ever, we have not found any integral inequalities, in addition 
to (12), which give further restrictions on models with Kerr 
exteriors. This seems partly due to the special nature of the 
Kerr metric which automatically incoporates many poten
tial inequalities. 

Some integral inequalities of special interest result from 
the choices of A P and DP, with F = 1, for which the C inte
gral in (9) reduces to the Komar integral for the fluid's total 
mass M or total angular momentum J. 

For instance, by taking a combination of these integrals. 
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we find 

M - 2(ll + UJ)J;;;' 0, ( 13) 

where l/UJ is given by the maximum value of ( - 21]/¢) on 
the fluid boundary D. (This is the optimum choice of UJ for 
which the matter contribution, from the right side of (9), 
remains positive.) Abramowicz, Lasota, and Muchotrzeb23 

give a discussion of some related integral inequalities, show
ing how they reduce, in the Newtonian limit, to the Poincare 
condition and the Newtonian virial theorem. 

III. APPLICATION TO KERR INTERIORS 
To examine the physical content and relative domi

nance of the inequalities introduced in Sec. II, we now con
sider fluid models with Kerr exteriors. We assume, for sim
plicity, that the boundary of the fluid has spherical topology, 
corresponding to an object such as a star or galactic core. We 
apply the inequalities on the fluid boundary D, which is the 
innermost surface for which they may be determined entire
ly by the exterior Kerr geometry. (The scalars introduced in 
Sec. II, as well as their first derivatives, must be continous in 
a neighborhood of D.) 

The Kerr metric, in Boyer-Lindquist coordinates, is2x 

ds2 = p2(d? I L1 + de 2) + (? + a2) sin2e d¢i 2 

- dt 2 + (2mr/p2)(a sin2e d¢i _ dt )2, 

wherep2 =? + a2 cos2e and L1 = r2 - 2mr + a 2• The sca
lars, introduced in Sec. II, take the explicit form 

Ano = - 1 + 2mr/(r" + a 2 cos2e), (14) 

Ao I = - 2mra sin2e I(r + a 2 cos2e ), (15) 

All = (r + a2) sin2e + 2mra2 sin4e l(r2 + a2 cos2e), (16) 

1'2 = 2(? - 2mr + a2) sin2e, (17) 

¢ = - 1 + II 2(? + a2
) sin2e 

+2mr(l-allsin2ef/(r+a2 cos2e), (18) 

1] = [ll (? + a2) + 2mar(all sin2e - 1)1 

( 19) 

with 

v = ¢ - ll1]. (20) 

Note that, since we exclude the existence of a black hole, the 
inequalities (4) are automatically satisfied. 

From (18), we see that condition (5) may be enlarged. 
Writing K for the value of ¢ + 1 on D, we must have 

o < K < 1. (21) 

We may also use (18) to write Boyer's equation for the 
boundary as a quartic in r, 

P(r, e;m,a,ll,K) = 0, (22) 

where 

P = r4 fl2 sin2e + ?[a2fl2 sin2e (1 + cos2e) - K] 

+ 2mr( 1 - afl sin2e f + a2 cos2e (a 2 fl 2 sin2e - K ). (23) 

On the axis, the quartic reduces to the quadratic equation 

?-2mr/K +a2 =0, 

with the only possible positive roots 
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(24) 

The quartic also has a positive root r-oo associated with Its 
degeneracy as sinO-O. The inequality (6) is satisfied only for 
the root r +. Boyer's equation, applied at the pole, thus re
quires r = r + with 

(25) 

for the existence of a spherical boundary. 
Similarly, on the equator, the quartic reduces to the 

cubic equation 

r'fl2 + r(a2fl2 - K) + 2m(1 - an)2 = 0, 

having possible positive roots 

'k = 2a[ i(K /a 2n 2 - I)) 1/2 cos i(a + 2k1r), 
where k = 0 or 2 and 

cosa = - mfl (I - an )2[3/(K - a2n 2)P/2, (26) 

with 11" < a < 311"/2. The quartic has an additional root, 
r = 0, resulting from its degeneracy when cosO = O. From 
(25), the roots rk are positive if and only if 

27m 2fl2(1 - an)4 < (K - a2n 2t (27) 

It is useful to note that (25) and (27) combine to give the 
rough inequality 

4a2n2<K. (28) 

The only positive root which satisfies (6) corresponds to ro 
for the choice k = O. 

Thus Boyer's condition implies that a spherical bound
ary must pass through r = r + at the pole and r = ro at the 
equator with inequalities (25) and (27) giving the necessary 
restrictions on the fluid parameters. The existence of a con
tinuous spherical boundary at intermediate angles would 
seem to imply additional inequalities, analogous to (25) and 
(27). However, our numerical calculations indicate that such 
inequalities are already containd in (24) and (26). We have 
attempted to use Sturm's algorithm29 to show that (22) must 
have three nondegenerate, positive roots for r at all interme
diate O. This would establish the existence of three noninter
secting surfaces connecting r = r _ at the pole with r = 0 at 
the equator, r = r + at the pole with r = ro at the equator, and 
r = 00 at the pole with r = r2 at the equator. This analysis 
became too algebraically complicated to complete, although 
we were able to establish the result for certain ranges of the 
parameters in (22). However, we have numerically checked 
that Boyer's condition leads to no further inequalities in the 
fairly exhausitive set of cases described by Figs. 2 and 3. 

We now apply the inequalities (8) to the Kerr scalars 
AoI ' Tf, and V. From (15), we obtain a > 0, which guarantees 
that the directions of angular velocity and angular momen
tum agree. From (5) and (20), it follows that the v inequality 
holds provided the Tf inequality is satisfied. There remains 
the analysis of the Tf inequality. One might expect, on the 
basis of the Newtonian limit in which Tf-flr sin28, that Tf 
monotonically increases along the boundary as 0 increases 
form 0 to 11"/2. If such a result held on the boundary of a Kerr 
interior it would reduce the analysis of the Tf inequality to a 
simple investigation of a neighborhood of the axis. We now 
establish that this is indeed the case. By differentiating (19) 
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with respect to sin20 and reexpressing the result, using (18), 
(19), (22), and (23), we obtain 

_J_[ Tf( 1 - afl sin
20 ) ] 

J sin20 sin20 
2anr 

P '(I - a2n 2 sin40) 

X {(I - K)(K - a2fl2 sin40) + [(K - l)afl sin20 

+ Tfsin - 20 (1 - a2 n 2 sin40 W}, (29) 

whereP' = JP /Jris determined by (23). The right side of(29) 
is positive, since (27) implies (K - a2n 2 sin40) > 0 and (6) 
requires P' < O. Thus we can conclude from (29) that Tf in
equality is satisfied on the entire boundary provided 

JTf/J sin20 ;;;. 0 (30) 

at the pole. The Tf inequality then takes the simple form 

(2mn /aK 2)[m/K + (m 2/K2 - a2)1/2];;;. 1. (31) 

We can also reexpress the integral inequality (12) alge
braically in terms of the fluid parameters m, a, n, and K. At 
first sight, this might seem a difficult task since the equation 
for the fluid boundary B is a quartic. However, taking 
S [PNu[ for the bivector A [PB uJ in (7), we obtain 

D.n [r- 1t/J2dm (TfN)] = O. 

This equation, according to Gauss' theorem, allows us to 
freely deform the integration curve B in the integral inequal
ity (12), into any curve beginning at (r + r +,0 = 0) and end
ing at (r = r +,0 = 11"). In particular, the choice r = r +, for 
this curve, recasts the inequality (12) into a standard form for 
analytic integration. The resulting algebraic form of the in
equality is 

2mafl 2 + (r + - 3m)fl + ma/(a2 + r+ ) > O. (32) 

We may also reexpress analytically some of the other 
integral inequalities associated with (9). For instance, (13) 
takes the form 

a(n + aI)<!, 

where an algebraic expression expression for aI results from 
recalling that, on the boundary, t/J = - 1 + K and that Tf 
takes its maximum at the equator, where 

Tfmax = fl (r~ + a2) + 2maro I(afl - 1). 

As already remarked, our investigations indicate that such 
additional integral inequalities are redundant for exterior 
Kerr models. 

IV. DISCUSSION OF RESULTS 

The graphs in Figs. 2 and 3 describe the limitations on 
possible Kerr interiors which arise from the Boyer condi
tions (25) and (27), the Tf inequality (31), and the integral 
inequality (32). As discussed in Sec. IV these inequalities 
appear to form a maximal set of restrictions for the existence 
of fluid models within the present framework of inequalities. 
They permit an extensive parameter range. Figure 1 gives an 
example of the weaker restrictions resulting from other in
equalities, in this case the integral inequality (11) with var
ious values of q, compared to the choice q = 0 which gives 
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FIG. L The curves labelled 7J and B represent the 7J inequality and Boyer 
conditions, respectively. The allowed parameters region is bounded at the 
top by the curves oa-{)e which, in order, represent the integral inequality 
(II) with choices of q equal to 0, J,~, I, and 2. The choice q = 0, correspond
ing to (32), gives the dominant integral inequality. 

rise to (32)_ 
Figure 2 describes the results for values aim> 1. In 

these cases, the integral inequality (31) is extraneous and the 
allowed region in the (ilm,K ) plane is bounded between the YJ 
inequality and the Boyer conditions. For aim less than ap
proximately 5.23, the first Boyer condition (25) is also ex
traneous and the allowed region is two-sided. For 
aim;;;. 5.23, condition (25) becomes operative, introducing a 
third side K <,ml a to the allowed region. In all cases 

B 
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FIG. 2. For I < aim S 5.23, the allowed region is two-sided and bounded 
by the 7J inequality and the Boyer condition (27). Foralm ~ 5.23, the Boyer 
condition (25) imposes an additional boundary at the top of the allowed 
region. 
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FIG. 3. For aim < I, the allowed region is three-sided, bounded by the 1) 

inequality, the Boyer condition (27), and the curve I representing the inte
gral inequality (32). For aim = I, the curve I passes through the intersec
tion of the curves 7J and B and the allowed region becomes two-sided. As 
alm-... O, the curve 7) approaches the K-axis and the curve I becomes step
shaped. Above the broken curve labelled E, the allowed models contain an 
ergotoroid which extends beyond the equator of the fluid boundary. 

aim> 1, K is bounded away from its extreme relativistic 
value K = 1. This corresponds to a finite upper bound to the 
redshift factor between two stationary observers, one on the 
fluid boundary and the other at infinity. 

Figure 3 describes the results for values aim <, 1. For 
aim < 1, the allowed parameter range forms a three-sided 
region in the (ilm,K) plane, bounded by the YJ inequality, the 
integral inequality (31), and the Boyer condition (27). In the 
case a = m, the side corresponding to the integral inequality 
shrinks to zero. In each case, the upper vertex is located at 
the value K = 1. This implies a unique relativistic limit il R 

for the angular velocity of the fluid. We can determine il R 

from either (31) or (32) by setting K = 1. This gives 

ilR =ilH =a/2m2[1 + (1_a2/m 2)1!2] 

where ilH is the angular velocity of the corresponding Kerr 
black hole. 2s Consequently, the fluid boundary must ap
proach the Kerr horizon in the extreme relativistic limit. 
Note that if values DR > ilH were allowed in this limit, then 
the fluid boundary would be exterior to the horizon except at 
the axis. 

It is of interest to inquire whether the inequalities allow 
the existence of ergoregions inside which Aoo > O. For our 
models, which contain no black holes, general consider
ations imply that an ergoregion cannot contain points on the 
rotation axis, so that they must have toroidal shape. IS Also, 
they must intersect the fluid so that the emergence of an 
ergotoroid along some quasistatic sequency of models must 
occur inside the fluid. 25 The models of Bardeen and Wagon-
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er, 12 of Wilson, 13 and of Buttorworth and IpserlH contain 
ergotoroids and confirm these properties. Our present inves
tigations, which are confined to the fluid boundary, can only 
supply rough criteria for the presence of ergotoroids. The 
condition that an ergotoroid exists and extends to the equa
tor of the fluid boundary is that ro ;;;. 2m, which corresponds 
to the alIowed regions above the broken curves labelled E, in 
the graphs of Fig. 3. Our inequalities are compatible with the 
existence of models with ergotoroids for all aim < 1, al
though for aim ~ 1 the corresponding parameter range is 
too small to indicate in Fig. 3. The most interesting feature of 
the graph is that, for each value of aim in the range 
o < aim ~ 1, there is an aIlowed model with arbitrarily 
high redshift between stationary observers, one at the fluid 
boundary and the other at infinity. We now examine what 
happens to this feature in the static limit of a spherically 
symmetric fluid with Schwarzchild exterior. In this limit, to 
first order in a and n, the 1J inequality (31) reduces to 

R'n;;;. 2ma 

and the integral inequality reduces to 

R 2(R - 3mln + ma ;;;. 0, 

(33) 

(34) 

where R represents the value, at the fluid boundary, of the 
Schwarzschild coordinate r. (In terms of this coordinate, 
K = 2mlR for the background.) To analyze the content of 
(33) and (34), we utilize the moment of inertia of the 
background, 

1= aJ I an f}~O' 

as formulated by Hartle.6 We may set I = amR 2, where a 
ranges from 0 to I, corresponding to the two extreme density 
distributions for the fluid baIl: in one case (a = 0) the mass 
concentrated at the center; and in the other (a = I) concen
trated at the fluid boundary. The Kerr relationship J = ma 
allows us to set a = aR 2n and thereby eliminate the non
background quantities from (33) and (34). In this way, we 
find that (33) is automaticaIly satisfied and that (34) reduces 
to 

K~2/(3 - a) (35) 

or equivalently, R;;;.(3 - aIm. Thus there is afinite upper 
limit to the background redshift (except in the thin shell limit 
a-I). This result emerges because of a step function behav
ior of the integral inequality in the static limit. The develop
ment of such a step function is apparent from the sequence of 
graphs in Fig. 3 with decreasing aim values. As alm-O in 
this sequence, the limiting step function hits the K axis at 
K = J' corresponding to the value given by (35) for the case 
a = O. On approach to the static limit through intermediate 
values of a, the integral inequality manifests the same step 
function behavior, with intercept given by (35). Thus, for a 
given a, even though there is an allowed rotating model with 
arbitrarily high redshift, a finite upper bound to the redshifts 
arises discontinuously in the static limit. 

Neither extreme case, a = 0 or a = 1, represents a 
physicalJy reasonable mass distribution for an astrophysical 
system. The a = 0 case with vanishing moment of inertia, 
would not appear possible in the static limit without negative 
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density or pressure regions to prevent the formation of a 
horizon. Positive density and pressure are sufficient but not 
necessary conditions for the inequalities, so that the inequal
ities do not exclude such possiblities as long as the total mass 
is positive. The a = I case, in the static limit, is attained with 
positive density and surface stress by the thin shell models of 
Brill and Cohn7

•
8 and ofIsrae1. 9 They find a range of slowly 

rotating models with unbounded redshift as the shell ap
proaches the horizon, in full accord with the limits allowed 
by the inequalities. 

For the more realistic case of a slowly rotating, homo
geneous, spherical fluid, Chandrasekhar and MilIer lo have 
found that a ranges between the Newtonian value ~ and an 
upper limit approximately equal to~. At this upper limit the 
(unperturbed) homogeneous sphere has radius R = 9m14, 
which corresponds to the maximum possible redshift z = 2 
for a fluid with inwardly increasing density in accord with 
stability criteria. 3o

.
31 For this same value a =~, K equals ~ 

for the homogeneous sphere whereas f? is the maximum val
ue of K allowed by the inequality (35). Thus, as might be 
expected, in the static limit, our restrictions based upon exis
tence are slightly weaker than the restrictions based upon 
stablity. For a = ~ the density of a static model with K = f? 
must increase outward in some region. 

The above considerations have some bearing, although 
indirect, on the possiblity of a high redshift, rotating fluid 
model for a quasar. The stability limit z = 2 for a static mod
el, has discourged such attempts subsequent to the observa
tions of z > 2 quasars. On the other hand, our results show 
that finite redshift limits based upon the existence of a static 
model are completely misleading in the rotating case for 
which arbitrarily high redshifts are allowed. Is it possible 
that the z = 2 stability limit is also misleading? Unfortunate
ly, in the rapidly rotating case, there is no known generaliza
tion of the z = 2 limit for stability to axially symmetric per
turbations. The issue is further clouded by the instability of 
all rotating systems to nonaxisymmetric perturbations. 5 

However, our results do provide fresh motivation to investi
gate whether high redshift models might have appreciable 
lifetimes due to the relativistic effects of rotation. Is there a 
class of astrophysical objects whose support against gravita
tional collapse depends significantly on the repulsive gravi
magnetic forces between corotating matter loops? 
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This paper studies the Hamiltonian mechanics of a relativistic particle interacting with a 
gravitational field considered as a gauge field of the Poincare group. We follow a general method 
developed by Sternberg for the case of internal symmetries, that describes the interaction by a 
suitable modification of the symplectic form. This approach is reviewed and the explicit examples 
of the electromagnetic and Yang-Mills gauge interactions are widely explained in local 
coordinates. The peculiar features ofa gauge theory of the Poincare group are then discussed and 
the geometrical picture that emerges suggests the way of modifying the symplectic form for a 
correct description of the gravitational coupling. 

PACS numbers: 04.20.Fy, 04.20.Me, 12.25. + e, 11.1O.Np 

I. INTRODUCTION 
The procedure that starts from a Lagrangian quasi-in

variant under the global action of a Lie group and, by the 
localization of the symmetry, leads to the introduction of the 
gauge fields, has become a standard tool in current theoreti
cal physics. 1 In this framework, the essential contribution 
given by differential geometry for a deeper understanding 
and further extensions of gauge theories, which are raised to 
paradigm for the description of elementary processes, has 
been analyzed, fixed in its patterns, and completely exploit
ed. It could therefore seem that no room has been left for the 
development of different and original points of view. 

Nevertheless, still adopting the geometrical language, 
Sternberg has recently proposed a new approach that intro
duces the interaction with the gauge fields directly in the 
realm of the single particle dynamics. 2 This allows one, 
moreover, to connect physical and geometrical structures to 
date unrelated: Hamiltonian mechanics in its general form 
as the geometry of symplectic manifolds,3 on one hand, and 
the geometry of gauge fields-i.e., the geometry of principal 
bundles-on the other.4 

The fundamental result of Sternberg is that of furnish
ing a prescription to deform,S in a gauge invariant way, the 
symplectic structure of the original mechanical system; in 
this process a major role is played by a connection form on an 
appropriate principal bundle. It is then shown that this pro
cedure-globally meaningful-is locally equivalent to intro
ducing the gauge field-particle coupling by keeping un
changed the symplectic form and modifying, on the 
contrary, the Hamiltonian function in a gauge invariant 
way. A generalized version of the electromagnetic minimal 
coupling is thus obtained. 

In the sketched approach to gauge interactions, it is 
evident that the whole material concerning the geometry of 
symplectic manifolds is of the same importance as the theory 
of principal bundles, although the former still appears to be 
terra incognita for many active physicists. In particular, the 

use of concepts like orbits of the coadjoint representation 
and Hamiltonian G-spaces6

•
7 allows one to reach, within 

classical mechanics, interesting results otherwise deduced 
either by taking the appropriate limit on a quantum system,8 

or by means of complex or anticommuting variables9
; we 

think, for instance, of the equations of motion for a particle 
with isotopic spin degrees of freedom in the presence of a 
Yang-Mills field. We also think of the equations proposed 
by Souriau 10 as an improvement of the Bargmann-Michel
Telegdi equation for the motion of a classical spinning parti
cle in an electromagnetic field. 

In the present paper we propose a theory of the gravita
tional coupling of a particle as a gauge theory of the Poincare 
group. The technique consists in adapting Sternberg'S ap
proach to a somewhat different situation. The mechanical 
system under consideration is that of a free relativistic parti
cle moving in Minkowski space. The peculiarity of this case 
is due to the fact that the gauge group is just the group of 
affine transformations of the configuration space and the 
"internal" variables are coincident with the phase-space var
iables. The number of degrees of freedom of the system is 
thus not increased by the effect of the interaction, contrary to 
what happens in the usual case; this is a possible source of the 
difficulties frequently encountered in the attempts to obtain 
gravitational interactions out of a gauge principle. We also 
observe that a gauge theory of gravitation must be able to 
reproduce the distinguishing features of an Einstein-Cartan 
theory from a connection on a principal bundle. As a matter 
offact, this is impossible if a proper subgroup of the Poincare 
group is used to build up the gauge theory. II Indeed, both the 
pioneering attempt of Utiyama, 12 based on the Lorentz 
group, and the works of Hayashi and Nakano13 and Cho,14 
that use the translations only, must be considered 
unsatisfactory. 

The necessary and sufficient condition for the gauge 
theory of the Poincare group to be equivalent to an Einstein
Cartan theory can be expressed by requiring the maximality 
of the rank ofa certain one-form. 15 As shown in previous 
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papers, 16 this condition is equivalent to the nondegeneracy 
of the tetrad field. Using this one-form and a connection 
form on the bundle of the orthonormal Lorentz frames, we 
directly reconstruct the gravitational gauge potential, name
ly the connection on the bundle of the affine frames, which is 
a principal bundle with the Poincare group, as structure 
group. The result that we then derive demonstrates the cor
rectness of the adopted procedure, that produces the equa
tions of motion directly in a canonical form. Moreover, the 
intrinsic formulation in geometrical language clarifies some 
conceptual problems, still left open by the fundamental pa
per of Kibble, 17.18 without having to resort to the artifice of 
interpreting the Poincare group as a group oflinear transfor
mation of a five-dimensional space. IK 

In order to give a self-contained treatment and since the 
original paper2 may appear somewhat hard to read, we pre
sent in Sec. 2 a resume of Sternberg's approach to gauge 
interactions. Besides the almost trivial example of the elec
tromagnetic interactions, we have completely worked out in 
local coordinates the SV (2)-gauge interaction of a particle 
with isotopic spin; this concrete example will certainly help 
to clarify the basic ideas of the method. 

In Sec. 3 we set up the mechanism that produces gravi
tation as a gauge interaction of the Poincare group. In par
ticular, starting with a relativistic free particle, we give an 
explicit construction of the deformed symplectic structure. 
We proceed to prove that the result is gauge invariant and we 
show that this fact implies the invariance under general co
ordinate transformations. All the important ca1culations
as the evaluation of the momentum mapping-are described 
in detail. For the sake of clarity we also give in the Appendix 
the construction of the affine connection starting from a lin
ear connection and an appropriate one-form. This is done 
because the same type of calculations may in general be ap
plied to gauge theories on reductive homogeneous 
spaces. 19a.l% We notice that only the proof of the existence 
and uniqueness of the affine connection is found in the most 
diffuse books on differential geometry. 

We finally give some brief conclusions and suggest pos
sible developments of the theory. 

To conclude this Introduction, we make a short list of 
some notations used in the text, possibly indicating the refer
ences where the same symbols are used: 

Iff M-+N is a map of differentiable manifolds (resp.: a 
function if N = lIt), then df denotes the tangent map (resp.: 
the differential) andf* is the pullback from the exterior alge
bra of forms on N to the exterior algebra of forms on M. 

J is the interior product of a vector field with an exteri
or form. 20 

LieG is the Lie algebra of the Lie group G and (LieG)* is 
the dual vector space of LieG. 

exp denotes the exponential map of Lie groups, so that 
exp (tt ) is the one-parameter subgroup of G generated by 
tELieG.1'l 

1 indicates the identity matrix of the Lorentz group and 
lIt 1.3 is the pseudo-Euclidean arithmetic space with signature 
(+,-,-,-). 
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II. GENERAL GEOMETRICAL FRAMEWORK FOR 
GAUGE FIELD-PARTICLE INTERACTIONS 

Due to the increasingly more comprehensive formula
tions given to mechanics, the concept of mechanical expla
nation of a physical phenomenon has undergone successive 
abstractions up to present time, where it is widely accepted 
that "mechanical systems should consist of symplectic man
ifolds which do not necessarily admit any global interpreta
tion as the phase space of some configuration space".21 

As a simple example, for a free pointlike particle admit
ting the manifold M as configuration space, the correspond
ing mechanical system is the couple (T*M,w) given by the 
cotangent bundle q:T* M-+M and the canonical two-form 
cu = dp i /\ dXi. The motion of the particle is described by the 
equations 

XHJw = -dH, (2.1) 

where H is the Hamiltonian function and XII the corre
sponding Hamiltonian vector field.n 

In principle, possible external fields acting on the parti
cle should affect the Hamiltonian function by means of ap
propriate potential terms. Indeed this is the case of a test 
particle in the presence of an electromagnetic field; the field
particle coupling is introduced through the "minimal substi
tution," Pi~Pi - eA i, in the Hamiltonian, where the inter
action strength is measured by a suitable parameter, namely 
the electric charge e. If the initial Hamiltonian is a free Ha
miltonian H = H (7],jpiPj), where 7]u = diag( + I, - 1, 
- I, - I) is the usual flat metric tensor, then Eq. (2.1) ex

pressed in local coordinates gives the well-known equations 

Xi = (lIm)7]ulpj - eAj ), 

Pi = (l/m)7]kJ(pk - eAk)JA/Jx', (2.2) 

with 11m = 2H' [(Pi - eAi)2] = const,23 and the prime de
notes differentiation with respect to the argument. 

In this case, however, it is possible to give a completely 
equivalent description of the interaction by keeping the Ha
miltonian unchanged and adding, instead, an interaction 
term e dA = e Fu dx' /\ dx) to the symplectic form,24 so as to 
obtain as equations of the motion, 

X H J(w + e dA) = - dH, 

or in local coordinates, 

Xi = (lIm)7]ijpj' 

(2.3) 

Pi = e FijxJ, (2.4) 

where 11m = 2H '(p2) = const and Fij is the usual e.m. field 
tensor. 

Observing that electromagnetism is a gauge theory with 
V (I) as gauge group, Eq. (2.3) admits a geometrical i~terpr~
tation that can be generalized to any gauge theory with arbi
trary gauge group? In fact it has long been realized that a 
most natural space arising in a gauge theory is a principal 
bundle E whose base space is the configuration space M and 
whose structural group is the gauge group G. This bundle 
indicates how the geometries of the configuration space and 
of the gauge group are blended, while the gauge potentials 
are simply described by the components of a connection 
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form on E. ! The electromagnetic potential A, therefore, is a 
Lie U( 1 )-valued one-form, and the role of the electric charge 
e is to provide a measure for the interaction strength. This 
means that we may think of e as to an element of (Lie U( 1 ))* 
acting on the potential by the duality pairing. 

The electric charge is conserved by the electromagnetic 
interactions. For a general gauge theory, however, the dyna
mics may be dependent upon several parameters that are 
subject to evolve. Their domain constitutes the space F of the 
"internal variables" and of course an action of G on F must 
be defined, i.e., G has to be a symmetry group for the space F. 
Moreover, if any mechanical theory has to be established, we 
must assume that Fis a Hamiltonian G-space,6,7 namely: (i) F 
has a symplectic structure determined by a two-form nand 
G acts by canonical transformations, so that for any sELieG 
the vector field Ys on F generated by exp (ts ) is globally 
Hamiltonian; (ii) we are given a lifting of the homomorphism 
s-+Y" to a homorphism A: LieG_YIF), A (s) = Ie;. where 
,'7(Fj is the Lie algebra of the functions on Fwhose product 
is the Poisson bracket ! ' I. In other words, the meaning of 
the above assumptions is that any local one-parameter group 
of canonical transformations arising from the action of G is 
actually global, and moreover, the generating functions of 
such one-parameter groups form a subalgebra oC;;-(F) under 
Poisson bracket. 

The following question now appears natural: what 
takes the place ofthe charge in a general gauge theory? From 
the electromagnetic discussion it emerges that the new 
charge must be a (LieG )*-valued object. In fact, since for any 
Hamiltonian G-space the correspondence 
A:LieG-.7(F):S-Is is linear in S at any pointyEF, there is 
an element IiIy)E(LieG)* such that 

(1i1y),S ) = Ie; Iy); yEF, sELieG. 

The mappingWF-(LieG)*, called "momentum map
ping,"24 is thus naturally defined. 

(2.5) 

It is easy to see that, if H is a Hamiltonian on F, invar
iant under the action of G, then Ii is constant along the flow 
of the Hamiltonian vector field Y H' Indeed, let Ys be the 
Hamiltonian vector field generated by S as in item (i) of the 
definition of Hamiltonian G-space, so that Yi; is equal to the 
Hamiltonian vector field Y f.' Then, by assumption, 
Y f, H = 0 for any sELieG. Therefore, 

0= Yr,H= [fs,H) = - !H'/sl 
= -YHI" = -YH<!i,s) = -(YHIi,S), 

which clearly entails 

YHIi = O. (2.6) 

From the proof we see that the condition (2.6) is equivalent to 
the vanishing of the Poisson bracket of H with Is' In this 
way we recover the well-known relationship between sym
metries and conserved quantities, i.e., a generalized Hamil
tonian version of the classical Noether theorem. 25 

There is a rigorous argument that allows us to interpret 
Ii as a good generalization of the charge. Indeed, the natural 
space for a mechanical description of the gauge field-parti
cle coupled system is obviously the domain of both the exter
nal and internal variables, that is the associated bundle 
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Q = (q*E XF)/G, where q*E is the pullback of Eon T*M, 
and the equivalence is made with respect to the action of G, 
as usual. 19 A mechanical system (Q,n@) can be defined for 
any gauge field, i.e., for any connection form eon E, since2

: 

(a) there exists a closed two-form (7 on Q such that 

11'*(7 = d ~,e) + fl, (2.7) 

where 11': q* E X F-Q is the quotient projection and ( , ) 
denotes the duality pairing in LieG; (b) the two-form 

ne = UJ + (7 (2.8) 

is a symplectic form on Q. The equations of motion 

XHJn@ = -dH, (2.9) 

where H is a free Hamiltonian as in (2.1), represent the evolu
tion of a particle interacting with the gauge field whose po
tential is given bye. Therefore, the interaction is contained 
in (7 and its expression makes it reasonable to look atli as the 
new "charge". 

Typical examples ofHamiItonian G spaces are the or
bits ofG in (LieG)* under the coadjoint representation, ad*, 
defined by 

(ad; f,S) = < f,adg _ IS>' (2.10) 

where gEG, fE{LieG )*, sELieG. The natural G-invariant 
symplectic structure on an orbitll is given by the two-form n 
such that 

n (f)(Ys(f),Y,,(f)) = (f,[S,17]), (2.11) 

with IE(LieG )* and S, 17ELieG. 
A well-known result7 states that any homogeneous Ha

miltonian G-space is a covering of an orbit of G in (LieG)*. 
Moreover, general arguments based on cohomological the
ories of Lie algebras 7 demonstrate that for a semisimple Lie 
group G any symplectic space on which G acts by canonical 
transformations is actually a Hamiltonian G-space. This 
gives the most general choice for the space of the internal 
variables in any gauge theory with a semisimple Lie group. 

We notice that if F is an orbit of G in (LieG )*, the mo
mentum mapping isjust the imbedding of Finto (LieG )*. In 
particular, for electromagnetism, since U( 1) is commutative, 
the orbit reduces to a single point eE(LieU(l))* and,u(e) = e. 

An illuminating example is provided by the classical 
Yang-Mills gauge theory, where the gauge group is SU(2). 
Since SU(2) is semisimple, its Hamiltonian spaces are entire
ly classified in terms of the orbits in (LieSU(2))*. To find such 
orbits we observe that the nondegenerate Killing form of 
SU(2) gives an equivalence of the coadjoint with the adjoint 
representation. Orbits are therefore level surfaces of the in
variants under similarity transformations of any matrix of 
the type 

a = b!'Tl + b2T2 + b3'T3' (2.12) 

where bA,A = 1,2,3, are rea] numbers, TA = (iI2)(7,f' and (7A 
are the Pauli matrices. Since the trace is vanishing for any 
matrix ofthe type (2.12), the only meaningful invariant is 

deta =! L b A 2 = !R 2, (2.13) 
A = 1.3 

and its level surfaces are ordinary two-spheres. As spheres 
are simply connected manifolds, they are their own universal 
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covering, so that any homogeneous Hamiltonian SU(2)
space is just a two-sphere. In this case the symplectic struc
ture is proportional to the ordinary Riemannian volume 
form and the invariance under SU(2) is thus evident. 

Indicating by A 1(x) the SU(2) gauge potentials and car
rying out computations according to the described proce
dure, we find 

(2.14) 

where ~BC is the completely antisymmetric tensor of rank 
three and capital indices are raised and lowered by means of 
the Euclidean metric c5~ . 

For a free Hamiltonian H = H(r/,ipiPj ), the equations of 
motion are 

mi' = TfuPj' 

p, = (aA1Iaxj-aA1Ia~)X/bA -A1bA, 

(2.1Sa) 

(2.1Sb) 

~BCbBbc + R 2A 1i' = 0, (2.1Sc) 

where, again, 11m = 2H'. To these, we add the "constraint" 
equation deduced from (2.13), i.e., 

bAb A = O. 

From (2.lSc) and (2.1Sd) we find 

b· A B "b C A=-EABC'X. 

(2.1Sd) 

(2.16) 

By differentiating (2.15a) and substituting the equation so 
found, together with (2.16), into (2.1Sb), we finally get 

mj(' = TfikFtbAii, (2.17) 

where 

Ftf =aA:laxk-aAuaxj+~cAfAf (2.18) 

is the Yang-Mills field strength. 
Let us conclude this section by showing how the usual 

minimal substitution point of view can be locally recovered 
in any gauge theory. If we have a local trivialization of the 
bundle E by means of a section s over U<;;'M- in physical 
terms a local gauge-then the connection B is completely 
determined by the LieG-valued form A = s*B on U, the 
components of A are the gauge potentials and relation (2.7) 
implies 

(7 = d (f.l,A > + n. (2.19) 

We may think of <f.l,A ) as a one-form on U X F and perform 
the minimal substitution t/J:T*U XF-T*U XF, 

(x,p,y)--+(x,p + (f.l(y),A (x),y). 

The equations of motion 

XHJ(tu + n) = - d(t/J-l·H), 

where H is again a free Hamiltonian and 

(2.20) 

(2.21) 

(t/J-I·H)(x,p,y) = H(x,p - <f.l(y),A (x)) (2.22) 

are equivalent to (2.9) in the sense that integral curves of both 
(2.9) and (2.21) have identical projections on U X F, while the 
corresponding momenta are related by means of t/J. 

In the Yang-Mills case the minimal substitution is 
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H (P2)--+H [(Pi - A 1b A)2], (2.23) 

and the equations of motion (2.21) read 

'i _ aH _ 1 ij(p A Ab ) x----Tf·- 'A 
api m J J ' 

(2.24a) 

. aH l'k A aA f 
p.= - -= ~ (P-Ab )-b 

I axi m J ) A axi B' (2.24b) 

~BC. 1 i' D A 
7bBbc = - ;;Tf~(Pi - A, bD)A j' (2.24c) 

where 11m = 2H' [(Pi - A 1b A f] = const. 
It is trivial to verify that the system (2.24) is equivalent 

to (2.1S). However, we want to stress that Eqs. (2.9) have a 
global meaning even if E is not a trivial bundle, and can be 
written for an arbitrary symplectic manifold. The minimal 
substitution, on the other hand, can be given a local meaning 
only. 

We also notice that the system (2.24) has been found by 
taking the classical limit of the quantum Yang-Mills field 
equations, X while a system analogous to (2.24) has been ob
tained by the use of anticommuting variables.9 

III. GRAVITATIONAL FORCE AS A GAUGE 
INTERACTION OF THE POINCARE GROUP 

In the present section we want to show how the method 
of introducing the gauge field-particle interaction by modi
fying the symplectic form can be adapted to the case of the 
gravitational coupling. It is therefore necessary to illustrate, 
in the first place, the geometrical peculiarities of a gauge 
theory of the Poincare group and its relationship to an Ein
stein-Cartan theory. 

A gauge theory of the Poincare group P is given by a 
principal bundle 1I':E p-M over the space-time M with Pas 
structure group. A gauge potential is a connection on Ep , 

namely a LieP-valued one-form (J of the adjoint type. To give 
a physical meaning to E p the "rotations" must be distin
guished by the "translations" in each fiber of E p by means of 
a reduction of the structure group P to the Lorentz group L. 
This means that we have an injection 

r:EL--+Ep, (3.1) 

where 1I':EL --+M is a principal bundle with structure group 
L. Such a reduction (always existing for a paracompact M) is 
described by a tensorial O-form <P of type (P,R(I.3»), namely by 
a map 

<P:Ep--+RII.3l 

such that 

'1A.a) <P ==<P0r(A.a) = p((A,a)-I)<p, 

(3.2) 

(3.3) 

where (A,a)eP, r is the right translation in Ep , andp is the 
affine representation of P on R(1·3) defined by 

p(A,a)<P i = A J<p j + ai
• (3.4) 

Explicitly we have 

EL = \uEEpj<P(u) = OJ, (3.5) 

so that E L is a submanifold of E p and r is the canonical 
injection. We can also define a projection,8: E p--+E L given 
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by 

(J(U) = r\\,.p,\u}) (U), uEEp, (3.6) 

where]. is the unity of the Lorentz group. Of course (JOy is 
the identity mapping of EL into itself. 

Since 

LieP = LieL Ell RD.), (3.7) 

the pullback Y"'w-which is the restriction of w to EL kEp 
--can be decomposed as 19 

y"'w = OJ + rp, (3,8) 

where OJ is a connection on ELand rp is a tensorial one-form 
of type Ip L ,R( I ,]1), where p L is the obvious representation of L 
induced by (3.4), so that 

(r~ ,rp)i = (PL(A )rp)i = A jrpj. (3.9) 

Indeed, by letting w = OJ I + OJ2 in the decomposition (3.7), 
we have 

r~.ol ,w = ad(A.olw = adA OJ I + PL (A )OJ2' (3.10) 

and setting OJ = OJ II E, and rp = OJ2 1 E
L

' the above property is 
verified. 

It is very important to notice that the connection wean 
be reconstructed from OJ and rp. We find 

w = (J *OJ + (J *rp - dr/> - p'(J3 *OJ)r/>, (3.11) 

where p' is the representation of LieP on RD
,3) obtained by 

(3.4), and to which it is formally equal. We give in the Appen
dix a detailed proof of(3, 11), since the same type of computa
tions may be applied to more general cases. 

An important geometrical quantity is the covariant dif
ferential Dr/> of the reduction function with respect to the 
connection w; this can be used to express w itself. The explicit 
form of Dr/> is given by 

Dr/> = dr/> + p'(iJ)r/>. (3.12) 

Indeed, let h and v denote the horizontal and vertical projec
tions determined by iJ, so that any XETEp is uniquely writ
ten as a sum X = hX + vx. Then, by definition of D, we have 

Dr/> (X) = dr/>(hX) = dr/>(X) - dr/>(vX). 

But 

d 
dr/>(vX) = (vX)r/> = dtr:'P!liJIXII r/> 1,=0 

= 1t(exp ( - tw(Xlll!,=or/> = - p'(iJ(X))r/>, 

from which (3.12) follows. 
Since w = OJ I + OJ2 and 

p'(iJ)r/> = p'(OJI)r/> + OJ2' 

from (3.12) and (3.13) we have 

OJ 2 = Dr/> - dr/> - p'(OJdr/>, 

so that 

w = OJ I + Dr/> - dr/> - p'(OJtJr/>. 

A comparison of(3.11) with (3.14) shows that 

OJ I = (J *OJ, 

Dr/> =(J*rp. 

1707 J, Math. Phys., Vol. 22, No.8, August 1981 

(3.13) 

(3.14) 

(3.15a) 

(3.15b) 

We are now in position to clarify the relationship of a 
Poincare group gauge theory to an Einstein-Cartan theory. 
This is usually referred to as the "soldering condition,,26 and 
may be expressed by requiring that the RO•31-valued one
form Dr/> has maximal rank,15 i.e., 

Dr/> (Xu) = 0 ifand only if XuETuEpis vertical. (3.16) 

The physical meaning of this condition is clear when we ob
serve that in a local gauge ,j and in a local chart for M, the 
matrix corresponding to ,j * Dr/> is just the usual tetrad field; 
condition (3.16) expresses, therefore, the nondegeneracy of 
the tetrad field. 15.16 

We want now to show how the geometry of Ep and 
especially Eqs. (3.14) and (3.15), together with the soldering 
condition, may be used to describe the interaction of a parti
cle with a gravitational field as a gauge interaction, in the 
framework developed in Sec, 2, The peculiarity of this case 
lies in the fact that the Poincare group is the group of the 
kinematical transformations of the space-time itself. Thus 
the P-Hamiltonian space of the gauge variables must be a 
local model of the phase space, but for a possible enlarge
ment due to the presence of spin. We shall give a treatment of 
only the spin less particle and simply indicate a possible way 
to take spin into account. 

The configuration space of a free spinless particle is the 
usual Minkowski space M, so that the phase space is the 
cotangent bundle T * M ,:::::::M X RO•

31
, and the natural flat met

ric determines the general form of the Hamiltonian function 
suitable for describing the particle dynamics. 

In this case there exists a concrete principal bundle E p, 

realized by the affine frames of TM with orthonormal basis 
vectors. An element uEEp is thus given by a triple 

u = (x,r,x I, (3.17) 
where xEM, ,// = (Vi)i = 1,4 is an orthonormal frame for 
T M and XET M indicates the "displacement" of the ori
gi~ of the fram~. The action of (A ,a)EP on E p is given by 

{X,(V,)i= 1.4,x}(A f,a i ) = {,x,(V,A ~)i= 1,4,x - Via
i
}, 

(3.18) 

and the map r/>:Ep-_-+R Il ,3) that gives the reduction of the 
structural group is defined by 

(3,19) 

Let us now observe that any coordinate system on Mis 
obtained by choosing an appropriate local gauge, i.e., a local 
section,j of Ep. The coordinate system is then given by r/>o,j, 
Indeed, if (¢'l = 1,4 are four independent functions on M, 
then we define 

,j.",(x) = (x,r,x I = !X'(Vi)i= 1,4,¢,iVi ), 

where '1/ = (V,)i= 1,4 is quite general. 

(3,20) 

A local gauge provides also a coordinate system for 
T*M, namely 

(3,21) 

The action of Pon the principal bundleEp is thus transferred 
on the range of the coordinate system (Xi,Pi)' i.e" T *RiI •3>, 
according to 

(3,22) 
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Notice that the relation (3.22) determines a canonical action 
on T*1R11

•
3

) (with respect to the natural symplectic form 
dpi 1\ dxi) that endows T *RI 1.3) with the structure of Hamil
tonian P-space. However, the action induced by (3.22) on 
T * M by means of the coordinate system is not, in general, a 
canonical action, as (Xi,Pi) is not in general a Darboux coordi
nate system. 2

) 

We shall use T*R(I,Jl as the domain of the gauge varia
bles and the required identification with T * M is done by any 
chart (x',p,) arising from a local gauge. The gauge invariance 
of the theory implies directly, therefore, its invariance under 
general coordinate transformations performed in the con
figuration space M. 

Let us now consider the momentum mapping 
WT*IRIl.1)~(LieP)* associated with the action (3.22). We 
find that 

fl(Xi,Pi) =x'hli5 +Pi.(j'i, (3.23) 

where (.Ii~, .'j";) are the matrices forming the basis of (Lie
P)* = (LieL)* Ell R(I·3)" dual to the basis (M ~,Pi) of the stan
dard LiePrepresentation deduced by (3.4). An explicit proof 
of (3.23) is obtained by considering the generating function 
ix,;.", of the canonical transformation associated with the 
action of the one-parameter group exp(t (A,a)) generated by 
an element (A,a) = A~Mj + a;PiELieP. The function ix,~", 
is obtained22

•
25 by contracting the Liouville one-form p;dxi 

of T*1R11
,3) with the vector field XI,!,a) tangent to the flow of 

the one-parameter group exp(t (A,a)), i.e., 

. d . 
X1A •a ) (X',Pi) = dt exp(t(A,a))(x',Pi)!,",o' (3.24) 

The rhs of equality (3.24) is more simply evaluated by apply
ing the chain rule for derivatives; this reduces the problem to 
the application of the Jacobian matrix of the group action
evaluated in the identity of P-to the element (A,a), namely 

. . a a 
XI,!,a) (X',Pi) = A '-. + B; -, 

ax' api 

where the coefficients A i,B; are given by 

[~ .. (A'x/+ai) 1 
[
Ai1= aA~' a~ho (A;xj+a') [A a:] 
D, a A Ly, 

aA Z { ,p, 

Therefore, 

iX'AJXi,Pi) = xiPjA ~ + Pia" (3.25) 

and, according to relation (2.5), the required momentum 
map reads as in (3.23). 

Let us now consider the product space 

R = Ep X T*R11 ,31 (3.26) 

over which we pull back the momentum map fl, the connec
tion form W, and the symplectic form dpi I\dxi of T*R(i,31. 
On R we can define the two-form 

(l R = d <fl,w) + dpi 1\ dXi, (3.27) 
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where < , ) denotes the duality pairing in LieP. The gravita
tional coupling is given by the first term in the expression of 
DR' Indeed, denoting by q:T*M~M the projection of the 
cotangent bundle and choosing a local gauge .j:M~Ep, we 
may define a map 

.1. :T*M~Ep X T*R11
•
31 (3.28) 

such that 

.1, (x,p) = (.>(x),eI> iO.>(X), (p, Vi > )= (.;(x),t i';i ) (3.29) 

where u = .!(x) is given by (3.17). The gauge.J is now quite 
arbitrary, contrary to what we required for the definition of a 
coordinate system, as in Eq. (3,21). 

The map .1, can be used to pull back the two-form {lR 
from R to T*M. Taking into account Eq. (3.tl) and since 

.1 ;Xi = 5', .1 ;p, = ;i' (3.30) 

we find 

.1 ;(lR = d [L1;(W,fl) +;i dt'] 

= d [(.;*{3 *wg is) + (,)*{3 *cp )'1;, _. d (,;*eI> ),1;, 

- (.; */3 *wY;(.! *eI> )'1;) + !;id5 i) 
= d[(/30';)*'Pil;i]' (3.31) 

From this last expression it appears that the two-form 
L1;{lR is actually independent of the choice of the local 
gauge.J and defines an exact two-form (l on T * M, Indeed,let 
.)' be another local gauge. Then for any xEM we have 

./(x) = .J(x)(A (x),a(x)), 

where x~(A (x),a(x)) is the appropriate map of M into the 
Poincare group, i.e., a change of affine reference system de
pending on the position. Labelling by primed letters the var
iables defined in the gauge .:: and recalling the transforma
tion property (3.9) of'P i and the definition (3.29) of I;i' which 
implies that S' I = A ~ Sj, we find 

L1~{lR = d [(j30.;')*cp is:] = d [(A 1)~(j3o.»)*cpJA ~Sk] 

= d[(/30.) )*cp 'I;i 1 = .1; {l R' (3.32) 

The gauge in variance of {l is therefore proved. From this, in 
particular, we also get the invariance of the theory under 
general coordinate transformations. 

It remains now to prove that {l is actually a symplectic 
form. In the first place {l is closed, as it is exact. Secondly, [} 
is nondegenerate, Indeed, due to its gauge independence, we 
can express the two-form (l in a local gauge.) that provides a 
coordinate system (Xi,Pi) as in Eq. (3.2t). Using the relation 
(3.1Sb) we thus have 

{l = d [.)*D<P 'pi] = d [A j(X)Pidxj], (3.33) 

where A ; (x)dx' is the coordinate expression of.) * Del> i and 
the matrix A j (x)-that depends only on the base point x but 
is independent of the momen tum p-is nonsingular since it is 
the local expression of the tetrad field, as stressed when we 
discussed the meaning of the soldering condition. Perform
ing the exterior derivative, we find 

which is clearly nondegenerate, 
The equations of motion deduced by the symplectic 
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form n and a Hamiltonian H = H(rlpiPj) read 

(
a a) ( aA '. .) Xi -. + Pi - J A jdpi 1\ dxJ + __ J pdXk 1\ dxi 

ax' api axk ' 

1 ij d -1] Pi Pi) (3.35) 
m 

with 11m = 2H', so that 

'kA r Pj = m1]rjX k' 

A ~Pj + m1]rjA ~ (aA ~ lax i - aA 11axk )XiX' = 0. (3.36) 

Defining 

(3.37) 

and eliminating the momentum in the system (3.36), we find 
the usual geodesic equation 

(3.38) 

with 

and 

(3.40) 

We notice that Eqs. (3.39) and (3.40) express the weII
known relationship between metric tensor and tetrad field. In 

Moreover, in the spirit of the minimal substitution, it is easi
ly seen that Eq. (3.38) is also obtained by the canonical sym
plectic form dp i 1\ dxi and the Hamiltonian H = H (gU p uP r), 
according to the procedure explained in Sec. 2. A discussion 
of the method of getting Eq. (3.38) from a different stand
point has been given also in Ref. (23). 

IV. CONCLUSIONS 
In this paper we have performed the detailed construc

tion of a mechanical system representing a scalar particle 
interacting with the gravitational field as a gauge theory of 
the Poincare group. The realization has been obtained in 
geometrical form, so that possible problems of interpretation 
turn out to be clarified. The results so far achieved naturally 
suggest the use of the same method for the investigation of 
other physically interesting situations. 

In the first place we face the more general question of 
the spinning particle. In this case we need a symplectic mani
fold where the spin variables can be accomodated. The solu
tion can be sought on a group theoretical basis. Starting with 
the cotangent bundle ofthe Minkowski space, T * M, we may 
observe that the action of the Poincare group on each fiber 
reduces to the action of the Lorentz group on the dual space 
of the translations subalgebra. As suggested in Ref. (27), a 
possible phase space for the spin variables, attached at any 
point (x,p)ET * M, is obtained by considering the orbits of the 
isotropy subgroup of the momentum p under the coadjoint 
representation of the subgroup itself. The problems posed by 
the patching of these spaces can easily be solved for a free 
particle. However, when considering gravitational gauge in
teractions, the new form of the soldering condition must take 
into account the additional structure introduced. One ex
pects to obtain, in this way, an answer to the problem of spin
curvature coupling for particles of any mass. 
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A different application of the method we have devel
oped, which is now under investigation, concerns supergra
vity. Indeed it has been shown that dynamical systems in
volving anticommuting variables may be described by a 
graded symplectic formalism 28

•
29 allowing the establishment 

of a Hamiltonian mechanics. Besides its direct interest in the 
realm of super symmetry theories, such an investigation may 
be compared with the previous approach to give some in
sight in the relations between anticommuting variables and 
spin structures. 30 

APPENDIX 
The aim of the present Appendix is to prove Eq. (3.11), 

i.e., 

05 = /3 *w + (3 *q; - d<P - p'(f3 *w)<P. (AI) 

The interest in a detailed demonstration lies in the possible 
generalizations of the procedure, namely in the fact that the 
same type of computations may be applied-but for minor 
changes-to those cases in which P and L are replaced by a 
Lie group G and a subgroup H, and the homogeneous space 
P IL=R(!.31 by G IH, with only the condition for G IHto be 
reductive. 19h • .1\ 

Therefore consider the reduction function 

<P:Ep--+R(I·31 

and the bundle 

EL = 1 uEEpj<P(u) = 0). 

The reduction map 

y:EL--+Ep 

is the usual subbundle injection. 

(A2) 

(A3) 

(A4) 

Let us show that the assignment on E L of a connection 
one-form wand a R(I,3)-valued one-form q; with the transfor
mation property 

(AS) 

uniquely determines a connection one-form 05 on Ep such 
that 

y*05 = w + q;, (A6) 

At any point uEEL hEp a tangent vector XuETuEp admits a 
unique decomposition 

(A7) 

where Yu ETu ELand Z: is the field tangent to the flow in
duced by the action of the one-parameter subgroup generat
ed by the element (O,Z) E LieP. This is obvious, since Ep is 
given by the union of the orbits of the translation subgroup of 
P at all points of E L' 

Let us define the LieP-valued one-form 05 on EL 

05(Xu) = (w + q; )(Yu) + Z =(3*(w + q; )(Xu) + Z. (A8) 

Now, 

d 
d<P(Zu) = Z:<P = d/:xP(t(o,Z»<P II~o = -p'(O,Z)<P = - Z 

and 

(f3 *drJ> )( Yu ) = 0, 
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since <1> is constant on E L . Therefore 

dCP (XII) = - z (A9) 

and equation (AS) can be written 

w(Xu) = (3 *(w + cp )(XII ) - d<1> (Xu), (A 10) 

The domain of w can be readily extended from E l . to the 
wholeEp. Indeed ifiiEEp, then 

u = ii(I,<1> (ii))EEl . 

is the unique point of E L that belongs to the orbit of the 
translation subgroup of Ppassing through u. If X'IET'IEp , 

denoting 

Xu = dr(l.<p(u)) (Xu )ETuEp, 

we define 

(u(Xu) = ad(!, _ </)(u)) ,w(Xu)' 

where w (Xu) is given by (A 10), 

(All) 

A straightforward computation shows that the one
form w given by (A 11) satisfies the properties of a connection 
one-form. 

Recalling the adjoint representation of the Poincare 
group, 

ad l,1,u) (A,a) = (ad,1A,Aa - (ad,1A )a), (AI2) 

we can explicitly evaluate the expression (A 11), that gives 

w(Xu) = (3 *(w + cp )(Xu) - d<1> (Xu) - p'(f3 *w(Xu))<1> (ii). 
(AI3) 

Noticing that 

d<1> (Xu) = d<1> (dr( 1,<Plu)) (Xu)) = r~ ,<P Iii)) d<1> (Xli) 

= d (<1> + <1> (u))(Xu) = d<1> (Xu), (AI4) 

and obviously 

(3 *(w + cp )(Xu) =(3 *(w + cp )(Xu)' 

(AI) follows immediately from (A13). 
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It is shown without explicit integration that all Petrov type D ele~trovac so~utions. with 
cosmological constant for an aligned, nonsingular electromagnetic field wh.lch sattsfy the 
generalized Goldberg-Sachs theorem, admit at least a two-paramet.er, abehan, orthogonally . 
transitive group of local isometries. In the case when the group orbits are ~on-null the group IS 

invertible, and a symmetric null tetrad is shown to exist in which the princI~le ?ull congrue~ces 
defined by the type D Weyhensor are indistinguishable. An explicit example IS ~Iven ~f a solutton 
with null group orbits which contains as a subcase a Kinnersley vacuum solutIOn (with t~e s~me 
property). It is also demonstrated that the Hamilton-Jacobi equatio~ for the ?ull geod~slcs IS 
always solvable by separation of variables in these solutions, a fact ~hlch explal~s the ~xlstence of 
a conformal Killing tensor therein, and which gives rise to a coordmate system m which the field 
equations may be integrated in terms of polynomial functions. 

PACS numbers: 04.20.Jb, 02.30.Jr 

1. INTRODUCTION 

In his exhaustive integration of Einstein's vacuum field 
equations for Petrov type D Kinnersley 1 observe~ th~t all 
the solutions admit at least a two-parameter abehan ISO
metry group. This fact has been proved without integration 
by Hughston and Sommers,2 who extended the result to the 
class of Einstein-Maxwell solutions with nonsingular, 
aligned electromagnetic field. Successively simpler f~rms of 
Kinnersley's metrics including charge and cosmological 
constant have been given by Debever,3 PlebanskV Plebanski 
and DemianskV and Weir and Kerr,6 all these authors as
suming implicitly that the two-parameter, abelian group of 
motions corresponding to the stationarity and axisymmetry 
of the metric is invertible.? These solutions, in all but the 
most general case, correspond to a class of solutions of the 
electrovac field equations with cosmological constant dis
covered earlier by CarterH under the hypotheses of an inver
tible, abelian, two-parameter isometry group and the separa
bility of the Hamilton-Jacobi equation and the Schr6dinger 
equation for the charged particle orbits, all of these solutions 
being necessarily of Petro v type D. Carter's hypotheses have 
been analysed from a conformal viewpoint by Debever,9 who 
showed that Schr6dinger separability was superfluous, and 
weakened the Hamilton-Jacobi separability to that for light
like particles. The separability of the Hamilton-Jacobi equa
tion, as has been shown independently by Matravers 10 and 
Carter, II gives rise to afourth constant of the motion for the 
particle orbits (the three other constants being the rest mass, 
the energy, and the angular momentum about the symmetry 
axis), which implies the existence of a second-rank Killing 

"This work was supported in part by a grant from the Natural Sciences and 
Engineering Research Council of Canada. 

tensor in these solutions. Matravers has also shown the sep
arability of the Hamilton-Jacobi equation for the null geode
sics (generalized Carter metrics) gives rise to a nonzero qua
dratic first integral for the null geodesic equations which 
implies the existence of a conformal Killing tensor. Kinners
ley's metrics have likewise been analyzed by Matravers, who 
finds that for all metrics except Case III the Hamilton-Ja
cobi equation is solvable by separation of variables, while for 
Case IlIA (the C metric) it is integrable in this way only for 
the null geodesics (Case IIIB, the C NUT, was not consid
ered by Matravers). The results of Matravers and Carter are 
closely related to some earlier theorems of Walker and Pen
rose, 12 who sought to derive the existence of the fourth con
stant of motion in the Kerr l3 solution directly from the type 
D vacuum field equations without explicit integration. They 
found that all the vacuum type D solutions admit an irredu
cible second rank conformal Killing tensor which gives rise 
to a quadratic first integral for the null geodesics, while an 
irreducible second rank Killing tensor and its corresponding 
first integral for all geodesics exists in only a subclass of these 
solutions (including the Kerr solution). The results of Walk
er and Penrose have been extended to type D electrovac solu
tions with aligned nonsingular electromagnetic field by 
Hughston, Penrose, Sommers, and Walker l4 and by Hugh
ston and Sommers. 15 The latter authors show that the C 
metric and the C NUT metric and their electrovac general
izations are the only metrics in the class which do not admit 
the full Killing tensor. It should be pointed out that the mere 
existence of four independent constants of motion does not 
imply directly that the Hamilton-Jacobi equation is solvable 
by separation of variables. Sufficient conditions for this to be 
true which seem to apply to the type D electrovac case just 
described have been given by Woodhouse. 16 

The purpose of the present paperl? is to provide a uni-
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fied and complete treatment of the results just described, 
from the perspective of the solutions of the Petrov type D 
electrovac field equations with cosmological constant for an 
aligned, nonsingular electromagnetic field which satisfy the 
generalized Goldberg-Sachs theorem. 18 (This class of solu
tions will be denoted by 'l).) We shall show without explicit 
integration that the field equations imply the existence of at 
least a two-parameter orthogonally transitive 19 abelian iso
metry group. In the case when the group orbits are non-null 
the group is necessarily invertible. However, when the orbits 
are null the group is not invertible. We give the general form 
of the metric in the latter case and exhibit an explicit solution 
of the electrovac field equations which contains as a subcase 
a Kinnersley metric admitting an orthogonally transitive 
isometry group with null orbits. The existence of such a solu
tion is rather surprising since it has been assumed in the 
literature that all members of the class 'l) admit an invertible 
abelian two-parameter isometry group. 

I t will also be shown that our hypotheses imply the exis
tence of a system of coordinates in which the Hamilton-Ja
cobi equation for the null geodesics is always solvable by 
separation of variables. The separation constant provides a 
quadratic fourth constant of motion for the null geodesics, 
which in turn gives rise to a conformal Killing tensor identi
cal to the one previously found by Hughston and Sommers20 

from an analysis of the Bianchi identities for the electrovac 
field equations. It seems, however, that the existence of such 
a tensor for solutions in 'l) is related more fundamentally to 
the separability of the Hamilton-Jacobi equation for the null 
geodesics. It should be emphasized that the Hamilton-Jacobi 
equation for the case of the group with null orbits is included 
in the above analysis and gives rise to a kind of separability 
which does not seem to have been previously considered.21 

Finally, we give a canonical form for the metric (in 
terms of the separable coordinates) which is essentially the 
point of departure for the integration of the field equations in 
terms of polynomial functions previously carried out by 
Carter,22 Debever,23 and Plebanski and Demianski.24 A re
markable feature of our analysis is that from our hypotheses 
of Petrov type D electrovac field equations, excluding the 
case of null group orbits, we recover the isometry and sep
arability conditions I, II, III, and IV imposed by Carter25 for 
his family of solutions. The only difference that should be 
mentioned is that we find a weakened version of Condition 
III, namely separability of the Hamilton-Jacobi equation for 
only the null geodesics. Even the case of null group orbits 
parallels closely Carter's situation, the only changes being 
that invertibility is replaced by orthogonal transitivity in 
Condition II, and that Condition IV is appropriately 
modified. 

We prove our results by showing that aside from an 
exceptional case all solutions in the class 'l) admit a Rieman
nian-Maxwellian invertible structure (RMIS) and hence, by 
a theorem of Debever, McLenaghan, and Tariq26 (earlier 
versions of which were given by Debever27), possess an inver
tible abelian two-parameter isometry group. Proving the ex
istence of an RMIS is essentially equivalent to showing the 
existence of a symmetric null tetrad in which the Newman
Penrose28 (NP) spin coefficients are equal (or opposed) in 
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pairs. Consequently the principal null congruences of the 
type D Weyl tensor are indistinguishable except in the case of 
the null orbits, which require a separate treatment. 

We shall perform our calculations using the NP formal
ism and the complex vectorial formalism ofCahen, Debever, 
and Defrise. 29 The relationship between these formalisms is 
given in DMT.30 

2. HYPOTHESES AND STATEMENT OF RESULTS 

We shall study space-times V4 which are solutions of 
the Einstein-Maxwell field equations with cosmological 
constant 

Rij - ~Rgij + Agjj = Fjk~ k - UJjjFklFkl, 

Fik; k = 0, F[ij;k I = 0, 

(2.la) 

(2.lb) 

and which satisfy the following conditions: 
HI. The Weyl tensor Cijkl is Petrov type D; this is equiv

alent to the existence of real null vector fields I and n such 
that at each point 

[i[kCjik[li m ] =~nkCijkl/nml =0. (2.2) 

H2. The electromagnetic field tensor Fij is nonsingular 
and its principal null directions are aligned with the princi
pal null directions of the Weyl tensor, that is, we have 

(2.3) 

H3. The invariants of the Weyl tensor and the tracefree 
Ricci tensor Sij satisfy one of the following inequalities: 

or 

C '" C ijkl.J.O (2.4) 
ijkl -r- , 

C C ijkl .J.4C' Sij ijkl I~ij· (2.5) 

The last hypothesis is required to insure that the generalized 
Goldberg-Sachs theorem holds, namely that the principal 
null congruences defined by I and n are both geodesic and 
shearfree. The degenerate case when H3 is not satisfied has 
recently been studied by Plebanski and Hacyan. 31 We denote 
by 'l) the class of solutions of (2.1) satisfying the hypotheses 
HI, H2, and H3. The main results of this paper are contained 
in the following theorems. 

Theorem 1: Every solution in 'l) admits at least a two
parameter orthogonally transitive abelian isometry group. If 
the orbits of the group are non-null the group is invertible 
and there exists a coordinate system (u,v,w,x) such that the 
metric and the self-dual Maxwell field have the form 

ds2 = - e(Ldu + Mdv)2 + eR 2dw2 

+ e(Ndu + PdV)2 - eT 2dx2, 
+ 

F = B [R (Ldu + Mdv)Adw 

- eT(Ndu + Pdv) Adx], 

(2.6a) 

(2.6b) 

where L, M and R are real valued functions, B is a complex 
valued function, and N, P, and T are functions satisfying 

N= - eN, P= -eP, T=eT, (2.6c) 

where all the functions are independent of the coordinates u 
and v, and where e = I (spacelike orbits) or e = - I (time-
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like orbits). If the orbits are null the group is not invertible 
and there exists a system of coordinates (u,v,w,x) in which 
the metric and the self-dual Maxwell field have the form 

ds2 = 2Rdw(Ldu + Mdv) - (Ndu + PdV)2 - T 2dx2
, (2.7a) 

+ 
F = B [ - R (Ldu + Mdv)/\dw + iT(Ndu + Pdv) Adx], 

(2.7b) 

where L, M, N, P, Rand Tare real valued functions and B is 
a complex valued function, all independent of the coordi
nates u and v. 

Since the components of the metrics and the Maxwell 
fields are independent of u and v it is clear that a /au and 
a /av are commuting Killing vector fields for both solutions 
(2.6) and (2.7). The invertibility of the isometry group for the 
metric (2.6) is evident from the fact that the transformation 

(u,v,w,x)-( - u, - v,w,x) (2.8) 

is an isometry. However, the transformation (2.8) is not an 
isometry for the metric (2.7). It should be noted that the 
Maxwell field tensor is skew invertible in the group, since the 
transformation (2.8) induces the transformation 

+ + 
F-+-F. (2.9) 

Theorem 1 shows that Carter's32 isometry Condition I that 
"the space and the electromagnetic field are invariant under 
a two-parameter abelian symmetry group" holds for every 
solution in the class :3), and moreover, that Condition II that 
"the symmetry group is invertible with non-null surfaces of 
transitivity" holds when the group orbits are non-null. In the 
case of null orbits we have to replace "invertible" in Condi
tion II by "orthogonally transitive with null surfaces of 
transitivity" . 

Theorem 2: For every solution in :3) there exists a co
ordinate system (u,v,w,x) in which the Hamilton-Jacobi 
equation for the null geodesics, 

iJas as _ ° g-.-.- , 
ax' ax} 

(2.10) 

is solvable by separation of variables, in the sence that it 
possesses a complete integral of the form 

S = au + flv + SI(w,a,/3,r,r5) + S2(x,a,/3,r,r5), (2.11) 

where a,/3,r, and r5 are constant. With respect to the separa
ble coordinates the metrics have the following canonical 
forms: 
Non-null orbits: 

ds2 = e2.p[ - e(Ldu + Mdvf + eR zdw2 

+ e(Ndu + Pdvf - eT2dx2], 

Null orbits: 

ds2 = eZ"'[2R dw(Ldu + Mdv) 
- (Ndu + PdV)2 - T 2dx2], 

(2.12) 

(2.l3) 

where in both cases the metric functions satisfy, in addition 
to the restrictions of Theorem 1, the conditions 

tPu = tPu = ° (tPu = atP/au, etc.), 

Rx = Tw =0, 
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(2.14) 

(2.1S) 

(L/ZL = (M/Z)w = (N/Z)x = (P/Z)x =0, (2.16) 

where 

Z=LP-MN. (2.17) 

If S of the form (2.11) is substituted in Eq. (2.10) one 
obtains the following equations on taking account of the ca
nonical forms (2.12) and (2.13), respectively: 
Non-null orbits: 

Z -2(aP - flN)2 - R -2(S;(wJf 

= Z -2(j3L - aMf + T -2(S;(X)j2, (2.18) 

Null orbits: 

R -IS;(w)Z-I(aP-flN) 

= HZ -2(j3L + aM)2 + T- 2(S ; (xW], (2.19) 

In view of Theorem 2 it is clear that both the above equations 
separate into ordinary differential equations for the un
known functions SI and Sz. Thus Carter's separability Con
dition III that "the Hamilton-Jacobi equation is soluble by 
separation of variables in the simplest possible way", weak
ened to include only the null geodesics, holds for every solu
tion in the class :3). Furthermore, an inspection ofEq. (2.18) 
shows that Condition IV, that "the separation required by 
Condition III takes place in such a way that the terms con
taining derivatives with respect to the ignorable coordinates 
separate as the sum of two squares each depending on only 
one of the non-ignorable coordinates", also holds when the 
group orbits are non-null. An examination of Eq. (2.19) 
shows that Condtion IV does not hold for the case of the null 
orbits. Thus it seems that we have an example of an appar
ently new kind of separability. 

It follows directly from Theorem 2 and Eqs. (2.18) and 
(2.19) that we have the following: 

Corollary: Every solution in :3) admits a second-rank 
conformal Killing tensor B iJ defined as follows: 
Non-null orbits: 

BiJPiPj = HR -2p~ + T-~; - Z -2(Ppu - Npu)2 
- Z -2(Lpu - Mpu )2], (2.20) 

Null orbits: 

BiJPiPj =HR -lpwZ-I(Ppu -Npv) 

+ !T-2p; + !Z-2(Lpv _MPu)2], (2.21) 

where 

denote the components of the canonical momentum 
covector. 

(2.22) 

The conformal Killing tensors defined in the corollary 
are identical with the conformal Killing tensor previously 
found by Hughston and Sommers33 in the case A. = 0 by an 
analysis of the Bianchi identities for the electrovac field 
equations. It seems, however, in view of the corollary that its 
existence for these solutions is more deeply related to the 
separability of the Hamilton-Jacobi equation for the null 
geodesics. We note that 

(2.23) 

where a dot denotes differentiation with respect to an affine 
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parameter, defines a quadratic first integral for the null geo
desic equations. Thus by a result of Walker and Penrose34 

the tensor Bu satisfies the conformal Killing equations 

BW:k I - WIUBk )/: 1= O. (2.24) 

Theorem 2 also enables us to find canonical forms for 
the metric which facilitates the integration of the field equa
tions (2.1 ). In the case of non-null orbits the canonical forms 
of the general metric and electromagnetic field are 

ds" = e exp[2¢(w,x)] {_ [W(W)(dU + m(X)dv)]2 
p(w) -mix) 

+ d~2 + [X(X)(dU +P(W)dV)]2 + dX2}, (2.25a) 
W-(w) p(w) - mix) X2(X) 

F=( B(w,x) )[(du+m(X)dV)l\dW 
p(w) -mix) 

- ie(du + p(w)dv) 1\ dx], (2.25b) 

where all functions are real valued except B, which is com
plex valued and X, which is imaginary valued when e = I. 
The above canonical forms are a little more general than the 
Hamilton-Jacobi separable form [which requires that 
exp(2¢) be the sum of a function of wand a function x] em
ployed by Carter'S in his integration procedure. They are the 
starting point for the explicit integration of the electrovac 
field equations by one of US

36 in an analysis of Carter's solu
tions. In order to obtain the metric which is the point of 
departure for the integration procedure of Pie ban ski and De
mianski.17 from the above canonical form, one must integrate 
most of the remaining type D electrovac field equations. 

An example of a solution in ':D possessing a group with 
null orbits is provided by the following metric and electro
magnetic field: 

ds" = 2dw(du + x 2dv) 

- Z 2pp(du - w2dv)2 - dx2/(Z 2pp), (2.26a) 
, 

F = ap2 [dw 1\ (du + x 2dv) + i dx 1\ (du - w2dv)], 

(2.26b) 

where 

p = _ (w + ix) - I, Z 2 = 2lx - 2aa, (2.26c) 

and where a is a complex constant and I a real constant. One 
has a solution of the vacuum field equations if and only if 

a =0, (2.27) 

in which case one recovers, modulo on obvious coordinate 
transformation, the solution Case n.E of Kinnersley3H with 
m = b = O. It should be noted that this solution is a special 
case of a solution obtained by Leroy39 under different hy
potheses. It is an open question whether or not the above 
solution can be obtained from the seven-parameter family of 
Plebanski and Demianski by a "limiting transition". The 
complete integration of the field equation for the solutions in 
':D possessing a group with null orbits will be presented else
where. Other results on isometry groups with null orbits 
may be found in Petrov40 and Bampi and Cianci.41 

3. NOTATION 

We shall employ the complex vectorial formalism42 
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with the notation of the Newman and Penrose4
.' formalism. 

A covariant null tetrad of one-forms e u (a = 1,2,3,4) is de
fined in which the metric has the form 

ds2 = 2e Ie" - 2e 3e 4
. (3.1) 

In a local coordinate system (x') we have 

e I = n,dx', e" = l,dx', 

(3.2) 

where the covariant vectors l,and n, are real and null and the 
complex null vectors m,and m, are complex conjugate. The 
basis dual to {e u} is denoted by {Xu} and the correspon
dence with the NP operators is given by 

XI =D = I'd,; X 2 =.::1 = n'a" 

X.1 = 8 = m'a" X4 = 8 = m'a,. (3.3) 

A basis for the space of complex self-dual two-forms is given 
by 

zl=ell\e\ z2=e l l\e 2 _e 3I\e 4
, 

z3=e 4 I\e 2
• (3.4) 

The components of the metric in this basis are 

1/'!] = 4(8 ~~ 8 ~I - 8 ~8 ~). (3.5) 

The complex connection one-forms afi are defined by 

dZ a = a"f3I\Zf3. (3.6) 

The vectorial connection one-form is defined by 

(3.7) 

where eaf3y is the three-dimensional permutation symbol. 
The tetrad components (Tau defined by (T" = (T"u e a are 12 
complex valued functions which are none other than the NP 
spin coefficients. The explicit correspondence is 

7 (T 

Y (3 
v f1 

The complex curvature two-forms La!] are defined by 

dar; - cr"y 1\ (Tb = L"f3, 

and the vectorial curvature two-form by 

~ -Ie yb~f3 "'a - ii af3y Y '" h' 

On expanding La in the basis [za,z"] one obtains 

~, = (Caf3 - iRYa(3)Zf3 + EatJZf3, 

(3.8) 

(3.9) 

(3.10) 

(3.11 ) 

where the quantities Caf3 and EatJ are related to the NP cur
vature components IPA and (/Jab as follows: 

t 

A self-dual two-form F may be expressed as 

+ 

F =F"Z". (3.13) 

The source-free Maxwell equations have the form 

dF =0, (3.14) 
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and the Einstein-Maxwell equations may be written 

E"fj = A"Af3' (3.15) 

Finally, the relations between the cosmological constant A, 
the NP curvature component A, and the curvature scalar R 
are given by 

,.1,= - 6A = 1R. (3.16) 

4. BASIC EQUATIONS FOR THE CLASS D 

In view of the hypotheses HI and H2 we may choose a 
local null tetrad whose real null vectors I and n are principal 
null vectors of the type D Weyl tensor and the nonsingular 
aligned electromagnetic field. It follows that the only non
vanishing NP components of the curvature are 1/12 = 1/1, 
C/>II = C/>, and A, and that the self-dual Maxwell two-form is 
given by 

(4.1) 

The null tetrad is determined by this choice up to the 
transformation 

(4.2) 

where a and b are real valued functions. This tranformation 
induces the following transformation of the NP spin 
coefficients: 

K' = e2a + ibK, 7' = eib7, a' = e" + 2iba, p' = eap, 
(4.3) 

A'=e a-2ibA, (4.4) 

c' = e"(c + ~Dp), y' = e - a(y + ~.1p), (4.5) 

/3' = eib (f3 + ~8p), a' = e - ib(a + ~8p), (4.6) 

wherep = a + ib. 
It can be shown that 

(4.7) 

where e is a one-form with complex components defined by 

e= -2lpel-f-le2+7eJ-1Te4). (4.S) 

It follows from Eqs. (4.1) and (4.7) that Maxwell's equations 
(3.14) take the form 

DB = 2pB, .1B = - 2f-lB, 8B = 27B, 

8B = - 21TB, (4.9) 

and that the integrability condition for these equations can 
be written as 

de = O. (4.10) 

When this expressed in component form one has 

.1p + Df-l = p(y + r) - f-l(c + i) + 1T;' - 77, (4.11a) 

8p - D7 = Pta + /3 - ;.) - 71P + c - i) 

- Kf-l + a1T, (4.11b) 

8p + D1T = pta + jJ - 1T) + 1T1p + i-c) 

-Kf-l- a7, (4.11c) 

8f-l + .17 = f-l(7 - a - /3) - 7(P - Y + r) 
(4.11d) 
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.11T - 8f-l = f-l(a + jJ - 7) - 1Trji - r + y) 

- vp +,.1,7, 

81T + 87 = 1T(a - /3) + 7(a - jJ) + p/i - pf-l. 

(4.11e) 

(4.11t) 

In view ofEq. (4.1) the electrovac field equations (3.15) have 
the form 

C/> =BB. (4.12) 

Moreover, the Bianchi identities may be expressed as 

K(31/1- 2c/» = a(31/1 + 2c/» = 0, 

v(31/1- 2c/» = ,.1,(31/1 + 2c/» = 0, 

DI/I = p(31/1 + 2c/», .11/1 = - f-l(31/1 + 2c/», 

81/1=7(31/1-2c/», 81/1= -1T(31/1-2c/», 

DC/> = 21p + piC/>, .1 C/> = - 2(P + /i)C/>, 

8C/> = 2(7 - ;')C/>. 

(4.13a) 

(4.13b) 

(4.14) 

(4.15) 

We now invoke the hypothesis H j which, in view of the 
choices already made, becomes 

91/12=f4C/> 2. 

It follows immediately from Eq. (4.13) that 

K=a= v=A =0. 

(4.16) 

(4.17) 

This means that both the null congruences associated to the 
type D Weyl tensor are geodesic and shear free. Thus the 
generalized Goldberg-Sachs theorem44 holds for the solu
tions in the class stl. This result suggests that null congru
ences corresponding to I and n might be considered as indis
tinguishable. However, to establish this rigorously requires a 
chain of reasoning which fails in exceptional cases. 

The next step is to derive the integrability conditions for 
Bianchi's identities. This is achieved by evaluation the NP 
commutators for the quantity 1[/, which yields the following 
equations on account of Eq. (4.17): 

Ip/i - Pf-l + 1T;' - 77)C/> II = 0, 

8p + D7 = Pta + /3 + 27 + ;.) - P7 + 7(c - i), 

(4.1Sa) 

(4.1Sb) 

8p - D1T = pta + jJ - 41T - 27) + 2P1T + 1T(c - i), (4.1Sc) 

.17 - 8f-l = f-l(a + /3 - 47 - 2;') + 2/i7 + 7(Y - r), (4.1Sd) 

8f-l + .11T = - f-l(a + jJ + 21T + 7) + /i1T + 1T(r - y). (4.1Se) 

Since C/> =f0 it follows from Eq. (4.1Sa) that 

p/i - Pf-l + 1T;' - 77 = 0, 

from which we obtain the key equations45 

pf-l = Pf-l, 

77 = 1T1T . 

(4.19) 

(4.20) 

It should be noted at this point that the conditions (4.17), 
(4.19), and (4.20) are invariant under the tetrad transforma
tion (4.2). 

By combining the Eqs. (4.11) with Eq. (4.1S) we obtain 
the following equations independent of the NP field 
equations: 

.1p + Df-l = p(y + r) - f-l(c + i), 
8p = pta + jJ - 21T - 7) + P1T, 
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D1T = 1T(~ - E + 2p - p) + pi, 

.17 = 7(Y - Y - 2f-l + 11) - f-l;', 

Of-l = - f-l(a + 13 - 27 - ;.) - 117. 

(4.21c) 

(4.21d) 

(4.21e) 

Finally the NP curvature equations [Eqs. (4.2a)-(4.2r) 
in their paper] for the class ':D are 

Dp =p2 + (E + ~)p, 
D7 =p(7 + tT) + 7(E - ~), 

Da - 8E = alp + ~ - 2E) - /JE + 1T(E + p), 

Df3 - DE = 13 iP - ~) - E(a - ;.), 

Dy -.1E = a(7 + tT) + 13 (i + 1T) - Y(E + ~) 
- E(Y + y) + 71T + 1/1 - A + <P, 

81T = - 1T2 + 1T(j3 - a), 

Df-l - Em = Pf-l + 1TtT - f-l(E +~) - 1T(a - (3) 

+ 1/1 + 2A, 

.11T = - f-l(i + 1T) + 1T(Y - y), 

op = Pta + 13 ) + 71p - p), 
oa - 813 = pf-l + aa + f3/J - 2af3 + yip - p) 

+ EV-t - 11) - 1/1 + A + <P, 

8f-l = 1Tiji - f-l) - f-l(a + /J), 

.1f-l = - f-l2 - f-l(Y + y), 

oy - .113 = y( 7 - a - 13 ) + 13 (y - y + f-l) 
-f-l7, 

07 = 7(7 + 13 - a), 

.1p - 87 = - PI1 - 7i + 7(j3 - a) 

+ p(y + y) - IjI' - 2A, 

.1a - 8y = a(y - 11) + y(j3 - i). 

(4.22a) 

(4.22b) 

(4.22c) 

(4.22d) 

(4.22e) 

(4.22f) 

(4.22g) 

(4.22h) 

(4.22i) 

(4.22j) 

(4.22k) 

(4.221) 

(4.22m) 

(4.22n) 

(4.220) 

(4.22p) 

Equations (4.17), (4.19), (4.20), (4.21), and (4.22) are the basic 
equations required to prove Theorems 1 and 2. 

5. PROOF OF THEOREM 1 FOR NON-NULL ORBITS 

In order to prove the part of Theorem 1 concerning the 
non-null orbits it is sufficient to prove the following. 

Theorem 3: In every solution belonging to ~ for which 
Pf-l #0 or P = f-l = 0, there exists a local null tetrad in which 
the only non vanishing NP curvature components are 1/12' 
<P", and A and in which the NP spin coefficients satisfy the 
relations 

K = V = cr = A = 0, 

f-l = - ep, 1T = - e7, 

y = - eE, 13 = - ea, 

A 2(a - ea) + e7 - i = 0, 

iE -2(E - ~) - p + p = 0, 

.~'p =!iJ7 = /:/JE = yia = 0, 

.:fp = ::1"7 = o1"E = .Y'a = 0, 

where 
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(5.1 ) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

and .C0 and Yare differential operators defined by 

.~/ = D - e.1, 

Y = 0 - e8. 
(5.8) 

(5.9) 

In the terminology of DMT the above theorem implies 
that the solutions in 'J) admit a Riemannian Maxwellian in
vertible structure. Hence by the main theorem of DMT they 
possess locally an invertible two-parameter abelian isometry 
group and a system of coordinates in which the metric and 
self-dual Maxwell field have the form (2.6). The fact that B is 
independent of u and v follows from Eqs. (4.9) and (5.2) and 
the DMT Eqs. (9.33) and (9.34). Thus once Theorem 3 is 
proven, the relevant part of Theorem 1 is established. Be
cause of the symmetrical relations (5.1) and (5.2) between the 
spin coefficients p, 7,K, and cr associated to the tetrad vector I 
and f-l,1T,V, and A associated to n we say (using another con
cept from DMT) that the solutions in ':D which satisfy the 
conditions of Theorem 3 possess a symmetric null tetrad 
which for the metric (2.6) is given by DMT Eqs. (2.14) . 

In order to prove Theorem 3 we first remark that if we 
choose the tetrad such that Eq. (4.1) holds we have 1/12' <P", 
and A as the only nonzero curvature components with Eq. 
(4.17) holding. Thus it remains to show that a null tetrad can 
be chosen in the family (4.2) such that Eqs. (5.2)-(5.6) are 
satisfied. To establish this several cases have to be 
considered. 

Case I:pf-l7#0. On account of Eqs. (4.19) and (4.20) we 
may use the remaining tetrad freedom of Eq. (4.2) to set 

f-l = -ep, 

1T = - e7, 

where e2 = 1. The tetrad is now fixed up to the 
transformation 

I' = I, n' = n, m' = - m. 

(5.10) 

(5.11 ) 

(5.12) 

We now show that the remaining equations of(5.2) and Eqs. 
(5.3) and (5.4) are satisfied as a consequence of Eqs. (5.10), 
(5.11), and the basic equations. From Eqs. (4.22f), (4.221), and 
(4.220) one gets 

p2 _ e(y + y)p _7
2 + eta -/J)7 

=pp + e(j3 - a)7 - e7i + e(y + y)p 

- e(1/I + 2A ). (5.13) 

On the other hand, Eqs. (4.22b), (4.22g), and (4.22n) yield 

7 2 + (j3 _ a)7 - p2 - p(E +~) 

= - pp + e7i + (E + ~)p + (a - (3)7 + e(1/I + 2A ). 
(5.14) 

The sum of these equations gives 

p[e(y + y) + E + ~] + 7[£1 - 13 + e(j3 - a)] = 0. (5.15) 

In addition Eqs. (4.21a) and (4.22a), and (4.221) imply that 

p[y + Y + e(E + ~)] = 0. (5.16) 

Thus we have 

y + y + e(E + ~) = 0, 

and from (5.15) 

7[£1 - 13 + e(j3 - a)] = 0, 
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which implies 

a - (J + e(f3 - a) = 0. (S.19) 

Furthermore, from Eqs. (4.21b) and (4.22k) one obtains 

p[2(a + il) + e1' - r] = 0, (S.20) 

or 

2(a + il) + e7 - r = 0. (S.21) 

If one now adds the complex conjugate of this equation to 
the original equation multiplied bye, one obtains 

a + (J + era + il) = 0. (S.22) 

This equation combined with Eq. (S.19) implies 

(J = - ea. (S.23) 

When the last equation is used to replace (J in Eq. (S.21) one 
obtains Eq. (S.3). 

We proceed by equating the right-hand sides of Eqs. 
(4.21d) and (4.22h), which yields 

1'[e(p - p) + 2(y - r)) = 0, (5.24) 

or 

e(p - p) + 2(y - r) = 0. 

On the other hand Eqs. (4.21c) and (4.22b) give 

1'fp - P + 2(E - E)) = 0, 

or 

p - p - 2(E - E) = 0, 

(5.2S) 

(S.26) 

(5.27) 

which is none other than Eq. (5.4). This equation and Eq. 

(5.25) imply that 

y - r + e(E - E) = 0, (5.28) 

which when added to Eq. (5.17) yields 

y = - eE. (5.29) 

Finally it follows from DMT Eqs. (7.26), (7.27), (8.19), and 
(8.24) that Eqs. (5.5) and (5.6) hold, which completes the 
proof of Theorem 3 in this case. 

Case I1a: Pf1 =1= 0, 7 = 0. Here we have 

1T = ° (5.30) 

by Eq. (4.20). In view of Eq. (4.19) we may choose the func
tion a in the transformation (4.2) such that (on dropping 
primes) 

f1 = - ep, (5.31) 

where again e~ = 1. 
The remaining liberty in the tetrad is given by the 

transformation 

I' = I, n' = n, m' = eibm. (5.32) 

By Eqs. (5.16) and (S.20), which still hold in this case, we 
have 

y + r + e{E + E) = 0, 

a +(J= 0. 

(5.33) 

(5.34) 

It follows from these equations, and Eqs. (4.21b), (4.21e), 
(4.22a), and (4.22k) that 

Dp = bp = 0, (5.35) 

{;/p=O. (5.36) 
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On account ofEqs. (4.S) and (5.33) we may use the tetrad 
transformation (S.32) to set 

y= - eE. (5.37) 

We note that this condition is preserved by transformations 
(5.32) satisfying 

(D + eLl )b = 0. (S.38) 

Next we perform a tetrad rotation (5.32) such that (S.38) 
holds and such that Eq. (5.4) is also valid, that is 

iE '=2(E' - E') - p' + p' = 0. (5.39) 

In view of Eqs. (4.3) and (4.S) the additional equation to be 
satisfied by b is 

Db = iWp - p) + E - E], (S.40) 

and since (5.38) must also hold we also have 

Llb = ieH(P - p) + E - E]. (5.41) 

The integrability condition for these equations, 

[Ll,D] = -e(E+E)9, (5.42) 

is satisfied on account of Eqs. (4.221), (4.220), and (5.36). We 
now drop the primes on the transformed quantities, noting 
that Eqs. (5.37) and (5.39) are preserved by transformations 
(S.32) satisfying 

Db = Llb = 0. (5.43) 

We now show that it is possible to make a further transfor
mation (4.2) satisfying Eq. (5.43) such that 

{3' = -ea' (5.44) 

which, on account of Eq. (5.34), is equivalent to 
-, , 
a =ea. (5.45) 

In view ofEq. (4.6) the additional equation to be satisfied by b 
is 

eih(a - ~i Db) = ee- ib(a + ~i bb). (5.46) 

It remains to verify that Eqs. (5.43) and (5.46) possess a com
mon solution. To show this we define the differential 
operators 

F1(xi,b,pJ = Db = 1 Pi> 
Fz(x"b,pi) = Llb = npi' 

(5.47) 

(5.48) 

FJ(x"b,Pi) = eib(a - !impi) - ee ib(a + ii mpi),(5.49) 

where 

(5.50) 

In order that the system of nonlinear partial differential 
equations 

(5.51) 

admit a common solution it is necessary and sufficient4
1> (as

suming suitable differentiability conditions) that the Poisson 
brackets 

aFT/ dF, aF, dFT/ 
(FT/,F')=-a -d i--a -d i' 

'Pi X 'Pi X 

(5.52) 

where 

dF, JF, aF, Jb l 
-=-.+--
dx' ax' ab axi 

(5.53) 
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vanish for 1],L = 1,2,3 as a consequence of Eqs. (5.51). First 
we have 

(F1,F2) = [D,.d ]b = 0 (5.54) 

by Eqs. (5.42) and (5.43). We then calculate 

(FI,F1 ) = eib(Da + ~i[8,D]b) - ee - ib(Da - ~i[8,D ]b) 

+ i[eih(a -1i8b) + ee - ib(a + V8b )]Db, (5.55) 

(F2,F1) = e'b(.da + ~i[8,.d ]b) - ee - ib(.da - ~i[8,.d ]b) 

+ i[eib(a - ~i8b) + ee-- ib(a + ~i8b )].db. (5.56) 

On account ofEq. (5.51) for 1] = 1 and the commutator 

[8,D] = - ~(p + p)8, (5.57) 

Eq. (5.55) becomes 

(F1,F1) = e'b [Da - F(P + p)8b] 

-ee -- ib [Da + ~i(P + p)8b ]. (5.58) 
In order to reduce this equation further we need an expres
sion for Da. Now Eqs. (4.22c), and (4.22d) yield, respectively, 

Da - 8E = ~(P + pia, (5.59) 

Da + 8E = ~(P + pia, (5.60) 

which imply that 

8(E + £) = O. (5.61) 

On the other hand, by applying 8 to both sides of Eq. (5.4) 
and noting Eq. (5.35), we obtain 

8 (E - £) = O. (5.62) 

It thus follows that 

and 

Da = ~(P + pia. 

In view of this equation, Eq. (5.58) becomes 

(F1,FJ ) = ~(P + p)F3(x',b,Pi) = 0, 

(5.63) 

(5.64) 

(5.65) 

on account ofEq. (5.51) for 1] = 3. In an entirely similar 
manner, using Eqs. (4.22m,p) and the commutator 

[8,.d ] = - (e!2)(p + p)8, (5.66) 

it can be shown that 

(F2,F1 ) = (e/2)(p + p)F)(xi,b,Pi) = o. (5.67) 

Thus we conclude that the system (5.51) has a solution, 
which implies that there exists a tetrad such that Eqs. (5.1), 
(5.2), and (5.4) are satisfied. We note that Eq. (5.3) is also 
satisfied on account of(5.45). We further note that, in view of 
DMT Eqs. (7.26), (7.27), and (8.19), Eqs. (5.5) and (5.6) are 
satisfied except that we do not have 

fa=O. (5.68) 

The remainder of the proof in this case consists in showing 
that one can make a final tetrad rotation which preserves all 
the conditions already obtained and such that Eq. (5.68) also 
holds. In order to preserve conditions (5.2) and (5.4) it is 
necessary that the function bin Eq. (5.32) satisfy Eqs. (5.43) 
and the equation 

eih(ea - (i!2)8b) - ee- ih(a + (i/2)8b) = O. (5.69) 

The transformation law forY'a with b a solution of these 
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equations is 

,!/"a' = !fa + i[~(88b + 88b) - a(8b + e8b)]. (5.70) 

On account ofEq. (5.32) and the commutator 

[8,8] = e(p - p)§ + 2aY, 

Eq. (5.70) reduces to 

5!,"a' = ,Y'a + i(88b - 2ea8b). 

(5.71) 

(5.72) 

Thus in order to set X'a' = 0 the function b must satisfy the 
second order P. D. E. 

88b - 2ea8b = i.Y'a, (5.73) 

in addition to the first-order Equations (5.43) and (5.69). To 
show that this system ofP. D. E.'s possesses a solution we 
apply in turn the operators D and.d to both sides of Eq. 
(5.73). In the first case we have 

D88b - 2eDa8b - 2eaD8b = iDXa. (5.74) 

On account of the Eq. (5.64) and the commutators (5.57) and 

[D,.Y] = ~(P + plY', (5.75) 

Eq. (5.74) becomes 

(P + p)(88b - 2ea8b ) = i(P + p),Ya, (5.76) 

which is identically satisfied in view ofEq. (5.73). Similarly 
by, applying.d to Eq. (5.73) we obtain 

.d88b - 2e.da8b - 2ea.d8b = i.dy'a. (5.77) 

By means of Eqs. (4.22p), (5.63) and the commutators (5.66) 
and 

[.d,.Y'] = (e/2)(p + p).Y, 

Eq. (5.77) takes the form 

e(p + p)(88b - 2ea8b ) = ie(p + p),Ya, 

(5.78) 

(5.79) 

which is the same as Eq. (5.76). In view of these results we 
may conclude that our system ofP. D. E.'s for b is compatible 
and hence possesses a solution. Thus we have found a tetrad 
in which Eqs. (5.1)-(5.6) hold, which completes the proof of 
Theorem 3 for this case. 

Case IIb:p =!l = 0, 1'#0. In view ofEq. (4.20) we may 
use the function b in the transformation (4.2) to set 

1T = r. (5.80) 
Alternatively we could have set 1T = - r. However, there is 
no essential difference between these possibilities. Condition 
(5.80) is preserved by the transformation 

!'=eal, n'=e -an, m'=e1m, (5.81) 

where a is an arbitrary function ande~ = 1. Equations (5.18), 
(5.24), and (5.26), which still hold in this case with e = - 1, 
imply 

fJ +i3 = a + a, 
r=r, 
E=E. 

(5.82) 

(5.83) 

(5.84) 

It follows from Eqs. (4.22b), (4.22f), (4.22h), and (4.22n) that 

Dr =.dr = .:£1' = O. (5.85) 

In view of Eqs. (4.6) and (5.82) we may use the transforma
tion (5.81) with e l = 1 to set (dropping primes) 

fJ = a. (5.86) 
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We note that this condition is preserved by transformations 
satisfying 

(8 -8)a = o. (5.87) 

The next step consists in using the tranformation (5.81) to set 

A / -2(a' + a/) - 7/ - ? = 0, (5.88) 

while preserving Eq. (5.86). By Eqs. (4.3), (4.6), and (5.87) the 
equations to be satisfied by a are 

8a = 8a = !(7 + 7) - a-a. (5.89) 

The integrability condition for these equations, 

[8,8] = (a - a)2', (5.90) 

is satisfied by virtue of Eqs. (4.22g) (4.22j), and (5.85). We 
drop the primes on the transformed quantities and note that 
Eqs. (5.86) and (5.88) are preserved by transformations 
satisfying 

8a = 8a = O. (5.91) 

We proceed by using a transformation which preserves Eqs. 
(5.86) and (5.88) to set 

y/ =E'. (5.92) 

The equation to be satisfied by a in addition to Eq. (5.91) is 

e - Q(y + ¥1a) = ea(E + !Da). (5.93) 

It must now be verified that these equations possess a com
mon solution. To this end we introduce the partial differen
tial operators (as in Case II a) 

G1(xi,a,pi) = 8a = mjJ;. (5.94) 

Gz(xi,a,Pi) = 8a = mPi' (5.95) 

G,(xi,a,pi) = e - a(y + !nPi) - ea(E + V jJi)' (5.96) 

To establish that the system of nonlinear P. D. Eo's 

G,,(xi,a,pi) = 0 (1J = 1,2,3), (5.97) 

has a solution we must show that the Poisson brackets 
(G",G,) for 1J,l = 1,2,3 vanish as a consequence of Eqs. 
(5.97). To begin we note that by Eqs. (5.90) and (5.91) 

(G1,GZ) = [8,8]a = (a - a).2"a = O. (5.98) 

Next we calculate 

(G1,G,) = e - a(8y + H8,.1 ]a) - ea(8E + H8,D ]a) 

- [e -Q(y + ~.1a) + ea(E + ~Da ]8a, (5.99) 

and note that 

(Gz,G,) = (G1,G,). 

On account ofEq. (5.91) and the commutators 

[8,D] = ~(7 - 7)D, 

[0,.1 ] = ~(7 - 7).1, 

Eq. (5.99) reduces to 

(5.100) 

(5.101) 

(5.102) 

(G"GJ ) = e U[8y + ~(7 -7).1a] - ea[8E + ~(7 -7)Da]. 
(5.103) 

It now remains to evaluate8y and 8E. To achieve this we note 
that Eqs. (4.22c), and (4.22d) have the form 
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(5.104) 

(5.105) 

from which it follows on account ofEq. (5.84) that 

D(a - a) = O. (5.106) 

On the other hand, by applying D to both sides of Eq. (5.3) 
and noting Eq. (5.85) we obtain 

D(a + a) = O. (5.107) 

It follows from these equations that 

Da=O, 

8E = ~E(7 - 7). 
In a similar manner it may be shown that 

.1a = 0, 

8y = !y(7 - 7). 

(5.108) 

(5.109) 

(5.110) 

(5.111 ) 

On account of Eqs. (5.109) and (5.111), Eq. (5.103) reads 

(G"G3 ) = !(7 - 7)G3(xi,a,pi)' (5.112) 

Thus (G"G3) = 0 by virtue ofEq. (5.97) for 1J = 3. From Eq. 
(5.100) we conclude that (G2,G3 ) also vanishes. Thus we are 
able to conclude that the system (5.97) has a solution and 
hence that there exists a null tetrad such that Eqs. (5.1), (5.2), 
and (5.3) hold. We note that Eq. (5.4) is also satisfied by virtue 
ofEq. (5.84). Furthermore, Eqs. (5.5) and (5.6) hold on ac
count ofDMT Eqs. (7.26), (7.27), and (8.24) except for the 
equation 

.9JE = O. (5.113) 

It remains to be shown that a tetrad transformation can be 
made which preserves all the conditions previously imposed 
and such that Eq. (5.113) is satisfied. We note that conditions 
(5.3), (5.86), and (5.92) (without the primes) are preserved by 
transformations (5.81) satisfying Eqs. (5.91) and the equation 

e - atE + !.1a) - ea(E + !Da) = O. (5.114) 

The transformation law for the quantity ,q; E under transfor
mations satisfying Eqs. (5.91) and (5.114) is 

.9J'E' =!iJE + !(D.1a + .1Da) - E(D - .1 )a, (5.115) 

which, on account of the commutator, 

[.1,D] = 2dj) - (7 + 7).2" 

may be rewritten as 

9J 'E' = Yh + D.1a + 2E.1a. 

(5.116) 

(5.117) 

Thus in order for g; / E' = 0 to hold the function a must satis
fy the second order P. D. E. 

D.1a + 2E.1a = - g; E (5.118) 

in addition to Eqs. (5.91) and (5.114). These equations are 
compatible and hence admit a common solution since the 
application of the operator 8 (or 8) to both sides ofEq. (5.118) 
yields no new equation to be satisfied by a. In fact, we have 

8D.1a + 28E.1a + 2EMa = - O.UJ E, (5.119) 

which may be written as 

(7 - 7)(D.1a + 2E.1a) = - (7 - 7)9E, (5.120) 

on account of the commutators (5.101) and (5.102) and Eq. 
(5.109). We see that Eq. (5.120) is identically satisfied on ac
count ofEq. (5.118). The prooffor this case is now complete 
since the above argument shows that there exists a null tet-
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rad for which Eqs. (5.1)-(5.6) are satisfied. 

Case III: p = I" = 7 = O. We first note that as a conse
quence of Eq. (4.20) 

1T= O. (5.121) 

These conditions are preserved by the complete group of 
transformations (4.2). We begin the construction of the tet
rad of Theorem 3 by performing a tetrad transformation 
such that 

a' = -P', 
€' = i', 
y'=r'. 

(5.122) 

(5.123) 

(5.124) 

In view of Eqs. (4.5) and (4.6) the differential equations to be 
satisfied by a and bare 

f>a = - (a + /3 ), 
Db = i(€- E), 
.J.b = i(y - r). 

(5.125) 

(5.126) 

(5.127) 

In order to verify the integrability conditions for the above 
equations one needs the commutators 

[8;f>] = (a - P)f> + f/3 - a)8; 

[.J.,D] = (y + r)D + (€ + E).J.. 

(5.128) 

(5.129) 

It follows from Eqs. (4.22g), and (4.22j) that the commuta
tion relations for Eq. (5.125) are satisfied while the same con
clusion holds for Eqs. (5.126) and (5.127) on account of Eqs. 
(4.22e), and (4.22g). We now suppress the primes on the 
transformed quantities and note that conditions (5.122), 
(5.123), and (5.124) are preserved by transformations (4.2) 
satisfying 

f>a = 0, (5.130) 

Db =.J.b = O. (5.131) 

We next use such transformations to set 

y'=€', 

/3' = a'. 

(5.132) 

(5.133) 

The additional equations to be satisfied by a and bare 

e - a(y + !L1a) = ea(€ + ~Da), 
e'b(a - ~if>b) = - e -'bra + ~i3b), 

(5.134) 

(5.135) 

which are identicalto Eqs. (5.93)and (5.46) (withe = - l)of 
Case lIb and IIa. The verification that the systems of equa
tions (5.130) and (5.134), and (5.131) and (5.135) each admit a 
solution is almost the same as that given for the identical 
systems in the two cases just mentioned. In fact, it is easier in 
the present case since Eqs. (4.22c), (4.22d), (4.22m), and 
(4.22p) imply that 

Da =.J.a = 0, 

8€=0, 

8y=0. 

(5.136) 

(5.137) 

(5.138) 

Again dropping the primes we note that Eqs. (5.122), (5.123), 
(5.124), (5.132), and (5.135) are preserved by transformations 
satisfying Eqs. (5.130), (5.131), and the equations 

e - a(€ + !L1a) = ea(€ + ~Da), (5.139) 
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e'b ( _ a - !i8b ) = - e - 'b (a + !i3b ). (5.140) 

We also remark that Eqs. (5.3) and (5.4) hold in view of Eqs. 
(5.122), (5.123), (5.124), (5.132), and (5.133). Furthermore, 
Eqs. (5.5) and (5.6) are satisfied on account of the DMT Eqs. 
(7.26) and (7.27) except for the equations 

!iJ€ = 0, 

!fa = O. 

(5.141) 

(5.142) 

The last step in the proof consists in showing that there exists 
a transformation (4.2) which preserves all the conditions just 
imposed and such that Eqs. (5.14) and (5.142) are satisfied. 
The demonstration that such a transformation does exist 
will be omitted since it is identical to the proof of the same 
result in Cases IIa and lIb. 

This completes the proof of Theorem 3. However, it is 
worth pointing out at this juncture where some of the known 
solutions fit into the classification scheme just given. We first 
mention that Case I contains the most general solutions ad
mitting only two Killing vectors and hence contains the 
charged versions of the Kerr solution and the C-NUT solu
tion. The solutions in Case II possess four Killing vectors 
and include for example the Reissner-Nordstrom solution. 
The solution in Case III is the Robinson-Bertotti solution, 
which admits a six-parameter isometry group. 

6. PROOF OF THEOREM 1 FOR NULL ORBITS 

We now conclude the proof of Theorem 1 by consider
ing the cases excluded in Theorem 3, namely, the cases when 
p =/= 0 and I" = 0 or vice versa. These cases represent, in fact, 
the same situation since we can pass from one to the other by 
interchanging the tetrad vectors I and n. The method of 
proof will consist in giving an explicit construction of the 
metric and Maxwell field of Eq. (2.7) and showing that they 
have the properties stated in the theorem. 

We first remark that the case 

p=/=O, 1"=7=0 

is impossible. Indeed Eq. (4.20) implies 

1T= 0, 

so that Eq. (4.22g) becomes 

.p = - 2A = const. 

Equation (4.14) thus implies 

p( 3.p + 2A ) = 0, 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

which is impossible since neither p nor 3.p + 2A may vanish 
[the latter inequality arising from (4.16)]. 

In view of the above result we shall assume in the sequel 

(6.5) 

and 

(6.6) 

As in Cases I and IIa of Sec. 5 we may, on account of Eq. 
(4.20), use the transformation (4.2) to set 

1T= 7. (6.7) 

This condition is preserved by the transformation 

I'=eal, n'=e-an, m'=m. (6.8) 
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It follows from Eqs. (4.2Id) and (4.22h) that 

r=r, (6.9) 

and from Eqs. (4.2Ic) and (4.22b) that 

E - i =!Ip - pl. (6.10) 

In addition Eqs. (4.21a) and (4.22f,g,n,0) imply 

a+a=/3 +IJ. (6.11) 

On account ofEq. (6.9) we may use the transformation (6.8) 
to set (dropping the primes) 

r = O. (6.12) 

This condition is preserved by transformations satisfying 

..1a = O. (6.13) 

The next step is to use the transformation (6.8) to set 

2(a' +IJ') = 1" + 'i' (6.14) 

while preserving Eq. (6.12). To achieve this the function a 
must satisfy in addition to Eq. (6.13) the equations 

8a = Kr+ i) -a -/3, 8a = !(1'+ i) -a -,8. (6.15) 

It remains to verify that this system of equations admits a 
solution by showing that the commutation relations 

[o,..1]a = (1' - a -,8)..1a, (6.16) 

[g;8]a = Iii -p)..1a + f/3 - a)Ba + (a -iJ)oa, (6.17) 

are satisfied. The right-hand side of the first of these relations 
is zero by virtue ofEq. (6.13) while the left-hand side vanish
eson accountofEqs. (4.2Id), (4.22m), and (4.22p), and (6.12). 
It follows from Eqs. (4.22g), (4.22j), (6.13), and (6.15) that the 
second relation is also satisfied. We now suppress the primes 
on the transformed quantities and note that Eqs. (6.12) and 
(6.14) are preserved by transformations (6.8) satisfying Eq. 
(6.13) and 

8a=0. (6.18) 

We also note that Eqs. (6.11) and (6.14) imply 

a =/3. (6.19) 

Thus Eq. (6.14) can be rewritten as 
a + a = !(1' + i). (6.20) 

Consequently, the commutator (6.16) reads 

[0,..1] = !(1' - i)..1, (6.21) 

from which it follows that 

[2",..1 ] = 0, (6.22) 

where we recall 

2" = 8 + 8. (6.23) 

Further consequences of Eqs. (4.21) and (4.22) are 

..1p = 2" p = 0, (6.24) 

Li1' = 2"1' = 0, (6.25) 

Lia = 0, (6.26) 

from which it follows by Eqs. (6.10) and (6.20) that one also 
has 

2"(a + a) = 0, 

..1 (E - €) = 2"(E - i) = 0. 
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(6.27) 

(6.28) 

Moreover, by applying the operator 2" to both sides of Eq. 
(4.22n) one obtains, on account of the commutator (6.17) and 
Eqs. (6.25), 

2"(a - a) = o. (6.29) 

When this equation is combined with Eq. (6.27) one has 

2"a=Q ~~ 

Similarly, by applying in turn the operators..1 and 2" to both 
sides ofEq. (4.22a) one obtains with the help ofEq. (6.24) and 
the commutators 

[..1,D] = (E + i~ - (1' + i)2", 

[2",D] = -!Ip+p)2" 

the equations 

(6.31) 

(6.32) 

..1 (E + i) = 2"(E + i) = O. (6.33) 

It follows from these equations and Eq. (6.28) that 

..1E = 2" E = O. (6.34) 

The commutation relation (6.22) implies that there exist 
coordinates such that 

(6.35) 

It then follows from Eqs. (6.24), (6.25), (6.26), (6.30), and 
(6.34) that the spin coefficients of the problem are indepen
dent of the variables u and V. The rest of the proof consists in 
showing the stronger result, namely, that there exists a sys
tem of coordinated in which the components of the metric are 
independent of two coordinates and such that the other con
ditions in Theorem 1 are satisfied. The proofis similar to that 
given in Sec. 9 of DMT in the case of a space-time admitting 
a general RMIS. We start by writing Cartan's structure 
equations for the present case, which are 

dOl =!(i_1')(03_04)/\OI, 

d0 2 = ~(1' - i)(04 - 0 3)/\0 2 + tii _p)03 /\0 4 

+ (E + i)O 1 /\0 2, 

dO 3 = _!(P + p)O I /\ 0 3 - (1' + i)o I /\ 0 2 

+ (a - a)03 /\0 4
, 

d0 4 = -!(P +;;)0 1/\0 4 - (1' + i)o I /\0 2 

+ (a - a)O 3 /\ 0 4
• 

It follows that 

dO I /\0 1= 0, 

d(03 - 0 4 )/\(0 3 
- 0 4

) = 0, 

dO 2 /\ 0 2
/\ (0 3 + 0 4

) = 0, 

d (0 3 + 0 4
) /\ 0 2

/\ (0 3 + 0 4
) = 0, 

(6.36a) 

(6.36b) 

(6.36c) 

(6.36d) 

(6.37a) 

(6.37b) 

(6.37c) 

(6.37d) 

which on account of Frobenius's theorem implies the exis
tence of a local coordinate system (u,v,w,x) such that 

0 1 =Rdw, 

0 2 = Ldu + Mdv, 

0 3 + 0 4 = v2(Ndu + Pdv), 

0 3 
- 0 4 = iv2 Tdx, 

(6.38a) 

(6.38b) 

(6.38c) 

(6.38d) 

whereL,M,N,P,R, and Tare real valued functions of the four 
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coordinates. If one replaces the differential forms in Eqs. 
(6.36) by their values given by Eqs. (6.38) and equates corre
sponding coefficients of the differentials, the following equa
tions are obtained: 

R" = R" = 0, 

T" = T" =0, 

LM", -MLw =0, 

PNx -NPx =0, 

(6.39a) 

(6.39b) 

(6.39c) 

(6.39d) 

(6.3ge) 

(6.39fj 

P +p = - 2(RT)-'Tw = 2(RZ)-'(MN", - LPw ), 

(6.39g) 

p-p=i(TZ)-'(LMx -MLx), (6.39h) 

(6.39i) 

r -7 = ivL(RT)-IRx = iv'2(TZ)-'(PLx - NMx), 

(6.39j) 

a-a=i(vLTZ)-'(MN, -LPx ), 

E + € = (RZ)-'(PL w -NMw), 

where 

(6.36k) 

(6.391) 

Z=LP-MN. (6.39m) 

On account ofEqs. (6.39a), and (6.39b) the functions Rand T 
are independent of the coordinates u and v. In order to deter
mine the u,v dependence of the remaining functions we need 
the following expressions for the partial derivatives in terms 
of the NP operators and vice-versa: 

f" = L1f + (N /v2)(tS + tlf, 
/" = M.:1/ + (P /v2)(tS + tv. 

/", = RDF, 

fx = ii/v2)E (tS - tv. 

D/= R -1/,,,, 

(tS -tlf= - (iV'I/Tlfx' 

.:1/=Z-I(P/" -N/,,), 

(tS +tlf=V2Z- '(L/" -M/"). 

(6.40a) 

(6.40b) 

(6.40c) 

(6.40d) 

(6.41a) 

(6.41b) 

(6.42a) 

(6.42b) 

The partial derivatives L".,Lx,Nu" and Nx may be obtained 
by solving Eqs. (6.39). One obtains 

L", = R (E + ilL, 

Lx = (i/v'2)T(r -7)L + iTfP - p)N, 

Nil' = -VIR (r + 7)L - ;R (p + p)N, 

Nx = ivLT(a - a)N. 

(6.43a) 

(6.43b) 

(6.43c) 

(6.43d) 

The equations for the corresponding derivatives of M and P 
may be obtained by replacing L by M and Nby P in the above 
equations. We observe that Egs. (6.43) are a linear system of 
A. Mayer in the unknowns Land N whose coefficients/unc
tions are independent o/the coordinates u and v. [The last 
remark follows from Eqs. (6.24), (6.25), (6.30), (6.34), (6.39a), 
(6.39b), (6.42c), and (6.42d).) In order to verify that the sys
tem is completely integrable we rewrite it in terms of the 
differential operators D and 
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(6.44) 

obtaining by means of Eqs. (6.42) the equivalent system 

DL = (E + e\ (6.45a) 

DN = - V!(r + 7) - !(p + p)N, (6.45b) 

.f+ L = (7 - r)L + \!LIP - p)N, (6.45c) 

j'+N = 2(a - a)N. (6.45d) 

The required commutator is 

(6.46) 

which we first apply to the function L. In view of Eqs. (6.45) 
the left-hand side is given by 

(r - 7)DL - ~fp + p)Y + L = (r - 7)k + € + ~(p + p))L 

+ (l/v2)(P + p)(P - pIN. (6.47) 

On the other hand, the right-hand side can be written as 

[.Y +,D]L = [,Y+(E + €) + D (r -;) + 2IP - p)(r + 7)]L 

+ \!L[D (p - p) + fP - p)(E + € + !(P + p)))N, (6.48) 

which by virtue of Eqs. (4.22a)-(4.22d) and (6.34) is identical 
to the right-hand side of Eq. (6.46). In a similar fashion by 
means of Egs. (4.21b), (4.22c), (4.22d), (4.22i), (4.22n), (6.24), 
and (6.25) one may verify that the commutator (6.46) is satis
fied when applied to the function N. It follows from this 
discussion that the system (6.43) is completely integrable and 
hence possesses a unique solution that assumes a given value 
at a given point. Since the equations are linear there exist two 
linearly independent solutions 

(6.49) 

where the functions L
" 

L 2 , N
" 

and N2 are independent of the 
coordinates u and v, such that every solution of the system 
(6.43) can be expressed as a linear combination of the vectors 
XI and X 2 with coefficients independent of the coordinates w 
and x. Thus we have 

. /. = E(u,v)X, + F(u,v)X2, 

;7' = G (u,v)X I + H (u,v)X2, 

where 

.J = (~). 
'f' = (M\ .. P J' 

(6.50a) 

(6.50b) 

(6.50c) 

(6.50d) 

In terms of the above notation Eqs. (6.3ge), and (6.39fj have 
the form 

. I',. = ;7' u' 

which on account of Eqs. (6.50) implies 

E" =Gu , 

F,. =H". 

(6.51) 

(6.52a) 

(6.52b) 

Thus there exist potential functions I and J such that 

E=I", 

G=I", 

F=J", 

H=J". 
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It follows from Eqs. (6.49), (6.50), and (6.53) that 

L = fuLl + JuLl> 

N = fuN. + JuNz' 

M = f"L. + J"L 2, 

P = fuN. + JuNz, 

and hence by Eqs. (6.38b) and (6.38c) that 

() 2 = L.du' + L 2du', 

() -' + () 4 = VL(N1du' + N 2du'), 

where 

du' = fudu + f"du, 

du' = Judu + J"du. 

(6.54a) 

(6.54b) 

(6.54c) 

(6.54d) 

(6.55a) 

(6.55b) 

(6.56a) 

(6.56b) 

By redefining L. = L, L2 = M, N. = N, and N2 = P and 
dropping the primes on u and u we find that the null tetrad 
has the form (6.38), where now the functions L,M,N,P,R, 
and T are independent of the coordinates u and u. Thus by 
Eq. (3.1) the metric in the case of null orbits has the form 
(2.7a), which, as already indicated in Sec. 2, admits two com
muting Killing vectors, 

k.=k;~=~, 
ax' au 

(6.57a) 

k2=k~~=i.. 
ax' au 

(6.57b) 

Since 

(k.,k2)2_(k.,k.J(k2,k2)=g~" -guug"" =0, (6.58) 

the orbits of the abelian isometry group defined by Eq. (6.57) 
are null which implies that the group is not invertible. In 
order to show that the group is orthogonally transitive we 
introduce the Killing forms w· and ui defined by 

• k i d j 
2 k i d j w = • gij x, w = 2gij X. (6.59) 

On account of Eqs. (2.7a) and (6.57) we have explicitly 

w· = RLdw - N 2du - NPdu, 

(r}2 = RMdw - NPdu - P 2du. 

If one defines 

fl = w· 1\ w2 = RZ (Ndu + Pdu) 1\ dw, 

it can be shown that 

(6.60a) 

(6.60b) 

(6.61) 

dw·l\fl = RNZ(PNx - NPxldu I\dul\dwl\dx = ° 
(6.62) 

and 

dw2
1\fl = RPZ (PNx - NPx)du I\dul\dw I\du = 0, 

(6.63) 

on account ofEq. (6.39d). It thus follows from a lemma of 
Kundt and Triimper47 that the group orbits admit orthogo
nal two-surfaces. 

It remains to show that the self-dual Maxwell field has 
the form (2.7b). This foIlows from Eqs. (3.4), (4.1), and (6.38) 
upon noting that the function B satisfies Eqs. (4.9), which in 
this case reduce to 
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DB= 2pB, 

,1B = 0, 
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(6.64a) 

(6.64b) 

8B= 27B, 

8B = - 27B. 

These equations imply that 

LlB =.:fB = 0, 

(6.64c) 

(6.64d) 

(6.65) 

and hence by Eqs. (6.42c), and (6.42d) that B is independent 
of the coordinates u and v. This completes the proof ofTheo
rem 1. 

7. PROOf Of THEOREM 2 

In order to prove this theorem it is convenient to make a 
conformal transformation of the metric 

(7.1) 

where if; is a real function. This follows from the fact that the 
Hamilton-Jacobi equation (2.10) is invariant under such 
transformations, a property which folIows from the trans
formation law for the contravariant metric 

(7.2) 

The transformation (7.1) is induced by the following trans
formation law for the basis one-forms: 

fJ'=ef/,()U, a= 1,2,3,4, (7.3) 

which preserves the symmetry between the null vectors I and 
n. It follows that the transformation laws for the NP opera
tors and spin coefficients are 

i5 = e -f/'D, (7.4a) 

3 =e -. "',1, (7.4b) 

8=e - "'8, (7.4c) 

K = e -f/'K, (7.5a) 

Cr=e --I/'a, (7.Sb) 

p=e I/'(p -Dif;), (7.5c) 

i = e - "'(7 - 8tf;), (7.Sd) 

v=e ", v, (7.Se) 

i = e - I/>l, (7.St) 

Ii = e "'{ft + Lltf;), (7.5g) 

iT = e - "'(17' + 8tf;), (7.5h) 

€=e "'(€'+ !Dtf;), (7.Si) 

y=e -"'(r - ~Ll 0), (7.5j) 

ii = e f/'(a - ~80), (7.Sk) 

!f=e - "'(ji + ~8tf;). (7.51) 

These equations imply that the complex one-form () defined 
by Eq. (4.8) transforms as 

if = 8 + 2dtf;. 

Thus we can choose the function tf; such that 

if +if=o, 
since the integrability condition for such a choice, 

d(8 + if) = 0, 

(7.6) 

(7.7) 

(7.8) 

is satisfied on account of the integrability condition (4.10) for 
Maxwell's equations. The resulting differential equations to 
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be satisfied by tf; are 

Dtf; =!(p +p), 

£1tf; = -!(,u + ill, 
atf; = !(I --tT). 

(7.9a) 

(7.9b) 

(7.9c) 

We now have to consider two separate cases according to 
whether the group orbits are non-null or null. 

Case A: non-null orbits. In this case we have Theorem 3 
holding, which implies by Eq. (S.2) that Eqs. (7.9) have the 
form 

Dtf; = ~(p +p), 

£1tf; = ~e(p + p), 

at/! = 1(1 + er). 

(7.10a) 

(7. lOb) 

(7.lOc) 

It thus follows that 

.CJ:tf; =Yt/! = o. (7.11) 

We shall now show that all the conditions of the DMT theo
rem are invariant under a conformal transformation satisfY
ing Eq. (7.11). This is immediate for conditions on the spin 
coefficients of the type fl = - ep, etc., given in DMT Eq. 
(S.31), in view of the transformation laws (7.S). We also see 
that A = E = 0 if and only if A = E = 0 [DMT Equation 
(6.27)] on account of the transformation laws 

A =e-"'A, 

E=e "'E, 

(7.12a) 

(7.12b) 

which follow from Eqs. (7.S) and DMT Eqs. (6.22) and (6.23). 
The differential conditions DMT Eqs. (7.26) and (7.27) [our 
Eqs. (S.S) and (S.6)] are also preserved. For example, 

.r; j5 = e "'tj) (e I/'(p - Dtf;)) 

= e 21/,( - fJitf;(p - Dtf;) + .'/p - (,/ Dtf;) = 0 (7.13) 

on account of Eqs. (7.4a), (7.4b), (7.Sc), and the commutator 

[.~/ ,D] = (e + i):'/:: + (er - I)Y. (7.14) 

It remains to verify the invariance of the symmetry condi
tions on the curvature components given in DMT Eqs. (7.28) 
and (7.29), which are 

<P22 = <Poo' 

<P12 = <P IO' 

<P20 = <P02 ' 

(7.1Sa) 

(7.1Sb) 

(7.1Sc) 

1[14=1[10, (7.16a) 

1[1, = 1[11' (7.16b) 

As an example we establish the invariance ofEq. (7.1Sa). The 
required transformation laws are 

<Poo = e- 21/,[ <POO + (Dt/!f - D 2tf; 

+ (e + E)Dt/! - K8t/! - Kat/!], (7.17) 

<P22 = e 21/, [ <P22 + (£1 tf;)2 - £1 2tf; 

- (r +r)£1tf; + vot/! + ~tf;l. (7.18) 

In view of the fact that v = - eK, r = - ee, £1tf; = eDt/!, 
8tf; = eatf;, and the commutator 

[£1,D] = - e(e + E).~/ - (r - el)Y, 

it follows that 
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(7.19) 

The verification of Eqs. (7.1Sb), and (7.1Sc) is similar. Final
ly, the invariance ofEqs. (7.16) is a consequence of the trans
formation laws 

Ij/a = e ·2'I'l[Ia' a = 1,2,3,4, (7.20) 

for the Weyl tensor components. 
In view of this general result and Eqs. (7.S) all the condi

tions of Theorem 3 are invariant under the conformal trans
formation defined by Eqs. (7.10) except that <PI I is no longer 
the only nonzero tetrad component of the trace-free Ricci 
tensor. However, the relations (7 .1S) will hold between the 
nonzero components of <Pah . It thus follows that the condi
tions of the DMT theorem still hold for the conform ally 
related space. This implies that there exists a coordinate sys
tem (u,v,w,x) such that the metric of this space given by 

df2 = 28 1iF - 28'84 (7.21) 

has the form ofEg. (2.6). However, the metric functions must 
satisfy some additional restrictions to those required in 
Theorem 1. These arise from condition (7.7), which in terms 
of the spin coefficients reads 

/5 +/5 = 0, 

T + ep = 0, 

(7.22a) 

(7.22b) 

and Eqs. (S.l), which are still valid in the conformally related 
space. On account of DMT Eqs. (9.27)-(9.30) these condi
tions imply that the metric functions Rand T must satisfy 
Egs. (2.1S) while the functions L,M,N, and P must satisfy the 
equations 

ML", -LM", =PLx -NMx =0 

NPx - PNx = LP", - MN", = 0 

(7.23a) 

(7.23b) 

which, when Eqs. (2.1S) hold, are equivalent to the statement 
that the principal null congruences defined by I and n are 
geodesic and shearfree.4~ It is not difficult to show that the 
Eqs. (7.23) are equivalent to Eqs. (2.16). In order to establish 
Eqs. (2.12) and (2.14) we note that the inverse conformal 
transformation, which transforms the conformally related 
metric (7.21) back to the original solution in '3;, is given (for 
the covariant metric) by exp( - 20), where tf; is a solution of 
Eqs. (7.10). Furthermore, by Eqs. (7.11) we have 

710 = e ".e/t/! = 0, 

.J'tf; = e ".:/'0 = 0, 

(7.24a) 

(7.24b) 

which by DMT Eqs. (9.33) and (9.34) imply that tf; satisfies 

0 u = t/!" = 0 (7.2S) 

where u and v are coordinates in the metric (2.12). On mak
ing the substitution tf;- - t/!we find the conformal factor of 
Theorem 2 which satisfies Eq. (2.14). The last step in the 
proof is to note that the required complete integral should 
have the form ofEq. (2.11) in view of the fact that u and v are 
ignorable coordinates in the metric (2.12). 

Case B: null orbits. Equations (6.6) and (6.7) imply in 
this case that Eqs. (7.9) become 

Dt/! =!(p +P), 

£1t/! = 0, 
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8tf;= Hr- i). (7.26c) 

From Eq. (7.26c) and its complex conjugate we deduce that 

'ft/! = O. (7.27) 

By means of the transformation laws (7.5) it can be shown 
that all the conditions on the spin coefficients used to derive 
the metric form (2.7a) of Theorem 1 in Sec. 6 are invariant 
under a conformal transformation satisfying Eqs. (7.26b) 
and (7.27). The demonstration is similar to that used to prove 
the invariance of the DMT theorem in Case A. Thus there 
exists a coordinate system (u,v,w,x) such that the conformal
ly related metric 

dSZ = 2e'e 2 
- 2e"e4 (7.28) 

has the form (2.7a). However, as in the previous case the 
metric functions must satisfy some additional restrictions 
which arise from Eqs. (4.17) (preserved under the conformal 
transformation) and Eq. (7.7), which has the form [ofEq. 
(7.22) with e = - 1] 

j5 + j5 = 0, 

T - f= O. 

(7.29a) 

(7.29bl 

It follows from these equations and from Eqs. (6.39c), 
(6.39d), (6.39g), and (6.39j) that the metric functions satisfy 
Eqs. (2.15) and (2.16). We also note that by an argument 
identical to that in Case A it may be shown that the inverse 
conformal transformation required to transform the metric 
(7.29) back to the starting metric (a solution in ~) is given by 
exp(2<h ), where <h = - tf; and the function tf; satisfies the 
equations 

Wu = w,. = 0, (7.30) 

where u and v are coordinates in the metric (2.13). We get the 
final form (2.13) of the metric by the substitution ¢; -+ tf;. For 
the same reasons given in Case A the complete integral of 
Eq. (2.10) should have the form (2.11). This completes the 
proof of Case B. 

A remark applicable to both cases is that the key to 
obtaining the canonical separable coordinate system for Eq. 
(2.10) is the possibility of performing a conformal transfor
mation such that Eq. (7.9) or equivalently Eg. (7.23) holds. 
Finally, we note that the Hamilton-Jacobi equation for the 
non-null geodesics, 

as as 0 

gY--. - = - m-, 
ax' ax] 

where m is constant, is solvable by separation of variables in 
the manner of Theorem 2 provided that the conformal factor 
exp(2t/J1 in the metrics (2.12) and (2.13) is express able as the 
sum of a function of wand a function of x. 
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The application of the ideas of the symmetry classification of space-time, the ~I~ebraic 
classification of the energy-momentum tensor, and the dominant energy condItIOns for 
macroscopic matter to the problem of searching for solutions to the fiel.d equatio~s of general 
relativity is discussed. These ideas are then specifically applied to certam space-tImes of G4 . 

symmetry to demonstrate the ability of this approach to obtain both new and g~neral solutlO~S. 
For macroscopic matter, G), symmetry is shown to have only one general solutton; symmetrIes 
G V G VII and G VII are shown to allow no solutions whatever; and the method is used to 

..J '-1- " ..t:2 • 

discover a new solution for G4 VIII, symmetry. A similar solution would be e~pected for G4 VIlle 
symmetry. 

PACS numbers: 04.20.Jb, 04.20.Cv 

I. INTRODUCTION 
In Einstein's theory of general relativity, the geometry 

of space-time is assumed related to the matter present in the 
universe through the field equations (given here with the 
cosmological term),·2 

GIL" + Agill' = 81TTilV ' (1) 

where G is the Einstein tensor of space-time, A the cosmo-
Jl\' 

logical constant, gill' the metric tensor defining the space-
time, and T,'l' the energy-momentum tensor of matter. 
[Throughout this work Greek indices assume the values 
1,2,3,4, and the summation convention is used. A metric 
signature of (+ + + -) has been chosen.] The Einstein 
tensor is defined in terms of the metric tensor and its deriva
tives to second order. 

Since their formulation much theoretical work has been 
involved with finding and studying solutions to the field 
equations for the gravitational field, determined by gill" and 
the matter field, determined by Till" As the field equations 
are nonlinear, second order, partial differential equations 
and the constitution of matter throughout the universe is 
unknown, this is in general an intractable problem. 

Some simplification can be introduced by choosing a 
specific model for the matter, for instance the perfect fluid 
model or the scalar field. More general energy-momentum 
tensors may be obtained by adding (superposing) specific 
models. The space-time may be sectioned into regions such 
that in each some specific model is appropriate. These re
gions can then be joined using proper junction conditions. 
With such simplification there is still the formidable difficul
ty of solving nonlinear partial differential equations. This 
approach is referred to as the T-method by Synge. 3

.
4 In 

short, given the energy-momentum tensor solve for the 
geometry. 

Solutions to the field equations may often be found via 
this method by assuming, in addition to a specific matter 
field, certain symmetries for the space-time. This simplifies 
the Einstein tensor and reduces the number of unknowns. A 

.• \ Based in part on the M. S. Thesis of M. C. Moody. 

complete classification of space-times (based on the number 
and types of symmetry transformations and the types of gen
erated subspaces) together with the metrics has been given by 
Petrov.5 Thus the search for solutions to the field equations 
via this approach requires investigating the compatibility of 
each possible metric with the various specific energy-mo
mentum tensors. 

This method of searching for solutions has been applied 
to space-times admitting a four-parameter group of motions 
G4 , acting on null three-dimensional hypersurfaces V;, by 
Lauten and Ray.6.7 As the Bondi-Pirani-Robinson plane 
gravitational wave metricH is among this class (G4 VIz), solu
tions corresponding to gravitational radiation were expected 
as suggested by Pirani.<i A total of 54 cases were investigated 
and in only one case was the metric and matter compatible 
with the field equations. All other cases studied were shown 
to be incompatible with the field equations; there are no solu
tions in these cases! In this application a major consequence 
ofthe T-method approach is the question of why there are so 
few solutions. 

There is, however, another point of view leading to an 
alternative approach. Consider the field equations rewritten 
as 

(2) 

In this way the field equations can be interpreted as defining 
a geometrical object T"v derivable from the metric tensor of 
space-time. Thus from this viewpoint there is no longer a set 
of nonlinear, partial differential equations to be solved, but 
merely a definition. For any ten reasonably well-behaved 
functions gin' such that a metric of proper signature can be 
formed, a space-time can be constructed in which the matter 
is described by an energy-momentum tensor given by (2). 
This method (Synge's g-method)3,4 provides an endless sup
ply of space-times unrestricted by symmetry. Of course, not 
all of these space-times will be analogous to the universe we 
live in and there remains the nontrivial task of interpreting 
the matter associated with the energy-momentum tensor. 

Since it is the nature of our own universe we wish to 
describe, some method is needed to guide the search; to re-
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duce the number of possibilities and, hopefully, isolate 
space-times like our own. To isolate space-times with matter 
having properties common to our own, mathematical condi
tions describing these properties are needed. With the addi
tion of these conditions, (2) is no longer merely a definition, 
but rather part of a model with a limited range of allowable 
solutions. Some physically reasonable restrictions (at least 
for macroscopic matter) are the energy conditions 10.11: (i) the 
energy density for all observers is non-negative, and (ii) ener
gy cannot be transferred at speeds greater than the speed of 
light. With these restrictions there is the model 

TI"Y = (l/87T) (Gl"v + Agl"v) 

(i)Tl"ylf"vv>O for all vl"lf"';;;O. 

(ii) TI"Y v71"P 11'.;;;0 

(3) 

The search for allowable solutions to the model (3) can 
be simplified by an algebraic classification of the energy
momentum tensor lO

-
18 in terms of its eigenvalues, eigenvec

tors, and Segre type. Any symmetric second-rank tensor will 
have (excluding degeneracies) one of six possible Segre types. 
An energy-momentum tensor in general relativity satisfying 
the above energy conditions must be in only certain subsets 
of only two of these Segre types. 10.1 1.18 By the field equations 
this is also true for the Einstein tensor. 

To inspect a given space-time for agreement with the 
energy conditions, the energy-momentum tensor is calculat
ed and its Segre type determined. (It is actually more conve
nient to do this for the Einstein tensor.) The Segre type de
pends on the metric. If the general metric is not of an allowed 
Segre type, it may reduce to an allowed type under certain 
restrictions on the metric. Within the allowed Segre types, 
still only certain subsets can satisfy the energy conditions. 
Inclusion in these subsets depends on conditions on the ei
genvalues for the energy-momentum tensor. (And also on 
the eigenvalues of the Einstein tensor. But it must be remem
bered that with the inclusion of the cosmological term in the 
field equations these are no longer proportional.) The eigen
values also depend on the metric so it is determined that, if at 
all, the space-time can satisfy the energy conditions only for 
certain restrictions on the metric. Of course, finally, there 
remains the problem of interpreting the corresponding ener
gy-momentum tensor. 

When the geometry does agree with the energy condi-
tions, the energy-momentum tensor must assume certain al
lowed Segre types. The type may depend on restrictions on 
the metric. If a simple model of matter is to be suitable as a 
source, its energy-momentum tensor must have the same 
Segre type. It is only for those geometries and matter fields 
with energy-momentum tensors of mutual Segre type that 
solutions to the field equations might be obtained. Unfortu
nately, an algebraic classification has been given only for the 
simplest models of matter. 19.20 These results may be used in 
some cases to give an interpretation of the energy-momen
tum tensor obtained in the g-method approach. 

In this work, the g-method approach is applied to the 
space-times admitting a four-parameter group of motions 
G4 , acting on null three-dimensional hypersurfaces V;, pre
viously studied by Lauten and Ray. It is found that for G4I , 

1728 J. Math. Phys., Vol. 22, No.8, August 1981 

symmetry the one particular solution found previously is the 
general solution to the field equations. There can be no other 
solution for geometries having this particular type of sym
metry that satisfies the energy conditions! In this solution the 
matter can be interpreted as a perfect fluid whose four veloc
ity is null (photons for example). For the symmetries G4 V, 
G4 VIII' and G4 VII2 it is shown that there can be no solu
tions. The symmetries G 4 VIII I and G 4 VIII2 are found to 
satisfy the energy conditions, but the energy-momentum 
tensor obtained is not obviously of the form of some simple 
specific model of matter. By comparison of Segre types, it is 
discovered that the energy-momentum tensor may be inter
preted as a superposition of a null perfect fluid and a non
null electromagnetic field. Using this model of matter, a so
lution is found for G4 VIlli symmetry. A similar solution 
would be expected for G4 VIII2 symmetry. 

II. THEORY 
The procedure employed here relies primarily on three 

major concepts: (i) the classification of the geometry of gen
eral relativity according to symmetries, (ii) the algebraic clas
sification of the energy-momentum tensor of the matter in 
terms of its canonical forms, and (iii) the restrictions imposed 
on the classifications by the energy conditions. In this sec
tion the fundamental ideas of these concepts will be 
summarized. 

A. Symmetry classification 

A complete classification of all gravitational fields can 
be made in terms of the groups of motions they admit. A 
motion in a space-time is a transformation that maps the 
space-time into itself while preserving the metric. This is, 
then, an invariant property of the group. In order that a 
group be admitted, it is necessary and sufficient that each of r 
generators of the group satisfies Killing's equations. The so
lutions are called Killing vectors. The generators are associ
ated with the transformations 

X'I' =jl"(x,ai), i = 1, ... ,r, 

where the ai are r essential parameters labeling the transfor
mations. Each generator is defined by 

S-r(x) = Jjl"(x,ai)!Jai, all ai = O. 

If the transformations form a group, the generators satisfy 
the fundamental commutators and determine the structure 
constants of the group. The equations of structure for r = 2,3 
and a classification in terms of them has been given by Bian
chi.21 This has also been done for r = 4 by Lie22 and Kruch
kovich.23 The classification is summarized by Petrov.5 

For each structure the Killing vectors (generators) may 
be determined in a simple system of coordinates. The Killing 
equations can then be intergrated to determine the metric. 
Further specification of the gravitational field arises from 
also considering the types of subspaces the group of transfor
mations generates. Fortunately, this problem has already 
been solved and is presented in Chap. 5 of Petro v which may 
be referred to for the results. 
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B. Algebraic classification 
A complete algebraic classification of a general second

order symmetric tensor S"v can be given in terms of (i) its 
eigenvalues, (ii) its eigenvectors, and (iii) its Segre character
istics determined by the elementary divisors. In general rela
tivity this is a linear algebra problem with an underlying 
four-dimensional space having an indefinite norm. Such a 
classification has been worked out by Plebafiski and oth
ers. 10

-
18 In a general four-dimensional space the tensor is 

represented by a 4 X 4 matrix which, when the proper orth
onormal tetrad is chosen as basis, can assume (excluding 
degeneracies) one of six canonical forms. Each form is conve
niently described by its corresponding Segre characteristics. 
The following types of Segre characteristics are possible: 

(i)[I,I,I,I,], (ii) [1,1,2], (iii) [2,2), 

(iv) [1,3], (v) [4), (vi) [l,I,z,z]. 
Each digit corresponds with an eigenvalue of the matrix and 
equals the elementary divisor corresponding to that eigen
value. The convention in which the last eigenvalue corre
sponds with a timelike or null eigenvector is chosen. The 
number of digits in each Segre type gives the number of ei
genvectors. The symbol z denotes a complex eigenvalue. The 
possibility of the eigenvalues being equal exists, and such 
degeneracy is denoted by enclosing the appropriate charac
teristics in parenthesis. Taking degeneracies into account 
yields 18 distinct Segre types. From the condition of symme
try it follows that Segre types [4) and [2,2) (including its 
degeneracy) are empty in general relativity. 18 

For each of the remaining types there exists an orthon
ormal tetrad in which frame S"v takes one of the following 
canonical forms: 
A vector V" satisfying 

[

AI 

0) [1,1,1,IJ ~ o 
o 

o 
o 

,1.1 

o 

o ] o 
o ' 

-,10 

[

AI 0 0 0] 

(ii) [1,1,21 ~O ,12 0 ° with€;60, ° ,10 + € € ' 

o € -,10 + € 

(iii) [1,3 1[1' ~o ;, ~€], with€>O, 

o 0 - € -,10 

(iv) [l,l,z,zj [1' ~, <~, },], 

° 0 A" -A' 
with ,10 = A' + iA ", ,13 =,1' - iA ", (4) 

whereA i 's are the eigenvalues of S"v: i.e., are the roots of the 
corresponding characteristic equation 

det(S,,,, - Ag"v) = o. 
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(S"v - Aig".v ) VV = 0 

is an eigenvector corresponding to the eigenvalue Aj • Due to 
the arbitrariness that exist in naming the spacelike coordi
nates, different choices have correspondingly altered ca
nonical forms. 

With consideration of all possible degeneracies there 
exist 15 nonempty algebraic types for a general second-order 
symmetric tensor in general relativity. These types can be 
divided into three more general classes according to the 
number of admitted eigenvectors. These may be convenient
ly tabulated (originally done by Plabafiski) J() as shown in Ta
ble I. 

Class I is separated into two subclasses, Z and R. Class 
IR is diagonalizable and Class Iz has members with complex 
eigenvalues. Members of Classes IR, II, and III have all real 
eigenvalues. The graphic symbols in Table I are intended to 
indicate kinds of eigenvectors admitted by each class. Class 
Iz admits two complex eigenvectors. Class IR admits a time
like eigenvector. The eigenvectors corresponding to the mul
tiple eigenvalues of Classes II and III are null. All other 
eigenvectors are real and spacelike. In cases of degeneracy, 
rotations in the subs paces spanned by the degenerate eigen
values are allowed. For example, in type [1,1,( 1,1 )], instead 
of choosing one timelike and one spacelike eigenvector, two 
null principal directions could be chosen. 

Types with the same multiplicity of eigenvalues are 
along horizontal lines. The diagonal arrows connect types 
with the same order of minimal polynomial. Note that these 
two quantities determine all types uniquely except for the 
two pairs [1,1(1,1)), [1,(1,1),1) and [1,(1,1,1)) [(1,1,1),1). 
These may be easily distiguished by diagonalizing the matrix 
directly. 

Thus to determine the Segre type, the characteristic 
equation is first solved for the eigenvalues and their multipli-

CLASS I CLASS n CLASS m 

(4 eigenvectors) (3 eigenvectors) (2 eiQlnvectors) u 
f3 LL t; 

CLASS Iz CLASS '" §:ffi~ 
(some compleJ( /011 real :J~ I- i 

elgenvecf«s) eIgenvectors) 
Q..OU O -Oc( Z 

X ~ ~ 
~a::~ >-

-f.. ", ... :r5 
2000.. 

"'-
[I,I,Z,Z~ I,I,Z,Z 

[I,I,~ 1,1,1,1 

1(J,I),~ 2,l,z 

[I,IJI,J)I [1,1,21 1,1,2 

, [1,(1,1),11, 

~ '" ~ [(J,I)JI,J)I [(J,I),21 2,2 

~ ~ [I,(I,I,lll 
CI,(J,2~ [J,31 1,3 

[(I,I,Jl,1l 

'" ~'3lJ,1 , 
[(J,I,I,I~ [(J,I,2lJ, 4 

'I 
.... -

2 3 4 

ORDER OF MINIMAL POLYNOMIAL 

TABLE I. Summary of algebraic classification of the Einstein tensor. 
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cites determined. Next the order of the minimal polynomial 
must be determined. The minimal polynomial of a matrix is 
that polynomial ofleast degree for which the matrix itself is a 
root. The Cayley-Hamilton theorem states any matrix is a 
root of its characteristic polynomial. Also, the characteristic 
polynomial can be factored in terms of its roots, the eigenval
ues. It follows as a theorem in linear algebra that the minimal 
polynomial is a divisor of the characteristic polynomial and 
has the same roots. Thus the minimal polynomial is some 
product of distinct factors of the characteristic polynomial 
whose factors are perhaps raised to lower powers. Due to the 
limited number of possiblities in four dimensions it is easy to 
simply search for the minimal polynomial by direct substitu
tion. This procedure will be illustrated in the next section. 
This method also yields the restrictions necessary in order 
that the minimal polynomial be of lower order. Once the 
multiplicity of the eigenvalues and the order of the minimal 
polynomial are determined, the Segre type can be read from 
Table I. 

It should also be noted that a complete algebraic classi
fication of second-order symmetric tensors in general rela
tivity can also be given in terms of their invariant two-space 
structure. The relationship between this classification and 
Segre types has been given by Cormack and Hall.24 

Of the particular second-order symmetric tensors 
known as energy-momentum tensors in general relativity, 
only a few of those corresponding to simple types of matter 
have been classified. 1<).20 The results for four of the simplest 
models follow: 

(i) A dust of noninteracting uncharged particles 

T,.v = pUI' Uy, 

wherep is the rest en~rgy density and VI' is the four velocity. 
The Segre type is [( 1,1,1) 1]. The raised zero indicates that the 
corresponding eigenvalues are zero. 

(ii) The perfect fluid model 

TIl" = (p + PlV" V" + Pgl'''' 

wherep is again the rest energy density and P is ~he pressur~. 
The Segre type is [( 1, 1,1),1]. Case (i) is the special case of (Il) 
for which the pressure is zero. 

(iii\ The null fluid model-
This is the special case of (i) and (ii) for which the four-veloc
ity is null (for example, neutrinos). The Segre type is [( 1,1,2)]. 
If the pressure vanishes the eigenvalues are zero. 

(iv) The electromagnetic field 

T - F F<Tf' - 1 F F"P 
II\' - gila vp ~/Lt' ap , 

where F"
V 

is the electromagnetic field tensor. Two types are 
possible: (a) [(1,1),(1,1)), a non-null field, and (b) Hl,I,2)), a 
null field (pure radiation). 

C. The energy conditions 
In order to focus attention on those space-times defined 

in (2) having matter with properties similar to that of our 
own, the addition of mathematical conditions describing 
some reasonable properties was needed. The conditions cho
sen were those denoted by Hawking and Ellis II as the domi
nant energy conditions: 
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For aU timelike, and by continuity, all null vectors if, 

(i) T,lVdV>O, 

(ii) T"vifis non-space-like. 

The first condition is an assumption that the energy density 
as measured by any observer is positive definite. The second 
condition states the assumption that the local energy flux 
vector is non-space-like, i.e., energy cannot be transferred at 
speeds greater than the speed oflight. These conditions seem 
physically reasonable for macroscopic matter. 

With the assumption of energy conditions the system (3) 
is obtained. Now the energy-momentum tensor which must 
satisfy the restricting energy conditions must be of one of the 
forms (4) obtained in the algebraic classification. Applica
tion of the energy conditions to each of these classes shows 
that not all classes are able to satisfy them. The results can be 
summarized by the following statements: 

(i) Neither energy-momentum tensors of class Iz nor 
Class III can satisfy either of the energy conditions. 

(ii) Energy-momentum tensors of either Class IR or 
Class II satisfy the energy conditions if and only if 

..1. 0 <;0 and ..1.o<..1.i <; - ..1. 0 ' (5) 

For Class II the condition that E be positive must be added. 
A proof of these statements has been given by Plebaiiski. 'o 

The explicit canonical forms of the energy-momentum 
tensors must therefore correspond to one of the 11 allowed 
Segre types given below. 

[1,1,1,1], 

[ 1 , 1 , ( 1 , 1 )], [ 1 , ( 1 , 1 ), 1], [( 1, 1 ), ( 1, 1)], 

[ I ,( 1 , 1 , 1 )], [( 1 , 1, 1 ), 1], 

[(1,1,1,1)], 

[1,1,2], 

[1,(1,2)],[(1,1),2), 

[( 1, 1,2)). 

(6) 

For a given space-time the energy-momentum tensor 
must satisfy (2). To be an allowable source for the model (3), 
this energy-momentum tensor must be found to be of one of 
the allowed classes given in (6). If this is true, the eigenvalues 
must then still satisfy (5). Under these conditions, the space
time corresponds to a matter field that satisfies the energy 
conditions. 

The problem of obtaining specific solutions to the field 
equations is now the problem of interpreting the type ofn:at-
ter described by the energy-momentum tensor. The relatIOn
ship between the energy-momentum tensor and the corre
sponding matter field is not necessarily unique. 25

,26 For 
example, the type [(1,1,2)] may be associated with either a 
neutrino field (null fluid) or a null electromagnetic field, or a 
superposition of the two fields. In order that a given energy
momentum tensor have as its source some simple model of 
matter, they must have an identical Segre types. Once it is 
established that the energy conditions may be satisfied, only 
those models of matter yielding an energy-momentum ten
sor of the same Segre type as the space-time need be investi
gated for solutions, 
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Concerning the interpretation of the energy-momen
tum tensor, it has been shown by Williams27 that any second
rank symmetric tensor can be decomposed into the differ
ence of a perfect fluid energy-momentum tensor and one of 
the types of the electromagnetic energy-momentum tensor. 
He gives the explicit forms of the decomposition for each of 
the possibilities in (6). (They are not all reaL) Williams does 
not, however, consider the field equations of the matter (for 
example, Maxwell's equations). His work raises the question 
of the form of a decomposition into other models of matter. 

The solution to the problem of interpreting the energy
momentum tensor (after establishing that it satisfies the en
ergy conditions) is thus incomplete and not unique. Still 
these ideas can be useful in searching for solutions to the field 
equations as will be demonstrated in the next section. 

III. APPLICATION TO G4 SYMMMETRY 

Again, a summary of the procedure. First, using a geo
metrical approach, the space-time metric can be obtained for 
a particular symmetry. The Einstein tensor can then be cal
culated and algebraically classified via investigation of the 
multiplicity of its eigenvalues and the order of its minimal 
polynomial. (This will also be the classification of the energy
momentum tensor.) Allowed candidates for solutions are 
then found by checking the eigenvalues of the energy-mo
mentum tensor (not the Einstein tensor!), using (5), for agree
ment with the energy conditions. The eigenvalues of 
T,,,.and GIl' are related by 

A = (1I81T)(A + A), 
I G 

If then the energy conditions are satisfied, those simple mod
els of matter whose energy-momentum tensor is of the prop
er Segre type may be investigated for solutions to the field 
equations. 

In these applications certain space-times admitting a G ~ 
group of motions acting on null three-dimensional hypersur
faces are considered. 

Petrov gives the metric as 

ds~ = a(x4)exp( - 2X1)[2 dx' dx4 + (dX 2)2] + /3 (x4)(dx1f, 

where a and/3 are arbitrary functions. The Einstein tensor in 
an orthonormal frame is 

_ [P + ~/B' 0 -q 
-p ] 31B 2 0 

P - ~/B' ' 
Gilt -

0 31B2 -q 

-p 0 q 

where 

p= 0 2(-)-----+--, 1 [A' 0 A" B" 2A 'B'] 
A -exp( - 2x1

) A A B AB 

1 B' '/3' q= (2-), A =a',B= '. 
AB exp( - 2X1) B 

Here the primes refer to differentiation with respect to 
(x'-x4

). 
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The characteristic deteminant gives the characteristic 
equation 

(A - 31 B 2)4 = 0, 

which has one root, A = 31B 2, of multiplicity 4. The candi
dates for the minimal polynomial are 

(i) (A - 31B 2), (ii) (A - 31B 2f, 

(iii) (A - 31B 2)\ (iv) (A - 31B 2)4, 

with the corresponding Segre types from Table I, 

(i) [(1,1,1,1)], (ii) [(1,1,2)], 

(iii) [(1,3)], (iv) [4]. 

The last of these cannot occur since the signature of the met
ric is Minkowskian. Since a matrix must be a root of its 
minimal polynomial the requirements that must be investi
gated are 

(i) M = 0, (ii) M2 = 0, (iii) M3 = 0, 

where 

M'''. = (GI", - 3IB 2fjl\), 

M=[~ -q 

p 

Then 

[ q' 
0 

M2 0 0 

0 0 
q2 0 

o -q 

o 0 
o 
o 

0 

0 

0 

0 

o 
-q 

-/] 
o ' 

_ q2 

tl 
M 1 =0. 

Thus the minimal polynomial is (A - 31B 2)3 and the Segre 
type is [(1,3)], for which the energy conditions cannot he 
satisfied. Here this is due to the fact that the G'4 = q term 
allows, for some coordinate systems, the enery flux vector to 
become spacelike for large enough q, andlor the energy den
sity to become negative. 

If q vanishes then M 2 = 0 and the minimal polynomial 
reduces to (A - 31B 2)2 with corresponding Segre type 
[(1,1,2)], a type allowed by the energy conditions. But only a 
subset of this type satisfying (5) is allowed. The restriction 
q = 0 implies B is constant (B ' = 0) and Gil" reduces to the 
canonical form (ii) ofEq. (4). The restrictions (5) that must be 
satisfied are 

or 

c = p > 0, A 0<;0, A o<;Ai <;A 0' 
r r T r 

2(A'IAf-A"IA>0,3IB2+A<;0, 

31 B 2 + A <; 31 B 2 + A <; - 31 B 2 - A. 

The last condition is equivalent to the second one. 
It was only for this symmetry and in agreement with 

these conditions that the one solution of Lauten and Ray 7 

was found. The solution was to the field equations without 
the cosmological term and was for a perfect fluid model of 
matter. The four-velocity of the fluid was found to be null 
and the constant pressure found was interpreted as a cosmo-
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logical constant. 

When the cosmological term is included in the field 
equations the solution goes through in the same manner. The 
energy-momentum tensor of a perfect fluid is given by 

1',,,. = (p + P)Ufl U,. + Pg/1,., 
wherep is the energy density, Pis the pressure, and VI' is the 
four-velocity of the fluid. The field equations (I) are 

(1, 1) p + 3/ B 2 + A = 81T [(p + P )U ~ + P ], 

( 1,3) 

(1,4) 

(2,2) 

(3,3) 

(3,4) 

(4,4) 

- q = 81T(P + P)UIU" 

- P = 81T(P + P)UI V4 

31B 2 +A = 81T[(P+P)Ui +pJ, 

31B 2 + A = 81T[(P + P)Uj + P], 

q = 81T(P + P )U"U4 , 

P - 31B 2 - A = 81T[(P + P)V~ - P]' 

(7) 

From these it follows that VI = - U4 and V 2 = U, = 0, so 
that the four-velocity is null. Also resulting is q = 0, which 
implies B is constant (B ' = 0). The pressure is found to be 

P = (1I81T)(31 B 2 + A ) = const. 

Thus the field equations reduce to one equation 

p = 2(A 'I A f - A "I A = 81T(P + P ) U L (8) 

which may be solved one the right-hand side is specified. 
Since the pressure is constant it can be interpreted as 

part of the effective cosmological term and transposed to the 
left-hand side of the field equations (1) 

Gill' + Aetrg/LV = 81T(P + P )Ufl U", 

where 

Aeff =A - 81TP= - 31B2. 

The energy-momentum tensor is then reduced to 

1',IV =( ~ 
-p 

o 0 

o 0 
o 0 
o 0 

~p) 
o ' 
p 

and is of the cannonical form (ii) of Eq. (4) and Segre type 
[( 1,1,2)]. The energy conditions are satisfied provided 

p = 2(A '/ A )2 - A "/ A> 0. 

The inclusion of the cosmological term (not dealt with 
in the previous study) now allows several interpretations of 
the above solution. With the restriction A = - 31 B", the 
source of the energy-momentum tensor may be taken as, 
besides the null fluid, a null electromagnetic field, a massless 
scalar field, or SOme combination of these. The right-hand 
side of (8) will depend on the interpretation, and once speci
fied allows a solution. 

Further reduction in the Segre type requires the addi
tional restriction 

2(A'IA)"-A"IA=0 (p=0), 

which can be solved for A. Then M = 0, the minimal polyno
mial is (A - 3/ B 2) and the Segre type is [( 1,1,1,1 n. This is just 
the special case of the solution (8) for vacuum. 

The possible Segre types for the space-time are now ex-
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hausted, therefore completing this application of the proce
dure. The interesting conclusion reached, then, is that the 
only solution allowed by the energy conditions is of the form 

2(A '/A)2 - A "IA =/(x l 
_ x 4

), 

where the function/ depends on the interpretation of the 
matter. The substitution 

Y= lIA 

simplifies the equation to 

y" -/y=O, (9) 

which may be solved once the function/is specified. No 
other solution is allowed. The procedure thus furnishes a 
proof of the startling generality of the Lauten-Ray solution 
(9). That is, the application of the energy conditions leads to a 
generalized Birkhoff-type theorem for this symmetry. No 
other method of establishing these general results is known. 

B. G4V and G4 Vll symmetry 
The metric for G 4 V is, according to Petrov, 

ds2 = 2 dx l dx4 + a(x4)exp( - x l )((dx2
)2 + (dX-')2], 

where a is an arbitrary function. Tranformed to an orthon
ormal frame the Einstein tensor becomes 

_ [-a':2b-j 0 ° a2 _ 1 
4 

b 0 
o ] G/Il· - 0 0 b o ' 

a2 _ I 0 ° - a2 
- 2b - ~ 

4 

where 

a"=2A"/A, b= _21/2A'IA, A=a I/2 . 

Again primes refer to differentiation with respect to 
(Xl _x4

). 

The characteristic equation has the simple roots 2b + a, 
2b - a and the rootb of multiplicity 2. A direct investigation 
shows the eigenvector corresponding to the eigenvalue 
2b + a is timelike where a is taken as the positive square 
root. Also there are three spacelike eigenvectors correspond
ing to the other three eigenvalues. Thus the most general 
Segre type is [1,( 1,1),1]. This type is allowed only if the eigen
values of the energy-momentum tensor satisfy (5). This con
dition gives a<;O, which contradicts the definition of a unless 
a = 0. With a # 0 the Segre type will degenerate when the 
eigenvalue b equals either of the others. When 
b = a (b = 2b - a) the Segre type is [(1,1,1),1], and when 
b = - a (b = 2b + a) the Segre type is [1,(1,1,1)]' In these 
cases the condition yielding the contradiction above is still 
required. 

If a = 0 the eigenvalues are 2b and b, each with multi
plicity 2. The Einstein tensor reduces to the canonical form 
(ii) of Eq. (4) corresponding to Segre type [( 1,1 ),2] with 
E = --1. To satisfy conditions (5), E must be positive. If 
b = 0 the Segre type is [( 1, I ,2)] but E is unaltered. Thus in all 
cases the G4 V symmetry cannot satisfy the energy condi
tions. There are always frames in which the energy density 
becomes negative. 

Similar contradictions arise in the application to 
G4 VIII and G VII 2 symmetries. 
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C. G4VIII symmetry 
Petrov gives the metric for G 4 VIII I as 

ds2 = 2 dx l dx4 +,8 (X4)[COS
2(x3 )(dx2f + (dx

3n 
In an orthonormal frame the Einstein tensor is 

-b ] o 
o ' 

-a+b 

o 0 

o 0 

o 0 

o 0 

where 

a= -l/A2, b= -A"IA,A=,8'. 

The primes refer to differentiation with respect to (Xl - x4
). 

The characteristic equation has the roots 0 and a, each 
of multiplicity two. The Einstein tensor is of the canonical 
form (ii) ofEq. (4) and the Segre type is [(I,I),2J. The condi
tions (5) required by imposing the energy conditions are 

-A "IA >0, 

- l/A2 +A<O, 

-l/A 2 +A<A<l/A 2 -A, 

which are satisfied provided 

A < l/(lA 2) and A "I A < O. 

The energy·momentum tensor is 

[

a + b +A 
1 0 

~". = g; 0 

-b 

o 0 

A 0 

o A 

o 0 

(10) 

and is apparently not one of the simple models investigated 
by Lauten and Ray, since they did not find solutions for this 
symmetry. 

Since the energy-momentum tensor obtained by calcu
lation from the metric is of Segre type [( 1,1 ),2], any simple 
model of matter acting as a source in this space-time must 
yield an energy-momentum tensor of the same Segre type. 
The results of the algebraic classification of the simple mod
els of matter given in Sec. II do not include this type. Howev
er (as indicated by the decompositon given by WiIIiams)27 the 
desired Sege type in this case can be obtained by adding a null 
fluid model with Segre type [( 1, 1,2)] and a non-null electro
magnetic field with Segre type [( 1, 1),(1, I)). This may be seen 
directly by observing the resulting sum of the corresponding 
canonical forms. Since the energy conditions can be satis
fied, a solution for a coupled electromagnetic field and null 
fluid would be expected. 

To investigate this expectation the field equations must 
be solved for the energy-momentum tensor 

U P F FifP - 1 F FJP. ~ll' = I,p + P) UI' ,,+ gill' + g",T vp ¥t p" (Ip 

The part ofthe energy-momentum tensor related to the elec
tromagnetic field must have the canonical form [( I ,1),(1, I)]. 
This is precisely the form obtained by assuming that the elec
tromagnetic field tensor F"v has the same symmetry as the 
metric, that is 
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Solving for F,,,,, 

F,,, ~ (~ 
0 0 -oa) 0 0 

0 0 o ' 
0 0 0 

where a is a function of (Xl - x 4
). Maxwell's equations are 

satisfied by this field tensor for a null currenrlR 

l' = (- l/41Tj[a' + 2(A 'IA )a,O,O,a' + 2(A 'IA )aJ. 

Thus, 
7 -a-

0 
2 

7 a-

2 
T"v = 7 

EM a-

2 
7 

0 
a-

2 

The field equations (1) are 

(1,1) a+b +A =81T[I,p+P)U~ +P-a2/2], 

(1,4) - b = 81T[1,p + PJUIU4 

(2,2) A = 81T[(P + PJU~ + P + a 2/21, (II) 

(3,3) A =81T[Ip+P)U~ +P +a2/2], 

(4,4) -a+b-A =81T[(P+PJU~ -P +a2/2]. 

From these it follows that UI = - U4 and U2 = U, = 0, so 
that the four-velocity of the matter is null (a needed result for 
agreement of Segre types). The pressure is found to be 

P = A 1(81T) - a 212, (12) 

and the field equations reduce to 

l/A 2 = 81Ta 2 and A "IA = - 81T1p + PJUi, 

which may be solved once the right-hand sides, satisfying 
condition (12), are specified. The energy conditions require 
that the pressure be negative in this case. The realization of 
negative pressure in the expectation value of the energy-mo
mentum tensor has been discussed by Parker and Fulling2

'l 

and Ford. 30 

In this application the energy conditions were found to 
be satisfied under conditions (10), indicating the possibility 
of obtaining solutions to the field equations. The necessity of 
agreement between the algebraic clasification of the Einstein 
tensor of the space-time and the energy-momentum tensor of 
the matter was then employed to determine a likely simple 
model of matter for obtaining a solution to the field equa
tions. Finally, the field equations were investigated for this 
form of matter and a solution obtained. 

When A " = 0 (b = 0) the Segre type reduces to 
[( 1,1 ),( 1,1 )J. The requirement of the energy conditon is 

A<1/(lA 2). 

Since the non-null electromagnetic field has the proper type 
of energy-momentum tensor, it might be expected to be a 
satisfactory source. The field equations (11) with b = 0 give 

a 2 = A /(41T) = const, and II A 2 = 81Ta2 = canst. 
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The Riemann tensor does not vanish, so the space-time can
not be flat. This is a special case of the previous solution with 

p = --p=o. 

For G4IIT 1 symmetry, the Segre typeis [( 1, I ),2] and the ener
gy conditions are satisfied if 

A <; l/(2A)' and 2A" / A <; 1/(2A 4). 

When 2A / A = l/(2A 4) the Segre t)pe reduces to [( I, 1),( 1,1)] 
with the same energy condition requirement. Analogous to 
the G4 VIII I symmetry, solutions for combinations of null 
fluid and non-null electromagnetic fields would be expected. 

IV. CONCLUSION 

To summarize the results obtained by applying the en
ergy conditions to those space-times with G4 symmetry stud
ied, it was found that for G 41 I symmetry the only solution 
allowed by the energy conditions (3) corresponds to a null 
fluid model of matter. Also the energy conditions allow no 
solutions for the symmetries G4 V, G4 VIII' and G4 VlI l . The 
G 4 VIII I and G 4 VIII2 symmetries correspond with an ener
gy-momentum tensor that agrees with the energy condi
tions, but the corresponding matter is not described by one of 
the simple models studied previously. Through consider
ation of the algebraic classification of the energy-momentum 
tensor a combination of these simple models was determined 
to be suitable and the solution found. 

It should be emphasized that the T-method approach as 
applied by Lauten and Ray, though giving a particular solu
tion to the field equations, offered little explanation for the 
scarcity of solutions and could not yield conclusive informa
tion concerning other possible solutions. In contrast, the g
method approach used here obtains general results and ex
plains the lack of solutions. The energy conditions cannot be 
satisfied in general for certain symmetries. However, the 
simple models of matter fields can only be found when the 
geometry agrees with the energy conditions. 

Further, there can be solutions only for simple models 
of matter whose corresponding energy-momentum tensor 
allows the same algebraic classification (Segre type) as that 
obtained from the geometry. This considerably restricts the 
matter fields that need be investigated for solutions, thus 
giving a more direct procedure for searching. 

It should be emphasized even more that the results ob
tained here depend on the validity of the energy conditions 
which is assumed throughout this work. The possibility of 
obtaining more general results, as illustrated here, supports 
the need for evaluating their validity. 10.1 I.J I -" 

The dominant energy conditions are not the only condi
tions that may be chosen. Hawking and Ellis II also discuss 
the less stringent weak energy condition (positive definite 
energy only) and the more stringent strong energy condi
tions (T,,,_v"v'>~Tv"v!,, A = 0,) from which follow the sin
gularity theorems. Either of these conditions allows the 
same Segre types (6) as the dominant energy conditions, but 
the restrictions analogous to (5) are, respectively, less and 
more stringent. The general results obtained in this work 
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would not be altered except for slight changes in allowed 
values for the parameters in the solutions. 

Besides the question of the validity of the energy condi
tions, just how applicable the g-method type approach taken 
here may be is not apparent. In initial investigations of space
times with less restrictive symmetries (spherical symmetry, 
the Farnsworth metric, the Kundt metric)'o<; the energy 
conditions exhibit themselves through nonlinear partial dif
ferential inequalities, the value of which is not transparent. 
This is the result of the more complicated form of the eigen
values. The Segre types of the energy-momentum tensor and 
the conditions on the metric for which each of these types is 
obtained is easily determined. Only those matter fields with 
an energy-momentum tensor of the same Segre type may 
yield a solution to the field equations. Other workers have 
considered the Segre classification of various types of gravi
tational fields.'1> 4() These results would be useful in a fur
ther study of the types of matter allowed by these gravita
tional fields following and extending the methods and results 
of this paper. If the algebraic classification of all macroscop
ic matter fields was known, those (and combinations thereof) 
that were suitable could be investigated for solutions. By 
comparing the canonical forms of both sides of the field 
equations, the simplest form of the equations for all allowed 
matter fields would be found, though their solution might be 
untenable. The energy conditions would then place further 
restrictions on the allowed values of the parameters in the 
equations. 

Of course, the energy conditions could be imposed us
ing the T-method also. Then, at first ignoring the question of 
the type of matter present, the energy-momentum tensor can 
only assume one of the canonical forms given in (6), with 
additional restrictions on the elements given by (5). In this 
way the number of unknowns in the field equations is consid
erable reduced. The problem of solving these nonlinear par
tial differential equations is still to be faced. 

As the subject considered here is that of finding solu
tions to the field equations, the strength of the equations 
themselves should also be considered. In closing, we present 
a reminder of some ideas of the equations' author. 41 

"Not for a moment, of course, did I doubt that this 
formulation (I) was merely a makeshift in order to give the 
general principle of relativity a preliminary closed expres
sion. For it was essentially not anything more than a theory 
of the gravitational field, which was somewhat artificially 
isolated from a total field .... 

"If anthing in the theory ... can possibly make the claim 
to final significance, then it is the theory of the limiting case 
of the pure gravitational field .... 

"If one had the field-equation of the total field, ... only 
then would the general theory of relativity be a complete 
theory." 
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An exact stationary solution of the combined Einstein-Maxwell-Klein
Gordon equations 
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The Einstein-Maxwell-Klein-Gordon equations are simplified by imposing stationarity, 
isometric motion, the Weyl-Majumdar-Papapetrou condition, and axial symmetry. An exact 
(nonstatic) stationary solution is found such that the electric field vanishes, the magnetic field is 
constant and parallel to the polar axis, and the wavefunction of the matter field is of the form ofa 
"pure phase." The energy-momentum tensor satisfies the strong energy condition of Hawking 
and Ellis. The metric tensor resembles that of the Godel solution and has similar causal 
properties. 

PACS numbers: 04.40. + c, 04.20.Jb, 03.S0.Kk 

I. INTRODUCTION 
In anticipation of the construction of a quantum theory 

of gravitation, which will unify gravity and elementary parti
cle phenomena, it seems that a useful purpose will be served 
in finding exact solutions of the classical Einstein-Maxwell
Klein-Gordon equations. Such solutions, notably if they are 
stationary, could provide examples of self-consistent classi
cal models of massive spin-zero bosons. Although these 
models are probably not realistic (because of their nonquan
tal nature), nevertheless some oftheir properties hint at what 
a fully second quantized theory may yield. For example, the 
static, spherically symmetric soliton like solutions of Das 
and Coffman provide a theoretical estimate of the fine-struc
ture constant in terms of the gravitational constant, the 
speed of light, and Planck's constant. 1 Furthermore, one 
should keep in mind the recent results of Jackiw et al.,2 
wherein certain exact solutions of classical nonlinear field 
equations provide approximations of the vacuum expecta
tion values of the quantum fields and reveal a richness in the 
structure of the corresponding quantum field theories that 
could not have been uncovered by standard perturbation 
methods. It is likely that there are solutions of the classical 
Einstein-Maxwell-Klein-Gordon equations which playa 
similar role in quantum gravity. 

In Sec. II, the Einstein-Maxwell-Klein-Gordon 
(EMKG) equations will be displayed in their full generality, 
then simplified by imposing the conditions of stationarity of 
the fields and that the matter field current is parallel to the 
timelike Killing vector field (the condition of isometric mo
tion)). The field equations are further simplified by imposing 
a condition of the "Weyl-Majumdar-Papapetrou" (WMP) 
form.4 The latter implies, as in the static case, 1.5-7 a "balance 
condition" on the bare charge and mass of the matter field. 
This section concludes by displaying a class of stationary, 
but nonstatic axially symmetric solutions of the EMKG 
equations, the first examples of which, the authors believe, to 
appear in the literature.8 In Sec. III, some of the properties of 
these solutions are explicated, and, in particular, it is shown 

'IThis work forms part of the author's Ph.D. thesis. 
hlThe author is also a member of the Theoretical Science Institute. Simon 

Fraser University. Burnaby. B.C., V5A 1S6, Canada. 

that the solutions satisfy the so-called strong energy condi
tion of Hawking and Ellis,9 and that the physical compo
nents of the Riemann tensor are constants. It is also shown 
that for each member of a subclass of these solutions, the 
curves of the angular (periodic) coordinate are timelike ev
erywhere except in a cylindrical shell of finite thickness cen
tered on the polar axis. Thus, the solutions have the same 
causal pathologies as the Godel solution,7.9 the metric of 
which resembles the ones found here. 

II. THE FIELD EQUATIONS 

The notation and conventions used here are as follows. 
Latin and Greek indices have, respectively, the ranges 
1,2,3,4 and 1,2,3. Space-time, M 4 , is a C ~-differentiable four 
dimensional semi-Riemannian manifold with metric tensor 
field gij having signature - 2. All "hatted" symbols, e.g., 
Ri, have had their indices raised by g'i. The Ricci tensor 
f(lj=gkmRkijm and the curvature scalar Rare constructed 
from the curvature tensor of the metric gij' The electromag
netic four-potential is denoted A; and the field strength is 
defined as Fij A;J - Aj .;. A comma followed by an index 
denotes partial differentiation with respect to the coordi
nates. V; is the covariant derivative on M 4 • The complex 
Klein-Gordon matter field if! has bare mass m and bare 
charge e. Finally, natural Gaussian units are used so that 
G=c=fz= 1. 

The Einstein-Maxwell-Klein-Gordon equations are 

Rij - JiijR = - 81TTij' 
A A.. A. 

'iljF'J = J', 

(DjDj + m 2)if! = O. 

The remaining symbols are defined as 
A 

D;='il; + ieA;, 
A 

D r='il; - ieAiO 

Tij Mij+Cij' 

Mij (Drif!·)(Djif!) + (DJ'if!·)(D;if!) 

- gij [(D·kif!·)(D k if!) - m 2if!.if!] , 
A A 

C;j- - F;kFjk + fiijFkmFkm, 

(2.1) 

(2.2) 

(2.3) 

(2.4a) 

(2.4b) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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A set of four conditions will now be imposed on the field 
equations. This procedure will simplify the field equations to 
the point where nontrivial solutions can be found. The four 
conditions are (i) stationarity of the fields, (ii) isometric mo
tion, (iii) the WMP condition, and (iv) axial symmetry. 

(i) Stationarity of the metric, electromagnetic field, and 
the matter field shall be taken to mean that there exists a 
timelike Killing vector field S ; on M4 such that 

!fdij = .!fsA; =0, 

:fst/J = iEt/J, 

where :f s is the Lie derivative and E is a constant. One can 
find 10 a class of coordinate systems Xi = (XU,t) in which S i 
= (0,0,0,1), and hence in which the metric has the form 

$ gijdxidxi = - e~Wgapdxadxp + eW[aadxa + dt ]2,(2.9) 

the matter field has the form t/J = x(xa)eiEI, and in which A i is 
a function of the xa only. The quantities gup,au' and (() de
pend only on the xa. The gaP are the components of the 
metric tensor on a three-dimensional Riemannian manifold 
M J , called the associated space. The aa and (() transform, 
respectively, as a covariant vector and a scalar on MJ . The 
twist vector on M J is defined as 

1"-"=~e2w1]l-'aPlup, (2.10) 

where 1]I-'UP =g~ 1/2El-'aP is the alternating tensor on M J , and 
lap -aa.p - ap.a' The necessary and sufficient condition 10 

that the metric gij is static is that 1"-" = 0. 
(ii) From the Maxwell equations (2.2) it follows that 

there exists a scalar field A (Xi) such that S i Fij = A.i. That 
there exists another scalar field D (Xi) such that 
si*Fij = - D.i' w~re *Fij is the dual of Fij' follows if and 
only if the current J i is parallel to the Killing vector S i ("iso
metric motion,,).3.10 Henceforth, it will be assumed that the 
coordinates (xa,t ) are those for which S i = (0,0,0,1) and for 
the remainder of this section all tensor analysis will be done 
inM3' 

Thus J a = ° and hence 

x!x - X*X.a = 2ie(Aa + Aaa )X*X' 

where we have chosen, without loss of generality, 
A = - (A4 + E I e). From this one easily derives, after differ
entiating both sides of the above by xfl, antisymmetrizing in 
a and /3, and using (2.10), that 

(2.11) 

i.e., the twist vector is parallel to the magnetic field. 
By procedures analogous to those used in Refs. 3, 10, 

and 11, and using (2.11), the field Eqs. (2.1)-(2.3) are cast into 
the following useful and elegant form: 

Rap + 1e ~ 2,vRe [(r,a + 81r¢ *¢.a) 

X(r~ + 81r¢ ~¢) - 161re"'¢ !¢.p] 

1737 

+ 161r1].a 1].{3 - 161rgape ~ 2w(e2A 2 -.m2e"')1]2 

=0, 
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(2.12a) 

(2. 12b) 

.1 2r - e ~ w(F.a + 81r¢ "¢ .a)r.a 

= 161re ~ ,v [(e2A 2 _ m 2ew) + ie2AD ]1]2, 

.1 21] + e ~ 2w(e2A 2 _ m 2ew)1] = 0. 

(2.l2c) 

(2.12d) 

In these equations RaP is the Ricci tensor on M3 and the 
remaining symbols are defined as 

¢ ==A + iD, 

r =e(U - 41r¢ "¢ + ifl, 
1]=(t/J"t/J)1/2 = (x"X) 1/2, .1 2¢ ~pVp¢.a' 

where n, the "twist potential" is determined by 

n.a = Ta + 41ri(¢ "¢.a - ¢!¢ ), 

and where Va is the covariant derivative on M 3• 

(2.13) 

(2.14) 

(2.15) 

(iii) the quantity (e 2A 2 - m 2eW
) occurs frequently in the 

field Eqs. (2.12), and thus, a great simplification would occur 
if that quantity were to vanish. Nowe'v = e2A 21m2 is of the 
form of the WMP condition: g44 = [c1(C2 ± A4W, where C1 

and c 2 are constants. The WMP condition has formerly been 
associated with static solutions of the Einstein-Maxwell 
equations without sources 7 and with sources 1.5,6.11 when one 
requires that in some sense, the gravitational and electrostat
ic forces are balanced so that the solution is stable. Charac
teristically, the WMP condition is accompanied by a relation 
of the form (charge density)l(mass density) = const. Such, in 
fact, is the case here, because of the following result: If one 
imposes eW = e2A 21m2 on Eqs. (2.12), then the contracted 
Bianchi identities V pR ap - ~PR.p = ° imply that either 
e2 = 161rm2 or D (XU) = I(A (XU)), where/is an arbitrary C 2 

function. Henceforth it will be assumed that eW = e2A 21m2 
and e2 = 161rm2. It is worth mentioning here that in the stat
ic case eW = e2A 21m2 if and only if e2 = 41r m 2 holds.6 

(iv) It shall now be assumed that there exists another 
Killing vector field in M4 whose orbits are closed curves and 
which is independent of the previously introduced timelike 
Killing vector field. Coordinates (r,z,q;,t ) adapted to the Kill
ing motion will henceforth be used so that the q; lines coin
cide with the orbits of the periodic Killing vector field and 
the z axis is the polar axis. In these coordinates the metric of 
M4 will take the form 

$ = _ e ~ W [eV(dr + dz2 ) + e2).drp 2] + eW(adq; + dt )2, 
(2.16) 

where ((), v,A" and a are functions of(r,z) only. Furthermore, it 
is assumed that the potentials A and D are functions of (r,z) 
only and that the matter field is of the form 
t/J = 1](r ,z)eiIL'i' + Ell, where L is a constant and 1](r,z) is real. 12 

Consider the Eq. (2.12a) with indices a = /3 = 3 and 
with the assumption of axial symmetry imposed on the met
ric tensor and the other fields, but without assuming, for the 
moment, that the WMP condition holds. A straightforward 
computation yields 10 

e~)..1 (~) = 161re~2w+V(e2A 2 _ m 2ew)1]2, 

where.1 ==J 2IJr + J21Jz2 is the Laplacian on ]R2. Hence~ 
is a harmonic function of (r,z) if and only if eW = e2A 21m2. 
Thus the metric (2.16) can be written in the Weyl-Lewis
Papapetrou form 13 
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A 

<1> = - e '"[e"(dr2 + dz2) + ?dcp 2] + e'''(adcp + dt)", 
(2.17) 

if and only if the WMP condition holds. 
All the field Eqs. (2.12) can now be written as partial 

differential equations on an auxilliary Euclidean JR3. The 
equations below are linear combinations of Eqs. (2.12) with 
the WMP condition, e2 = 161Tm 2

, and axial symmetry con
ditions imposed: 

.1v = - Y4 -2IVA 12 - 161TIV1]1 2
, 

V. r = r[ Y4 -2(A 2r - A ~z) + 161T(1]~r - 1]~z)] , 

v.z = r(3A -2ArAz + 321T1].r1].z)' 

v2 B - 3A - I VA· VB = 0, 

V2 A - A - I I VA 12 = 0, 

IVB 12 - IVA 12 = 2m 2e"1]2, 

V21] = 0, 

(2.18a) 

(2.18b) 

(2.18c) 

(2.18d) 

(2.18e) 

(2.18t) 

(2.18g) 

where Ar-aA lar, A,z -aA laz, V is the usual gradient 
operator in cylindrical polar coordinates on Euclidean R" 
V2 is the Laplacian, VA· VB is the scalar product, and 
IVA I=(VA.VA )112. 

Given solutions of (2.18e) and (2.18g), it is easy to inte
grate (2.18b) and (2.18c) to obtain v(r,z), and (2.18a) is identi
cally satisfied. Hence a complete solution of the field equa
tions hinges on finding a function B (r,z) satisfying (2.18d) and 
(2.18t), 

If one further requires that A = const 1= 0, then there is 
just one class of solutions of (2.18). The proof of this is rel
egated to the appendix. These solutions are characterized by 
1] = const, v = const, and B = ± pz + Bo, where Bo is an 
arbitrary constant and p2 __ 2m 2ev 1]2. There is clearly no loss 
of generality in choosing 1] = I and w = v = 0. The function 
a(r,z) can be determined from Eqs. (2.11). Hence a class of 
exact solutions of the Einstein-Maxwell-Klein-Gordon 
equations is given by 

i> = - (d? + dz2 + r2dcp 2) + [a(r)dcp + dt ]2, (2.19) 

a(r) = ± (81T) 112m? + ao, 

A = ± (161T)-1/2, (2.20) 

B = ± 21/2mz + Bo' (2.21) 

tf; = ei(L~ -'- E( I. (2.22) 

The quantities ao, Bo, and Land E are arbitrary parameters. 

111. SOME PROPERTIES OF THE SOLUTION 

Some geometrical and physical properties of the solu
tions (2.19)-(2.22) are: 

(i) The metric (2.19) is flat only if m = 0. The nonvanish-
ing invariant components of the curvature tensor are 

~1441) = 81Tm 2, 

RID31 ) = 241Tm 2, 

~34431 = 81Tm2
, 

(3.1) 

where R(ijklnl denote the components of the curvature tensor 
with respect to the orthonormal basis of I-form fields 
! dr, dz, rdcp,[a(r)dcp + dt ]l. The metric ga(1 on M3 is, of 
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course, flat. 
(ii) The metric (2.19) has four linearly independent Kill

ing vector fields. In the coordinates (r,z,cp,t), these are alat, 
al3cp, alaz, and.coscp alar - r- Isincpa lacp 
+ [aor- I + (81T)1/2mr]sincp a lat. The existence of the last 
Killing vector field above is not obvious, and it was found by 
the procedure outlined in a recent article by Raychaudhuri 
and Thakurta. 14 Hence the space-time M4 with metric gij is 
homogeneous . 

(iii) The twist vector on M3 is 

(3.2) 

Hence, gij is static only if m = 0. 

(iv) Since ( - g) I 12 = r, the polar axis cannot be included 
in the domain of the coordinates (r,z,cp,t ). Since 
, () _ 0 [ (8 1/2 0 0 • g33 r - - r + ± 1T) mr + ao]-, the closed cp hnes are 
nonspacelike for ° < r<J _ and for r>r +, where r + and r_ 
are the two nonnegative solutions of gJJ(r) = 0. If it is re
quired that a~ < (1281T m 2) - I, then in the region defined by 
O<;r _ < r < r +, the metric is regular everywhere and the cp 
lines are spacelike. Since~4 > ° in the above region, the met
ric there does not ~dmit smooth, closed, timelike curves. IS 
The constancy of R precludes the existence of any asymp
totically flat regions in M 4 • 

It would seem that one could eliminate the constant a 
. 0 
III the metric (2.19) by the replacement t' = t + aocp. Howev-
er, the periodicity of cp implies that t' is not a proper coordi
nate, as the following argument I 6 demonstrates. Letp and q 
be two events whose t coordinates are identical, and whose cp 
coordinates differ by slightly less than 21T. Then their t' co
ordinates differ by a "jump" of nearly 21Tao, in spite of the 
fact that the points are nearly coincident. 

Furthermore, the condition of elementary flatness,7 
which in the present case amounts to 

lim {21Tll - [ ± (81T)1/2mr + aor- I fll!2} = 21T, 
r .0, 

holds only if ao = 0. 
For these reasons it must be concluded that metrics 

with differing values of ao must be physically and geometri
cally distinct. 

(v) From (2.1) and (3.1), the non vanishing components 
of Tij are easily computed: 

Til = - Tn = m 2, T" = m 2[r2 + 3(a(r))"], T'4 = 3m
2
a(r), 

T44 = 3m 2
. (3.3) 

The eigenvalues of Tij are - m 2, - m 2, m\ 3m2 and the 
eigenvectors corresponding to the first three eigenvalues are 
all spacelike, while that corresponding to the last eigenvalue 
is timelike. Hence, the energy momentum tensor satisfies the 
strong energy condition of Hawking and Ellis'l: 
Tij WiWj>~WiWiPj for any timelike vector Wi. 

(vi) The physical relevance of the solution (2.19)-(2.22) 
is problematic. On the one hand, the electromagnetic and 
scalar field "sources" are not obviously unphysical, given 
the fact that the Hawking-Ellis strong energy condition is 
satisfied. On the other hand, the metric has causal patholo
gies of the sort which violate our intuition, and, in any case, 
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have never been observed. The metric is not asymptotically 
fiat, but the constancy of the physical components of the 
curvature would seem to preclude singularities at radial in
finity. In fact, the situation posed here has a precedent in the 
Godel solution,7.9 which has similar causal pathologies, but 
also has well-behaved sources. If there is one lesson to be 
learned from the history of general relativity, it is that one 
should be hesitant about dismissing solutions as "nonphysi
cal" because of their counter-intuitive properties. Hence, it is 
predicted that if there exist elementary charged massive 
spin-zero bosons, the configuration (2.19)-(2.22) will be real
ized. On a less fundamental level, it is possible that the solu
tions found here could be useful in an attempt to construct a 
model of a galaxy consisting of a gas of protons (whose spin 
can be approximately ignored) with a net macroscopically 
constant magnetic field. 
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APPENDIX 

Requiring A = const reduces the field Eqs. (2.18) to 

V.r = 161T r[17:r -17~], (Ala) 

v.2 = 321Tr17.r17.2' (Alb) 

V 2B = 0, 

[VB [" = 2m 2e"17 2
, 

V217 = O. 

(Alc) 

(AId) 

(Ale) 

It will now be shown that (i) ifit is required that all the 
fields are C 2 in (r,z), then Eqs. (A I) have a solution only if 
17 = const, and (ii) the solution is unique and is that given by 
Eqs. (2.19)-(2.22). 

(i) If 17(r,z) is a solution of (Ale), then there is a solution 
v(r,z), unique up to a constant of integration, of (Ala) and 
(Alb). Write/(r,z)=2li2meVi217. If B (r,z) is C 2 and satisfies 
(Alc) and (AId), then there exists a function a(r,z) such that 

B.r = Icosa, (A2a) 

B.z = /sina, (A2b) 

if and only if 

1-llr + a.2 = - r- Icos2a, 

I-liz - a.r = - r-Icosasina. 

(A3a) 

(A3b) 

Now define (J ==In[ 1[, differentiate (A3a) with respect to r 
and (A3b) with respect to z, and add the resulting equations 
to get 

.J(J - r-l(cos2a e.r + sin2a e.z ) - 2r- 2cos2a = O. 
(A4) 

Use (Ala), (Alb), and (Ale) to express.Je ,e.r , and e.z in 
terms of 17 ,17.r and 17.z only. Then (A4) is a quadratic equa
tion in r- I

: 

(AS) 
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where 

C1==2cos2a, 

C2==217 -Icosa(cosa 17.r + sina 17.z), 

C3 =17-2[167T(cosa 17.r + sina 17.zf + [V17[2]. 

Thus 
C2 - 4C1C3 = 417- 2 [(n,V17)2 - 2[V17[2 - 321T172(n,V17fJ. 
where n==(cosa, sinal. Since [n[2 = I, it follows that 
(n,V17f - 2[V17[2 <0 for V17#O. Thus if [V17[ #0, 
C I - 4C2C3 < 0, so r- I must be complex. Hence, in order to 
get solutions depending on real values of r, it must be that 
[V17[ = 0, i.e., 17 = const. 

(ii) Clearly if 17 = const, then v = const. Thus the solu
tion ofEqs. (A I) reduces to finding a C 2 function B (r,z) such 
that V2B = 0 and [VB [2 = p2 = 2m 2ev172 = const. Now the 
Eqs. (A3a) and (A3b) become, respectively, 

a.z = - r-1cos2a, 

a. r = r- Icosasina. 

The only C I functions a(r,z) satisfying these last two equa
tions are constant functions a = ± tr12, ± 31T12,. ... Hence, 
by (A2), B.r = 0 and B.z = ±p. In conclusion, B = 
± pz + Bo, where Bo is an arbitrary constant of integration, 

17 = const, and v = const is the unique class of solutions of 
Eqs. (AI). 
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The nonequilibrium dynamics of a large class of classical systems of anharmonic oscillators is 
studied. An existence theorem for the solution of the hierarchical equations describing the 
evolution of the states is given. 

PACS numbers: 05.20. - y 

1. INTRODUCTION 

One of the goals in studying the nonequilibrium statisti
cal mechanics of a physical system is to investigate their 
dynamical properties when the size of the system becomes 
very large. A convenient mathematical way to state the 
problem is to study the time evolution of infinitely extended 
systems. (For a deeper discussion on this point see Refs. 1 
and 2 for more recent results). 

In this paper we shall study the time evolution of an 
infinite system of anharmonic oscillators interacting via a 
two body polynomial potential with range one. An addition
alone-body restoring force that is a polynomial of degree 
greater or equal to that describing the interaction is also as
sumed. (The methods used in this paper can be easily gener
alized to more general potential. We avoid such trivial gener
alization for the sake of clarity.) 

The dynamical problem may be stated in the following 
way. One has to find a subset of the phase space of the infi
nitely extended system, in which it is possible to define a one 
parameter group of transformations satisfying the equations 
of motion. Such a subset of the phase space has to be chosen 
as large as possible, to be the support of interesting probabil
ity measures (physical states) in such a way that the time 
evolved expectations of suitable functions on the phase space 
(physical observables), make sense. On the contrary, the sub
set in which the motion takes place cannot be too large be
cause there are initial conditions giving solutions that be
come singular in a finite time. This, of course, is a feature 
occurring also in the case of continuous systems. 1.2 

This program may be performed in the considered case, 
under an additional condition linking the dimension d of the 
space with the degree 2k of the interaction. More precisely 
an k is allowed for d = 1,2; if d = 3 then k has to be at most 2, 
so covering only the case of the first nonharmonic term in the 
perturbative development of the potential. -' This will be done 
in Sec. 4. In previous papers the same problem for the har
monic case k = 1 has been treated.4 The case in which the 

"'Research partially supported by ConsigliQ Nazionale delle Ricerche, 
G.N.F.M. 

restoring one-body force dominates the interaction was also 
treated in Ref. 5 (in the polynomial case, for example, one 
has to assume that the first term has double the degree of the 
second one). The method used in Sec. 4 is essentially based on 
the energy conservation law. 

The main interest of pointwise dynamics is that it in
duces an evolution of the states and this is the aspect relevant 
from a physical point of view. Moreover, in considering the 
time evolution of the states, one expects that it has to be 
governed by evolution equations of hierarchical type, as the 
BBGKY equations in the continuous case. These equations 
have been studied in a strong form in Ref. 6 in the case of the 
model considered in Ref. 5. In this paper we study such equa
tions in a weak form (this means that we consider an evolu
tion equation for the expectation values and not directly for 
the measures). In Sec. 3 we give an approach to obtain a 
theorem of existence of such equations without making use 
of the pointwise dynamics. We observe that the evolution of 
the states is easily obtained by the pointwise dynamics when 
it exists. Since the evolution of states is, after all, the relevant 
feature of dynamics from the physical point of view, we think 
that it is interesting to obtain it without any reference to the 
pointwise dynamics. We remark finally that the two meth
ods used in Sec. 3 and 4, although different, hold under the 
same limitations on the degree of the potentials and the di
mension oflattice. The class of initial states we are consider
ing is large enough to contain interesting states from a phys
ical point of view that are singular w.r.t. any equilibrium 
state, e.g., states that are products of equilibrium states at 
different temperatures in different regions. 

For a particular class of states that is absolutely con
tinuous w.r.t. some equilibrium state the time evolution can 
be derived by means of nonconstructive arguments. 5 

The basic idea used in the proof is the conservation law 
for a Gibbs state "comparable" with the nonequilibrium 
state we are considering. 

2. NOTATIONS AND STATEMENT OF THE PROBLEM 

We consider a system of anharmonic oscillators in a 
lattice If The phase space of the system is i/' = (JR2(", 
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whose points are denoted by X, Y, where X = (Xi LEZd, 
Xi = (qi' Pi) and qi and Pi are the position and momentum of 
the oscillator at the point i of the lattice. For any A C 'ld ,A 
bounded, we denote by z¥'(A ) the phase space associated to 
theregionA. Explicitly, z¥'(A ) = (JR2)A. The points of z¥'(A ) 
aredenotedbyXA , YA etc.,whereXA = (Xi LEA' Theoscil
lators interact via a family of Hamiltonians (H A j; 
HA :i¥'(A )-JR defined by 

HA(X) = ~ {P: + C~'A P(qi - qj)) + Q(qi)}' (2.1) 

where Q and P are sums of even positive monomials with 
maximum degree respectively 2k and <2k. The mass of os
cillators is chosen to be one and 

Ui = !JE'ldli-ll-~~~,lia -lex I = Ij. 

A statep of the system is a Borel probability measure on 
,:( considered as a topological space w.r.t. the product to
pology. Alternatively a state may be described in terms of its 
joint distributions on ,':('(..1 ), i.e., a compatible family 
[PA I A czd (A bounded) of Borel probability measures on 
(/1"'(..1 )j. 

We shall consider the state described by a family of joint 
distributions on //'(..1 ) with the following properties: 

P~ (dx A ) are absolutely continuous w.r.t. the Lebesgue mea
sure dX A on i:r'(A ) with derivatives 

(2.2) 

There exist two constants a, b > a such that the following 
estimate holds. For any bounded A C'ld we have the result 

(2.3) 

where 1..1 I denotes the number of points in A. 
The only consequence of(2.3) that we shall use in the 

sequel is the following condition. Let /:z¥'(A )-JR + be any 
bounded measurable positive function. Clearly /may be 
thought of as a function z¥'(n )_JR n:::>A, still denoted by /. 
by putting/(xu ) = /(xu 1,1) wherexn IA denotes the restric
tion of Xu to A. Putting 

Q)~(/) = Z {lIS exp[ - ,8Hn(xn)] I'(xll ) dX!l' 

ZIl = S exp[ - ,8Hn(xn)]dxn, the Gibbs measure at tem
perature,8 - I associated to the region n, with zero boundary 
conditions (2.3) implies the existence of some,8 for which 

pV) = f Pn(xn)/(xn ) dXn 

<feb'lnl e- /3HJJ!xn!/(xn )dxn 

<ecln I Q)~}( / ), (2.4) 

where n:::>A and b' and c are suitable constants. A useful 
estimate that we shall use in the sequel is the following (see 
Ref. 8): there exist positive A and B such that 

(2.5) 

for all n :::>..1. Here Q)~(xn) denotes the density of the joint 
distribution of the phase variables in A. In particular (2.5) 
ensures the existence of the infinite volume Gibbs state. 
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We want to briefly discuss our hypothesis on the [p A j. 
Condition (2.2) is not particularly deep. 

Condition (2.3) means that the joint distributions have 
to satisfy a superstable estimate like the Gibbs measure gen
erated by H [i.e., inequality (2.5)]. Following Ref. 8 we may 
conclude that inequality (2.3) is satisfied ifp is a Gibbs state 
generated by a family of Hamiltonians ! hA 1 sufficiently well 
behaved with respect to P7 + q;k. We do not make more pre
cise conditions on (hAl since we are more interested in the 
states than in the Hamiltonians generating them via the 
Gibbs prescription. For some results on the evolution of 
states generated by Hamiltonians in the case treated in Ref. 5 
(see Ref. 9). 

Let us putAn = [ - n, n]d. The mapxA .. -x~..lt), tEJR 
of z¥'(An )-~(An) is defined as a solution of the Newton's 
law of the motion given by the Hamiltonian HA •• This map 
induces a new map x_xn(t) of ~ _~ defining xn(t) 

= x~ .. (t lux A~' that with an obvious meaning of the symbols 
means that we study the evolution of the oscillators in An 
under the action of HA • and take the others fixed. The Liou
ville theorem and the invariance of H A.' imply that the mea
sure Q)~ .. is invariant under the flow XA .. -X~ .. (t). 

Defining 

and for 

l<n pj,,(XA ) = fPAJX~J-t))dX~"-Aj' 
we have for 1 < n, 

(2.6) 

:t !Pj,,,/;l = - (pj,,,:.t' j/j) - !PJ+ I", Cj + IJ /~), 
(2.7) 

where fl.; jjE' is any sequence of functions with the follow
ing properties: /jEC I [,c:r(A))], IJ is bounded, and putting 

(2.8) 

one has II V I; II 00 < 00. 

The operator ':?j' the Liouville operator associated to 
the Hamiltonian H A , is defined as 

('Yj /.i') (X A) = ( /j, HAl 1 (x A), 

where 

and 

Cj + IJ:C' [ff'(Aj)]-C [UZ'(Aj+ I)] 
is defined as 

and finally 

Vi, gj)= f dxAj;(XA) gj(xA) 
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for all couples of;; andg; for which the above integral makes 
sense. 

The Eq. (2.7) has a very natural limiting equation: 

:t P' <;;) = -p,(x; J;) -p,(C; II.;!;) (2.12) 

so that the problem we state is to find a one parameter group 
of maps p--p, on the Borel probability measures on fl" such 
that (2.12) hold. Moreover we would give a control on the 
deviation of the solution of (2.12) from the solutions p;'V? ) 
of truncated Eq. (2.7) in terms of!; and n. This problem will 
be approached in Sec. 3. 

3. THE HIERARCHICAL EQUATIONS 

In this section we investigate the existence and the pro
peties of the evolved measurep, under the action of the infi
nite dynamics. In particular we start by proving Lp (~, p)
convergence of the sequence! q;'(t ) J. 

Let xEflC' and (q;'(t), p;'(t» be the coordinate and mo
mentum of the i-oscillator in the configuration xn(t ), with 

Then (n > 1) 

q;'(t) = qi + ai." (p, t - ('ds r'dr Jo Jo 
X L\~A" [P'(q;'(r) -qi'(r))] + Q'(q;'(r))] , 

pi'(/) = q;'(t) + (1 - e,.")p,, 

where 

{
I e -

I,n - 0 

Then putting 

if iEA". 

otherwise. 

8;'(t) = Iq;'(t) - q;' l(t)1 
2k I 

if! a" I and! ba I are such that P '(.v) = L aaY" and 
a=l 

2k - I 

Q '(.v) = L ba ya and iEA j CAn we have 
fI"----= I 

(3.1 ) 

(3.2) 

8;'(t)< I'dt l fdt2 L~A" ~~~lla" [J" Iq;'(t2 ) - q;'(t2 W f3 Ilq;' l(t2) - q7 l(t2 W ] 

X [8;'(t2) + 8;'(t2)] + ~~II bet L~, Iq;'(t2) I" (J I Iq;' - l(t2) 1 f3] 8;'(t2 ) (3.3) 

< (' dt l (" dtz L D;:t(t2) 87(t2)' Jo Jo t~v, 
where 

v, = Uiu!i] 

and 

{
A ;'/(t) ifi#l, 

Dn t = . 
,,/() A7.i(t)+B;'(t) if i=l, 

where 
2k I 

B;'(t)= L ba L Iq;'(t)I" (J Ilq;,-I(tW, 
(1:-::.- 1 (1<a 

n ) _ {2'I laa( L Iq;'(tl) - q7(t l ) I" 
A i,/(t - ,,_-·1 f3<a 

° ifi#I,li-ll>l, 

A 7,i(t) = LA ;:t(t)· 
lEU, 

Then (3.3) may be iterated at least n(i) = In -}I times to 
obtain: 

8;'(t)< (' (" ... (""'" 'dtl· .. dt2nlil 
Jo Jo Jo 
X L D;\ (t2 ) .. ·D ~"'I "/",iY2nlil) 8;:,)tznlil)' (3.6) 

(" ... ,I"'I) 

The main point of this section is the following estimate. Let 

Oh (.v) be any function such that limOh (.v)ly = 0, hEl' . 
y .0 

Then 
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(3.4) 

(3.5) 

Proposition 3.I:Letd(1 - 11k) < 2,p> landpobeastate 
satisfying (2.2) and (2.3). Then for all iEA j there exists a y > 0 
(not depending on}) such that 

p(18;'(t W)<Ot!n - yn)t 2!n 11. (3.7) 
Proof: Let us first put p = 1. 
Defining 

(3.8) 

our first aim to find a bound for Ii = n or n - 1 and}iEA,,: 

(3.9) 

where C4(k, n) depends on k and n, and m = 2n(k - 1) + 1. 
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In fact with (3.9), using (3.4) and (3.5) we obtain 

L p(D 7J, (t 2 )···D;' .J, (t2,) 8; (t 2s ) 

J.":J, 

<2C;N{d)2S{2k- W'2(2k-t)SC4{k,n), (3.1O) 

and hence from (3.6) 
t 2,,(i) 

p(q;')(t))< [2n(i)]! C~(i)N{d)2,,(i)C4(k,n), (3.10), 

where Cs and C(, are constants depending only on the inter
action and N (d) is the number of the first neighborhoods at 
any point of 1/. We now determine C4 (k,n), 

Let a < 2 and X" : ir-lR be the characteristic function 

of the set I XE::!'!q;,' ( 1"d .. ·q;::{ 1"m) > na,,). Then 

(3.11 ) 

By virtue of{2.4) and Holder inequality and time invariance 

of cu~" ' 

P [X q-"( 1" ) ••• q-'",{ T ) ]<ec"d cu (3 {;:;p")lIP,, 
n 11 I 1", m A" '1jl 

"'CU (3 (q_P,,) lip" CU (3 {X )l/
q

" (3.12) 
/1" Jm !lit n ~ 

p" = 
q"m (3.13) 

(q" - I) 

By the superstable estimate (2.5) there exists a constant C7 

such that 

cu(3 (;:;P")<C P
,,/2K (~)! 

,1" '1) 7 2k (3.14) 

and hence 

The Ihs of(3.12) <ecn" cml2K _" cu(3 (X )I/q". (
p )ml2k 

7 2k A" n 

On the other hand, let iJ> 0; then 

cuX.,lXn ) = CU%,({XEY'J I! ,tl In q;:!1",) 

> a:iJ lnn }) 

_ n" 1 ~ IJ <e - L.. CUA 
m ,= I " 

[ I (13ml",,) l"ij;'(T,I)] 
X exp\e " 

(3.15) 

(3.16) 

where the last step is obtained by the convexity inequality. 
By the time invariance of the cut and the estimate (2.5) we 
obtain the existence of a constant Cx such that 

if iJmlan<2k i.e.p<2kal[2(k-l)+ 1/n], 

and finally 

cuf,(X,,) < Cxe - nl'. 

Choosing q" = n € with t> 0, we obtain 

n€ m ~ 
p" = --m and - <an, 

n€ - 1 2k 
PIt -
-<an, 
2k 

(3.17) 

(3.18) 

(3.19) 

with a < 1 and a < 1 for sufficiently large n. Combining 
(3.19) and (3.1S) we obtain 
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Ihs of (3.12) <C~" C t"(ein)a" exp [end - n 13 - <] . 
(3.20) 

So that, if d (1 - 1 I K) < 2, choosing a sufficiently small t and 
largeiJ, (3.9) is proved with 

C4(K, n) = na" + 0l(e "). (3.21) 

By (3.10)' we have the proposition with P = 1. Now let p be 
an integer larger than one. Then 

p( !q;'(t) _ q;' I(t) IP) 
p. I 

< L e, p(!tl7(t WItl7 - I(t W ., - I 8;'(t)) (3.22) 
r=1 

with some positive coefficients e,. 
Let ~> 1 then 

p( 1tl7(t) I 'Iq;' - I{t W ,- 187(t )) 

<S-" p{8;'(t)) + p{Xn 1tl7(t ) I 'Iq;' - l(t W -, 18;'{t i), (3.23) 

where X" is the characteristic function of the set 
! XE/Y'Iq;'{t )1'1tl7- l(t )IP -, - I> S-"). But 

p{X"Itl7(t )1'1tl7 - l{t )IP- ,- 1) 

<ecn"cu X.,lX,Y12cu X.,l 1tl7(t W'Iq;' I(t WIP- ,- 1))112, (3.24) 

where the last term in rhs of(3.24) is uniformly bounded by a 
constant C'j because of Swartz's inequality, time invariance 
of cu!:", and estimate (2.5). 

Furthermore, if r > 0 is chosen such that rp < 2k then 

(3 - (3 ({ u. 'I (lgtl7(t r + Intl7 - l(t Y - ,- I) 
CUA (X,,)=cu A XE,:t" r ---------
"" 2 

> r ; In S- }) 

Hence proceeding as above there exists constants C IO such 
that 

Finally, combining (3.26) with (3.22) we conclude the proof 
of Proposition 3.1. 

Theorem 3.2: Let d (1 - 1/ k ) < 2, 
1~'E!g)EC I [;r(A))] IIIVg) 11< 00 I and p a state satisfying 
(2.2) and (2.3). Then there exists r> 0 such that: 

Moreover there exists a limiting measure PI such that 
p,~) [ = limn +00 p7~)] is differentiable and satisfies: 

Proof Let r;;. 1. Then for fixed tElR we have 

f p (dx) I [q7(t) - q)"(t))' - [q;"(t) - qj(t))'1 
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<r f p (dx) ([ Iq7(t) - qj'(t 11'- I 

+ Iq;"(t) - qj(t lI'- I] 

X [ /(q~(t ) - qj'(t )) - (q;"(t) - qj(t )) I ]} 
< r[ (f p (dx) I q7(t) - q;"(t ) I r) I/r 

+ (f p (dx) Iqj(t) - qj'(t) I r) IIr] 
I 

X {(f p (dx) Iq7(t) - qj'(t II'r- II/r 

+ (f p (dx) Iq;"{t) - qj(t JI}- IIr} . (3.27) 

So the rhs of(3.27) goes to 0 as n~oo and m > n in virtue of 
Proposition 3.1. 

In particular, putting 

F;(x) = - I P'(q; - qj) - Q'(q;) (3.28) 
jEU; 

the force acting on the i-oscillator, the above argument 
proves 

p [IF;(x"(t)) - F;(x" - I(t)) I ] < I (t) 12
" + I02(n - r") 

(3.29) 

and hence 

p [ 1 87(t ) 1 ] <t 2in + 1)02(n - Y"), (3.30) 

where 87(t) = Ip7(t) - p7 - I(t) I. Finally, 

f p (dx) I;;(x"(t)) - ;;((x" - I(t)) 1 

< II V;; I!'", 2:. [p(D7(t)] + p[(87(t))] 
iEA

J 

<IIV;;lIoo (q + l)dt 2i"+ II03(n -r"). (3.31) 

That proves (i). 
The measure p, may be built by observing that since the 

LMf'" ,p)-convergenceofp7(t), q7(t), F;(x"(t)) is integrable it 
also implies the p-almost everywhere convergence and in
duces ap-almost everywhere defined mapx-x(t) and hence 
an evolved measure. 

Let us prove part (ii). We must prove that 
rn> n 

1 (pl." .Y j h) - (P;', .Yj h) I -0 , 
n~oo 

(3.32) 

(3.33) 

Now we have 
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Using Theorem 3.2 we have the result. 
Comment on the proof Unfortunately we are not able to 

prove that an evolved state still satisfy the inequality (2.3) (of 
course with time depending coefficients). It seems that the 
conservation in time of superstable estimate may be possible 
only when a linear estimate on a global quantity holds as in 
Ref. 5. The estimates given in Ref. 9 for the model porposed 
in Ref. 5 allows us to prove that the time evolved state still 
satisfies the superstable estimate. 

4. REMARKS ON POINTWISE DYNAMICS 

In the previous section we introduced the map 
x~x(t ) p-almost everywhere defined, satisfying the New
ton's laws of motion. A natural problem arising is to charac
terize a full measure initial set for which the motion takes 
place. This can be done in the following way. 

We define H:ff'" -IRu( 00 I: 

H( (HA,,(X;t.l 1) 
x) = sup +. 

n lAm I 
(4.1) 

H is a measurable function. Putting 

ff"'o= [xEff"'IH(x) < + 001. (4.2) 

we have as a consequence ofinequaltiy (2.3) an Chebyshev 
inequality, 

p( ff"'o) = 1. (4.3) 

We sketch the proof that ff'" 0 is a good set of initial condi
tions and that H [x(t)] is finite for all tEIR if xEff'" 0 and then 
x(t )Eff'" o. From (3.6) we easily get (iEA j) 

t 21n -jl 
D7(t)< . C(k,d lin - Jl [H (x) 1 12k - 2I2k I In - jl 

(2(n -J))l 
X ndil-Ilklin - J\ (4.4) 

where C (k,d ) depends only on k and d. 
An analog of estimate (4.4) can be proved for 87(t ) and 

this is enough in order to prove the existence of the flow 
ff'" o3.X~x(t) satisfying the motion laws if d (1 - Uk) < 2. 

We now prove that H [x(t)] < + 00. We have 

Hn [x;; (t)]<HIl [x~(t)] 

+ f IHn[x~+I(t)] -Hn[x~(t)ll, (4.S) 

where n = A j' S > j. Then for some constant C 

IHn [x~+ I(t)] - HIl [x~(t)] I <CH(x)(/ + l)d 
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x sup c5 i + I(t ), 
iEn 

(4.6) 

so that (4.5), (4.4), and the energy conservation imply 

Hn (X';; (t ))';;;H;\,(x) + 1, (4.7) 

ifs = Integer part of[YI H(X)Y2] + 1 + 2j, (4.8) 

where YI and Y2 are suitable constants depending on the pa
rameters of the system. Finally 

Hn{x';;(t)) .;;;H(x) IAsl + l.;;;y H(x)Y', 
In I In I 3 

(4.9) 

where Y3 and Y4 are constants. 
We conclude by remarking that the set 

f? ={XEf?I.il(X)= lim H;\)x) = a} 
a j~", IAjl (4.10) 

is time invariant. 
This means that .il is a first integral of the motion. (See 

Ref. 10) for a discussion on the interest on this point. This 
may be seen by the inequality 

Hn [x~J(t)] - f IHn [x~+ I(t)) -Hn [x~(t)] I 
e=s 

<H[xn(t)]';;;Hn[x~(t))+ f IHn[x~+I(t)]1 
e=s 

-Hn[x~(t)]. (4.11) 

Choosing s such that (s - j)---o. 00 ,s".(s - j) - 2----+0, with 
a> d (I - l/k) and (s - j)..r 1----+0, wheres---o. 00 andj---o.oo the 
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statement is easily proved in virtue of the above estimates. 

Remarks: We observe that from the point of view of the 
pointwise dynamics the degreee of Q may also be chosen 
smaller (possibly zero) than the degree of P. In fact, the rela
tion between the degrees of P and Q of Sec. 2 are used only in 
constructing the equilibrium states. 
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We present two different approaches to evaluating the probability of finding in a particular state 
two neighboring lattice sites on a one-dimensional array of dumbbells. The results we find are 
exact and the same with either the first or the second procedure. 

PACS numbers: 05.50. + q, 68.20. + t 

I. INTRODUCTION 
Many physical and chemical systems can be represent

ed by the distribution of particles on a lattice space. Among 
the systems that can be conceptualized in this manner are the 
magnetic materials, binary alloys, the eleasticity of muscle 
and some textiles, the helix-random coil transition in solu
tions of proteins, and the adsorption of gas on a crystalline 
surface. 

An adsorbed film formed by the adsorption on two ad
jacent vacant sites of the two atoms of a diatomic molecule 
must be regarded as a geometrically random distribution of 
pairs of occupied sites. Therefore, when we come to consider 
the kinetic aspects of adsorption of diatomic gases on metal 
surfaces, such as sticking probabilities or thermal desorp
tion 1.2 we are immediately faced with a kind of problem that 

we are going to call pair-site-occupation probability, that is 
to say, the probability of finding in a particular state not one 
but two nearest-neighboring lattice sites. This lattice pair site 
can be in four different states:(a) both sites occupied by the 
same diatomic molecule (o-o)s; (b) both sites unoccupied u-u; 
(c) one site occupied by part of a diatomic molecule and the 
other vacant o-u; (d) both sites occupied by parts of different 
diatomic molecules (o-o)d [see Fig. l(c)]. 

The purpose of this paper is to discuss the occupation 
probability aspects of a one-dimensional array of dumbbells 
(particles that occupy two contiguous lattice sites). There 
exists in the literature a large number ofpapersJ

-
K concerned 

with the statistical analysis of one-dimensional systems. The 
rationale for treating such systems is that it is often possible 
to perform a relatively thorough investigation of their statis
tical-mechanical properties, and knowledge thus gained 
may be of value when considering systems of higher 
dimensionality. 

Problems dealing with particles that occupy more than 
one lattice site have always been troublesome. Unlike simple 

0 0 u-u 

0 o u-u 0 • u-o 

o u 0 • U-Q • • (a-aid 

• 0 • .0-0 ~ _____ (o-ois 

(a) (b) (c) 

FIG.!. Different states in which we can find a single site (a) or a pair of 
neighboring sites (b) and (c) in a lattice space occupied by single particles or 
by dumbbells. 

particles, there is no reciprocity between particles and va
cancies. K-9 

In Sec. II, as an introduction to the real problem, we 
consider the case of one site occupation probability. 

In Sec. III we show that by applying probability theory 
we can find the exact pair site occupation probabilities as in 
Sec. III 2 where we come to the same results combinatorial
ly. 

II. ONE-SITE AND PAIR-SITE OCCUPATION 
PROBABILITY 
A. One-site 

A particular site can be in only two different states, 
either occupied or unoccupied [see Fig. l(a)]. 

Let e = k / N be the occupation probability of a given 
site by simple particles (particles that occupy a single lattice 
site), either on a one- or a two-dimensional lattice, where k is 
the number of simple particles and N is the number oflattice 
sites. Ifwe are dealing with dumbbells the occupation prob
ability of a given lattice site is also e ( = 2k / N) because any 
site taken at random is again a typical site, either on a one- or 
a two-dimensional lattice. 

B. Pair-site 

Let us now ask for the pair-site occupation probability. 
We are only going to consider the nearest-neighbor pair of 
sites either on a one- or on a two-dimensional lattice. The 
number of different states in which we find a given pair of 
sites will depend now on the kind of particles we are 
considering 

(a) Single particles: The pair-site can be in three different 
states (Fig. 1 b), both sites either unoccupied (u-u) or occupied 
(0-0) or one unoccupied and the other occupied (u-o). 

The pair-site probability of states u-u; o-u; and 0-0 is 
(1 - e f,2e (1 - e ),ande 2,respectively, if weare considering 
noninteracting particles. 

(b) Dumbbells: the previous result can be taken as only a 
first approximation to the true value when we are dealing 
with particles that occupy more than one lattice site, and this 
is so because a pair site can be now in four different states 
[Fig. l(c)]: u-u; u-o; (u-o)d; or (o-o)s. The fourth state is now 
one where the same particle is occupying both lattice sites. In 
the present paper we are going to determine the exact pair 
site occupation probability for a one-dimensional array of 
dumbbells. 
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III. THE MODEL 

The essential motive of this work is the application of 
probability theory to solving the infinite linear lattice. The 
aim of the authors is to show with future outlooks more 
complexes problems, which sometimes can avoid combina
torial calculus, and we only carry them out in Sec. III-2 to 
show that we can obtain identical results. 

The essential condition that the infinite linear model 
must fulfiJl [see Sec. III A and Fig. 2(a)] is that the probabil
ity of a site taken at random being occupied is 0 ( = 2k / N). 

This condition is not fulfilled by a finite linear lattice 
(with extremes) [see Fig. 21c)) and if x is an end site the prob
ability of its being occupied is 

The only way to simulate in finite form an infinite linear 
model without end sites would be with the finite circular 
model, and in this case the probability that a given site taken 
at random will be occupied is 

A. The one dimensional model 
1. First procedure 

Let us take a one-dimensional lattice occupied by 
dumbbells where the one-site occupation probability is 8, 
such as the one shown in Fig. 2(a). Our purpose is to find out 
what is the probability of finding two contiguous lattice sites, 
taken at random, in one of those states shown in Fig. lIe). 

Let y" Yz, Y3' and Y4 be the probabilities of finding the 
states (0 - o)s; u - u; 0 - u; and (0 - old, respectively. We 
are going to call r, s, t, and u four consecutive lattice sites 
(Fig. 2(b)). 

Let A, D, and C be the following events: 

r stu 

11+1 1+1+11+1 (e) 

N = 12 k=4 

(d) 

N =12 k=4 

FIG. 2. A one-dimensional lattice space, (a), (b), (c) linear; (d) circular. 
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A: The event of the occupation of site s, 
D: The event of the occupation of sites sand t by the 

same particle, 
C: The event of the occupation of sites rand s by the 

same dumbbell. 
Then P (A ) is the probability that site s is occupied, P (B ) 

and P (C) are the probabilities that sites s, t and r,s are occu
pied by the same particle, respectively. We immediately see 
that events 0 and C are mutually exclusive (OnC = 0) and 
exhaustive (DuC = A ), therefore 

0= P(A) =P(B) +P(C). 

By symmetry 

P(B)=P(C). 

Therefore P (0) = P (C) = 0/2. 

Y, = 8/2. 

Weare going now toevaluateY2' Y3' and Y4' LetFbethe 
event where sites sand t are never occupied by the same 
dumbbell. Then 

PIF) = 1 - y, = 1 - 0/2. 

Within the universe defined by F the probability of an 
eventH{HCF) occuring isP(H); 

P(H) = P(H /F) = P(H)lP(F). 

Assume now that Hand K are two independent events 
within the F universe, then 

P(HnK) = P(H ).P(K ), 

or 

P(HnK)lP(F) = P(H)lP(F)·P(K)lP(F). 

Therefore the probability of events Hand K occuring in 
the original universe will now be P (HnK ): 

P (HnK) = P(H ).p (K liP (F). 
We can now obtain Y2' Y3' and Y4 by applying the pre

vious equation with events Hand K properly defined. In 
every case the conditions H C F and K C F must be fullfilled. 

We proceed as follows to evaluate Y2' Let Hbe the event 
site s is empty and K the event site t is empty. Then 

Y2 = P(HnK) = P(H)·P(K)lP(F) 

= (1 - 0)(1 - 0)/(1- 0/2) = (1 - 8)2/(1 - 0/2). 

To evaluate Y3 we need to consider just one case and 
then we multiply by two. Now let H be the event of the 
occupation of sites rand s by the same dumbbell and K the 
event site t is empty. Then 

Y3 = 2'P(HnK) = 2·P(H)P(K)lP(F), 

Y3 = 2·0/2· (1 - 0) = 8 (1 - 0) . 
1-0/2 1-8/2 

Finally, to obtain Y4 we proceed as follows. H will now 
be the event of the occupation of sites rand s by the same 
dumbbell and similarly K will be the event of the occupation 
of sites t and u by another dumbbell. Then 

Y4 = P(HnK) = P(H)·P(K)lP(F), 

0/2.0/2 8 2 

Y4 = 1 - 0/2 4( 1 - 0/2) 
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2. Alternative procedure 

Let us begin by considering a finite linear lattice consist
ing of N equivalent sites where k dumbbells are arranged, 
such as the one shown in Fig. 2(c). Let us now consider the 
occupational degeneracy T (k,N) for dumbbells particles, 
that is, the number of ways k indistinguishable dumbbells 
can be arranged on a one-dimensional lattice space consist
ing of N equivalent sites. 

T(k,N) = [(N ~ k)], 
because there are k indistinguishable particles to be permut
ed and k + N - 2k entities ( = N - k I. 

The pair-site occupation probability for a finite linear 
lattice space will depend on the particular pair we are select
ing. In other words, it depends on the position of the pair 
with respect to the ends of the lattice space. 

We are going to assume that the "end effects" of the 
one-dimensional lattice will be negligible on the pair-site oc
cupation probability as the number of sites (N) tends to infin
ity. This assumption is equivalent to the device of joining the 
ends of our linear lattice, Fig. 2(d). Now, any site is a typical 
site. Ifwe choose at random two consecutive sites in a circu
lar lattice space we can find the pair-site in: 

(a) X different states where both sites are occupied by 
the same dumbbell (0 - o)s: 

X= (N - k - 1) 
k - 1 ' 

because there are k - 1 particles left to be permuted on 
N - 2 equivalent sites, that is to say, k - 1 dumbells and 
k - 1 + N - 2 - 2(k - 1) entities ( = N - k - 1); 

(b) or in Y different states where the chosen pair site is in 
states u - u, u - 0, or (0 - old: 

Actually this is equivalent to a linear lattice space where 
k dumbbells are arranged on N equivalent sites. 

Therefore the total number of ways we can order the 
circular lattice space is 

(N - k - 1) (N - k) 
X + Y= k _ 1 + k . 

The number of ways we choose a given pair site being 
occupied by a dumbbell is X, therefore 

Let now a given pair site be unoccupied. In such a case 
there are k dumbbells on N - 2 sites, that is to say,k dumb
bells and k + N - 2 - 2k entities ( = N - k - 2). Then the 
number of ways we can choose a given pair site being unoc
cupied is 
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Then Y2 is 

Similarly y, and Y4 are 

Let 8 be the one-site occupation probability, then, when 
we allow N----1ooo 2k /N----108. Taking the limits (N--+oo) of YI' 
Y2' Y3' and Y4 we find 

LimYI = 8/2, Limh = (1 - 8 )2/(1 - 8/2), 
."'w' • oc .'\' ~ oc 

Limy, = 8(1 - 8 )/(1 - 8/2), 
.'V ~r 

Limy'~ = 8 2/4(1 - 8/2). 
tv' -'l) 

IV. CONCLUSIONS 

We have presented two procedures for finding the pair
site occupation probability of a one-dimensional lattice 
space. The results we find are the same with either the first or 
the second procedure. The former is a more general treat
ment; the only assumption we have made is that there is an 
equal a priori one-site occupation probability (8). In the sec
ond procedure, a combinatorial one, we begin with a finite 
linear lattice and in order to simplify the treatment we ne
glect all the "end effects" on the pair-site occupation prob
ability by using the device of joining the ends of the linear 
lattice space. As N tends to infinity in this circular lattice 
space we come to the same pair-site occupation probabilities 
for states u - u; u - 0; (0 - old; and (0 - o)s. 
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This paper continues an investigation of circuit breaker (sometimes called point split) regularized 
Feynman amplitudes and Taylor (BPHZ) subtraction terms. A circuit breaker regularized 
amplitude is essentially a Fourier transform with respect to internal (loop) momenta of the 
Feynman integrand. It is shown that the regularization produces tempered distributions in the 
external momenta in the limit as the propagator epsilon is taken to zero. It is also shown that for 
renormalized amplitudes the regularization may be removed interchangeably before or after the 
propagator epsilon is taken to zero. The regularization should be useful for studying time ordered 
functions and may lead to a more direct proof of the unitarity property of BPHZ renormalized 
perturbative field theory. A final incidental result in this paper is a new proof that the Feynman 
amplitudes produced by the forest formula of BPHZ are tempered distributions. 

PACS numbers: l1.lO.Gh 

1. INTRODUCTION 

In Ref. 1 the continuing importance of regularization as 
an analytic tool in renormalized perturbation theory was 
briefly surveyed. Particular attention was called to Ref. 2 
where a heuristic proof of the unitarity of the Zimmermann 
formulation (BPHZ)2.3 of BPH4

•
5 is based upon the use of 

Pauli-Villars regularization. The unitarity demonstration 
remained incomplete because it included the unproven as
sumption that the propagator epsilon and regulator limits 
could be freely taken in either order. 

Although BPHZ is known to be a unitary theory (to 
every order in perturbation theory) because it has been prov
en to be equivalent to analytic renormalization,6.7 aspects of 
the unitarity property remain a topic of current research 
interest. The unitarity property is a relationship between 
vacuum expectation values of mixed products (TT) of anti
time-ordered and time-ordered operators. Such mixed pro
ducts are also important to the understanding of hadron pro
duction by pair annihilation. 8 

Circuit breaker regularization permits the propagator 
epsilon to be taken to zero, in the sense of distribution the
ory, before removing the regularization. For this reason, cir
cuit breaker regularization may prove a useful tool for study
ing unitarity relations. In addition, circuit breaker 
regularization is a generalization of point splitting 1 and 
therefore relates to the Wilson expansion which has proven 
useful in studying hadron production. 8 

Point split or circuit breaker regularization was intro
duced in Ref. 1 and investigated for arbitrary terms of the 
Zimmermann forest formular for the renormalized Feyn
man amplitude. We briefly elaborate the notation of the 
reference. 

'''The research reported in this paper was supported, in part, by a summer 
grant from the Villanova University Office of Research and Patent 
Affairs. 

The typical term of the forest formula contains factors, 
arising from Feynman propagators, of the form 

[(k; + q()2 - m 2 + ic((k( + q()t + m2)] " I. (1.1) 

These factors are assigned to, or in other words labeled by, 
the lines, (or a circuit based graph'l (CBG), G. The k( are the 
internal line momenta which define the structure of this 
CBG. We choose ag-chord, i.e., a set oflines whose internal 
momenta constitute a maximal linearly independent set, and 
express all of the internal line momenta in terms of this set by 

( 1.2) 

using a relabeling if necessary. 
The external line momenta, q (> are linear combinations 

of the external momenta of the amplitude. As usual, m is the 
mass associated with a propagator, here taken to be the same 
for all lines of the CBG. We will later briefly discuss remov
ing this restriction. 

The Minkowski metric is used implicitly on all four vec
tors except where the subscript E indicates a Euclidean met
ric. The careful reader may notice that the coefficient of epsi
lon in Eq. (1.1) differes from that taken by Zimmermann, as 
Zimmermann's differs from the usual straight epsilon, by the 
addition ofa non-negative polynomial in the components of 
the total line momentum. This was done for convenience in 
performing the internal momenta integrations to obtain the 
expressions in Feynman parameter space. Zimmermann 
found the changes he introduced useful in establishing the 
convergence ofBPHZ amplitudes . .l· 1o The convergence 
proof remains valid with propagators of the form (1.1) since 
the expressions used by Zimmermann obviously majorize 
those generated by (1.1). One expects that any positive qua
dratic form in the line momenta could be used without alter
ing the final results since different positive quadratic coef
fients of epsilon result in the same propagator, considering 
the propagator as a generalized function in the epsilon to 
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zero limit. II In any case, we do not further pursue this ques
tion here. 

We assign to each line of the relevant eBG, G, the usual 
Feynman parameter a(> with the values of the parameters 
restricted to a (#(G) - 1 )-dimensional region Ra defined by 

O.;;;a/.;;;I, 

and 

#~) 

L at = l. (1.3) 
I~I 

We also assign a breaking (or splitting) parameter to 
each line of G. 

The parameter space results are conveniently expressed 
using 

Xj = djs, 

V= 2)Qd i)(A -1)ijXj, 
iJ 

- I [(Qdi)(A -')ij(Qd j) 
iJ 

+ iE(Qd i)(A -1)ij(Qdj)E ], 

and 

z = 1 
4(I+E2) 

( 1.4) 

(1.5) 

(l.6) 

( 1.7) 

(l.8) 

(l.9) 

X I [ - xM -1)ijXj + iEXM -1)ijXjE]' (l.IO) 
iJ 

In this notation, it follows from Ref. 1 that the typical 
point split forest term (psft) is of the form 

Tic) = ( (da) ~ (OC dA. A. N-I 

JR" detA L ~O 
X ::;1 ( f ~ ,q )exp(iA. W + l~). (1.11) 

where .(:;1 is a polynomial in its arguments, and N is an inte
gerwhich is the #(G) - 2M(G). with #G = the number of 
lines of G, and M (G) = the number oflines in ag-chord of G. 

The integrals in Eq. (1.11) were shown to converge abso
lutely providing that the breaking parameters do not lie in 
any of a finite number of hyperplanes. This condition per
mitted a regularizing choice of breaking parameters in every 
neighborhood of the origin. 

The previous investigation was limited to the case of 
onc fixed positive mass common to all propagators. The gen
eralization to allow various positive masses on the various 
propagators is simple. One need only replace m by 

Then the essential arguments of the reference and the pre-
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sent paper go through with practically no change. 
In the present paper, we shall prove that the epsilon to 

zero limit of Eq. (1.1) is a tempered distribution in the exter
nal momenta. We will also investigate the point split renor
malized Feynman amplitude for an arbitrary Feynman dia
gram (the r-psFa). This is given by 

J~)(s,q) = f(dk) eiksR ~)(k,q), (1.12) 

where (dk ) is the volume element for the independent loop 
momenta and R I;J is given by the forest formula. We will 
show that after folding in a test function, E and S may be 
taken to zero interchangeably. 

A final rather incidental result will be a new proof that 
the forest formula ofBPHZ produces, in the E to zero limit, 
tempered distributions in the external momenta. This is an 
old result. The method of proof in some respects resembles 
Hepp's in its reliance on parameter space representations of 
the amplitude, but is new in its utilization of the theory of 
circuit based graphs. 

2. PROPERTIES OF THE QUADRATIC FORMS OF 
FEYNMAN PARAMETER SPACE 

It will be useful to briefly review and extend some of the 
results of the references (1,9) for this section. 

Theorem 2.1: If M = M (G) is the (positive) number of 
lines of any g-chord of G and X is any M-dimensional vector 
(each component of which may obviously be a 4-vector if the 
Euclidean product is understood) not lying in any of a finite 
number of specific hyperplanes intersecting at the origin, 
then for the matrix A of Eq. (1.4) the quantity 

[(detA {~Xi(A -1)ijXj )]_1 

~ I E 

is bounded almost everywhere in Ra. 
The proof of this theorem and a detailed specification of 

the relevant hyperplanes may be found in Ref. 1. 
We recall that a set of g-circuits is called fundamental 

(anf-set) iff no one oftheg-circuits is contained in the union 
of the others in the set. and that ag-circuit is determined by a 
g-chord as follows. The internal momenta of the g-chord 
span the space which contains the internal momenta of the 
eBG. A circuit is then defined as the set oflines of the eBG 
which contain non-vanishing components of the particular 
line of the g-chord. It happens that each g-chord determines 
anf-set of g-circuits, and eachf-set of g-circuits determines 
one or more g-chords consisting of one of the lines from each 
g-circuit which is unique to that g-circuit. 

Lemma 2.2: IfT* is anyg-chord ofG IG = G - G, and 
G is a g-circuit of G, and rEG, then T *ul r I is a g-chord of G. 

Proof For convenience, we call lines independent if the 
internal momenta assigned to these lines constitute a linearly 
independent set. Since T * is a g-chord, by definition it con
sists of independent lines. If T *ul r I does not consist of in de
pendent lines, then the internal momentum of r may be ex
pressed in terms of those of T *. Consider a g-chord, T ~ , of G 
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which has C amongst the/-set of circuit which it generates. 
Since T * C G IC, the internal momenta of T * may be ex
pressed in terms of those of those of T; - e. This would 
then require that ric, which contradicts the hypothesis of 
the lemma. Therefore T *u [ r J consists of independent lines. 
Since the number of independent lines in G IC is just 
# (T r - C) = M (G) - I, because each g-chord intersects 
each circuit in its/-set in just one line, it follows that T *u[ rJ 
consists of M (G) independent lines and is therefore ag-chord 
in G, proving the lemma. 

The next theorem is a generalization of a result obtained 
by Speer. 12 

Theorem 2.3: The quantity V of Eq. (1.8) is a rational, 
bounded, and continuous function of a almost everywhere in 

R". 
Proof The matrix elements of A-I are given by9 

(2.1) 

with 

detA = L d ;. II a (. (2.2) 
T· I: 

T·~ '/ *(G) lET· 

In these equation, Y; (G) is the class of all g-circuits in G, and 
.::F*(G) is the class of g-chords in G. Of course, G is the CBG 
appropriate to the forest term in question. The number d ~ .• 
and u~ are positive constants of the structure of G. In par
ticular, U c may also depend on the choice of g-chord, con
taining C amongst its/-set of g-circuits, used to generate e. 
Using that g-chord, the number d f is the internal momen
tum routing coefficient indicating for the ith line the compo
nent of internal momentum belonging to the unique line of C 
in that g-chord. Changing the g-chord used to generate C 
then produces no actual change in the result since the result
ing alterations in U c and d f cancel. Finally, we note the lines 
ofG are numbered so that T* = [1,2, ... , M(G)J is theg
chord used to define A in Eqs. (1.2) and ( 1.4). The reader 
wishing more detail is encouraged to consult Ref. 9. 

As a result of Eqs. (2.1) and (2.2), Vis a linear combina
tion of terms of the form 

Vcr. = (qad C)(td C)( II a()ldetA, 
lET-

where now T *E,T*(G IC). By definition, 

d ; = 0, for fie. 

(2.3) 

(2.4) 

Therefore the factor qad C leads only to vanishing terms ex
cept for those of the form 

Vcr', = art n a()ldetA, (2.5) 
lET· 

with rEe. This is clearly a continuous function of a at every 
point of R" except those which make detA vanish. Accord
ing to Eq. (2.2), detA vanishes iff a vanishes on at least one 
line of every possible g-chord. This defines a set in R of 

a 
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measure zero. At every other point of Ra , either V CT', van
ishes or, since T *EY*(G IC), Lemma 2.2, and Eqs. (2.2) and 
(2.5) require that the denominator of VeT',' detA, is a sum of 
positive definite terms one of which exactly equals the nu
merator. This completes the proof of theorem 2.2. 

Lemma 2.4: The function W defined by Eq. (1.9) obeys 
the following inequalities: 

(1) Re iW>O, 
(2) Re( - (1 + iE)W)llmw~o;>m2(1 + E2»0, and 

(3) q/,aq/, ;>q/,aq/, - L(q"ad i)(A -1)ij(q"adj);>O. 
iJ 

Proof Property (3) is proven in Ref. 1 by using Bessel's 
inequality in conjunction with the diagonalized version of 
Hermitian form A -I. Property (3) with Eq. (1.9) results in 
property (1) and, after a simple calculation using the condi
tion ImW = 0, in property (2). 

3. CIRCUIT BREAKER REGULARIZATION IN THE 
EPSILON TO ZERO LIMIT 

We will evenutally show that the psft is a tempered dis
tribution. Before proceding, we recall that a tempered distri
bution is a continuous linear functional on .Y, the countably 
normed space of infinitely differentiable functions on IRn 

with/E.Y iff (Vr;>O)Vs;>O) 

Ilfll,s = sup sup Ixkaj(x)1 < 00. 
0,; k~,. XER" 

o.J s 

We use here the multi-index notation U 

n n 

Ikl = Lki' Iii = Lii' 
i= I i= I 

(3.1) 

n n aji 

Xk = II x7', and aj = II -. (3.2) 
i= 1 i= 1 aXi 

Lemma 3.1: If Vis given by Eq. (1.8) and cp (q)EY, then 
cpe iVE,7, (Vr;>O)(Vs;>O) IlcpeiVll,s is bounded by a function 
which is bounded and continuous almost everywhere in R". 

Proof The notation of Eq. (3.1) is extended to the 4n
dimensional external momentum space in the obvious way. 
As a result 

(3.3) 
I 
j'S 

since, by Eqs. (1.5) and (1.8), av laqi)s independent of q. In 
fact, since V is linear in q, Lemma (3.1) then follows from 
Theorem 2.3. 

We proceede from Eq. (1.11) to rewrite the psft by first 
carrying out the indicated differentiations. Then Lemma 
2.4( 1) enables us to recognize in the lambda integral a well 
known representation of the modified Bessel function. 14 We 
redefine T to be a typical term in the result: 

TIEl = f (da) FIEI(a,q,x) [Z]N/2K (2J - ZW) eiV.(3.4) 
R" (detA (W IN, 

Equations (1.8), (1.10), and (2.1) show thatFl<) is a polynomi
al in its arguments; the entire E dependence of FIE) is found in 
a factor which is defined and continuous over [0,1]. P is a 
positive integer. 

To simplify the discussion, we now introduce the condi-
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tion that the breaking parameters, S' Eq. (1.7), have vanish
ing time components. This enables us to write 

2J -ZW = {t:[x;(A -1)ijXj]EI(1 +E2)}1 

X [ - (1 + iE)WJl. (3.5) 

The first factor is positive almost everywhere because A is 
positive definite except on a set of measure zero. For the 
second factor, we must take the branch of the square root 
function for which 

- 1T/2 < arg[ - (1 + i)WJl < 1T/2. (3.6) 

In fact, by Lemma 2.4(2), the quantity - (1 + iE) W does not 
cross over the branch cut along the negative real axis, and we 
can therefore be assured of Eq. (3.6) with a choice of square 
root which will be continuous almost everywhere in Ra' We 
are thereby in a position to use a different representation of 
the modified Bessel function 14 and write 

TIEl = r (da)jlEI(a,q,X)BHeiV, 
JRa (detA)P 

(3.7) 

where 

_ [ ~IINI-N)12 
B- "2 ' 

a 
(3.8) 

and 

H = r'" dt cos at 
Jo [t 2 - (I + iE) W lIN I + I ' 

(3.9) 

with 

(3.10) 

The functions/IE) and FIEI differ only by a factor which 
depends on E alone and is defined and continuous over [0, I). 

We now fold in any r/Je.Y: 

TIEI(r/J) = f dq r/J (q)TIEI. (3.11) 

Since T lEI is polynomially bounded in q and the a integration 
is absolutely convergent for E> a [cf. Eqs. (4.19), (4.20), 
(4.22), (4.35), and Theorem 4.1 of Ref. I], the iterated integral 
of Eq. (3.11) is absolutely convergent. We use Fubini's theo
rem to exchange the order of integration: 

TIEI(r/J ) = 1 da ( detA ) - P 

R" 

X f dq jlfl(a,q,x)r/J (q)eiVBH. (3.12) 

Lemma 3.2: For every non-negative integer n, after 2n 
integrations by part, H becomes a sum of terms each of 
which is, up to multiplicative constants, of the form 

H _ - 2ni"'d t 'cos at . 2n -at, 
o [t 2 -(I+iE)WlINI+s 

after 2n + 1 integrations by parts, the terms are of the form 

H _ - 2n - li"'d t 'sin at 
h+l-a t . 

o [t 2 -(I+iE)WlINI+s 

In both cases, r will be a non-negative integer, and, if at least 
one integration by parts has been performed, then s;;;.3/2, 
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and 

r - 2s - 2N<. - 2. 

Proof For n = 0, the first equation ofthe lemma is 
merely are-statement ofEq. (3.9). This is integrated by parts 
once to obtainH = (21N 1+ 1)HI's = 3/2,andr = 1. After a 
second integration by part, we obtain 

H= 21N I + 1 r'" dt (cos at) [ I 
a2 Jo [t 2 _(I+iE)W]INI+312 

+ (INI + 3/2)t] (3.13) 
[t 2 -(1 +iE)WlINI+S I2 • 

The inequalities claimed by the lemma are trivially verified. 
This demonstrates the first formula for n = a and n = 1, and 
the second formula for n = 0, and the required inequalities. 
In a similar way, integration of H 2n and of H 2n + I' each by 
parts twice, verifies the lemma by mathematical induction 
on the n of each formula. 

This lemma will prove to be useful both because it guar
antees the absolute convergence of the t integration and be
cause it extracts factors of 1/a which help us to demonstrate 
cancellation of the singularities of 1/ det A. 

As a result of Lemma (3.2), TIEI(r/J ) can be written as a 
sum of terms of the form 

(3.14) 

with 

i 2n = a2nH 2n = ro'" dt t'cosat . (3.15) 
Jo [t 2 - (I + iE)WlINI +s 

The functiongl fl ofEq. (3.14) and the function/lfl ofEq. (3.7) 
differ only by a factor which is a continuous function of E 

alone, defined on [0,1], a power of B, and, finally a factor of 
(detA ) - Pa - 2n. The factors of a - 2n contain a factor of a 
powerof(1 + E2) [cf. Eq. (3.10)] which we can absorb into the 
first of the three factors. What is left of the third factor is 
bounded almost everywhere in R a , according to theorem 
(2.1), providing we take n big enough so that 2n;;;. P. The 
factor involving B is a non-negative power of B. Therefore, 
Eqs. (3.8), (3.10), and (1.9) together with theorem 2.1 guaran
tee that glfl is polynomial in q with coefficients which are 
bounded and continuous almost everywhere in Ra and hav
ing the E dependence confined to a factor which is a function 
of E alone and is defined and continuous on [0,1]. 

The next theorem will enable us to recognize the psft as 
related to a well known distribution. 

Theorem 3.3: For the psft represented by Eq. (3.14), for 
r/Je.Y the q and t integrations may be exchanged so that a 
typical term is 

TIEI(r/J) = i.,(da) gIEI(a,x)i"" dt t 'cosat 

f eiVf/> (q) 
X dq . 

[t 2 _ (1 + iE)WlINI +s 

where q'lglEI(a,x) is a typical term in glEI (a,x,q), and the fac
tors of q'l have been absorbed onto f/> = q'lr/J, f/>e.Y. 

Proof For convenience we set 
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L(Q1'ad i)(A -\(Q1'ad j
) = Q~2. 

;mj 

Then, by Lemma 2.4(3), 

Q! _ Q~2>0 

(3.16) 

(3.17) 

and is, by Eqs. (1.5) and (1. 6), quadratic in q 1" Once again, 
Theorem 2.3 and Eq. (1.8) with (Qad j

) replacingxj and Q1' 

replacing Q implies Q! - Q ~2 is continuous and bounded 
almost everywhere in Ra' We conclude that Q! - Q ~2 is an 
infinitely differentiable function of q1' which, with all its de
rivatives, is continuous and bounded almost everywhere in 

Now let E (x) be infinitely differentiable function on the 
real numbers such that 

E(x) = 1, for x>2m2/3, 
= 0, for x<m2/3, and 

O<E(x)<1. 

(3.18) 

The for any </J (q)EY:</J (q)E(Q ~ - Q 02)EY, and 
</J (q){1 - E (Q~ - Q 02))EY'. We substitute 

</J (q) = </J (q)E(Q~ - Q'~) + </J (q)(1 - E(Q~ - Q'~)) 
(3.19) 

into Eq. (3.14). 

By Eq. (3.1), for any s and for any sufficiently large n, 

If dq </J(q)(I-E)I<f dq 1</J(q)1 <II</Jllns· (3.20) 

Then, by an argument of dominated convergence, the second 
term arising from Eqs. (3.14) and (3.19) converges absolutely 
to a function which is continuous and bounded almost every
where in Ra; 

If dq </J (q)e iV (1 - E(Q~ - Q02)) I 

xf" dtt'(cosat)(t 2 -(I+iE)W)-N' 

<f dq 1</J(q)II-E(Q~ _Q02) 

xf" dt'(t 2+m2/3)-N'. (3.21) 

The right-hand side ofEq. (3.21), obtained by using Eq. (1.9) 
and Lemma 2.4(3), is obviously absolutely convergent, by 
Lemma 3.2, uniformly in E. Furthermore, Eq. (3.20) then 
shows that this term of the psft is continuous in </J for EE[O, 1]. 

We procede to study the first term arising from Eqs. 
(3.14) and (3.19). It is convenient to set 

3 

P= L(Q!-Q~2), 
1'~1 

and 

(3.22) 

Then the relevant term of the psft has an integrand which is 
dominated by the integrands of 
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f dql<fJ(q)E(Po)1 

X Sa"" dt t'l(t 2 + P- Po + m2 - 2iEPo) -N'I 

= f dql</J(q)E(Po)1 

X Sa"" dt t'[(t 2 + P- Po + m2)2 + 4cP~ ]-N'/2, 

which, by Eq, (3.18), 

<f dq 1 1,6 (q)E(Po)1 

X Sa"" dtt'[(t 2 +P-Po+m2f+ 16Cm2/9]-N'12. 

We break the t integration into two parts. The part including 
the origin is controlled by the 16cm2/9 term of the denomi
nator. If the point of breaking is taken to be 

2(Po - P - m 2)1/2{} (Po - P - m2
), 

where {} (x) = 1 for non-negative x and is zero for negative x, 
then the rest of the t integration is bounded by 

f dq 1</J(q)E(Po)1 

X i:,,_p_m
2

)'" dtt'(t 4/2 + 16cm4/9)N'12 

<f dq 1<fJ(q)lf" dtt'(t 4/2+ 16cm4/9)N'12, 

which, this time for E in (0,1], is absolutely convergent by 
Lemma 3.2. Both parts of the t integration, again by Eq. 
(3.20), are continuous in </J. 

Finally, Theorem 3.3 is then true by Fubini's theorem, 
The remaining problems of this section are to show that 

we can take the epsilon to zero limit inside of the a and t 
integrals and to establish that the result is continuous in </J. 
For test functions (1 - E (Po))</J,</JEY', this is already clear 
from Eqs. (3.21) and (3.22) and Lemma 3.1. For test func
tions from E (P o)Y, the support properties of the chosen test 
function effectively keep Po positive definite. In this case, a 
discussion by Speerl2 of a similar expression shows that 
(t 2 - (1 + iE) W) - N defines, for every N, a distribution 
which is a continuous function of E defined on [0,1]. We 
modify Speer's approach slightly to suit out present purpose. 

Theorem 3.4: If 0 < E< 1, O<t< 1, and the coefficients of 
the quadratic forms P and Po are restricted to any compact 
region for which P and Po are non-negative, then the distri
bution (t 2 - (1 + iE) W) - N is uniformly Cauchy in all of 
these quantities. That is, there exist positive numbers r, s, 
and B such that 

I(tf + (1 + ~)(m2 + P') - (1 - ~)Po + 2iE[P o)-N(I,6) 
- (t 2 + (1 + E2)(m 2 + P) - (1 - E2)Po + 2iEPo) - N(I,6) I 

<BII</JII,s(IE1-EI + Itl-tl)+ LIP;; -Pijl, 
ij 

where the (ij) subscripts on the quadratic form indicate the 
coefficien ts. 

Proof For test functions from (1 - E (Po)Y), this is al
ready obvious from the absolute convergence of the inte
grals, as previously discussed. Differentiation under the inte-
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gral with respect to the quantities in question establishes the 
theorem for this case. 

Since Po is a quadratic form in the time components of 
the external momenta, by direct calculation 

iq7 -;'(t 2 - (1 + ic)W)A + 1 

i~ 1 aqi 
= 2(A + 1)(1 - c2 + 2ic)(t 2 

- (1 + ic)W))'Po' (3.23) 

If qEcsuppE (Po)ifJ (q), then Po,>m 2/3 > O. Therefore, by re
peated application ofEq. (3.23), provided A is not a negative 
integer, and using integration by parts, as usual, to shift the 
differentiations to the test function, we obtain 

(t 2 
- (1 + ic)W)"'(ifJE(Po)) 

= ( _ 2(1 _ c2 + 2ic)) - k (t 2 - (1 + ic)W)'" + k 
(A + I)(A + 2) ... (A + k) 

X ((;Oitl a:7 q7Y(ifJE (Po))} (3.24) 

Since E (Po) and all of its derivatives are bounded and 
IIPo<,3Im2 in the region which is relevant, we also obtain 

11(~i ~7)kl(ifJ(q)E(Po))l. <,B11IifJllntk.,' (3.25) 
POI ~ 1 aql nl' 

for some p.ositive B I' 
We choose k sufficiently large that Re(A + k ) > 1. Then 

the derivatives of(t 2 - (1 + ic) W) with respect to t,c, or any 
of the coefficients of the quadratic forms, using Eq. (3.24), 
are uniformly polynomially bounded in q. For any complex 
value of A the theorem then follows from successive applica
tion of the mean value theorem of differential calculus fol
lowed by an application of the maximum value theorem for 
continuous functions in a compact region. In particular, the 
right-hand side ofEq. (3.24) is now defined for all epsilon in 
[0,1]. The continuity in ifJ, including the claimed values of s 
and of r = n + k, is obtained from Eqs. (3.20) and (3.25). 

In particular, the theorem is true for A at any point on 
the circle of radius 1/2 centered at any negative integer in the 
complex plane. Since the distribution is, for positive epsilon, 
entire in A 12, the maximum modulus principle implies that 
the left hand side of the inequality of the lemma cannot be 
bigger when A is a negative integer than it is on the circle. 
Therefore Theorem 3.4 is true for every N. 

Corollary to theorem 3.4: The distribution 
(t 2 _ (1 + ic)W) - N may be extended to a distribution which 
is defined and continuous on the closure of the region of the 
theorem. 

Proof Theorem 3.4 guarantees the existance of the limit 
as epsilon approaches zero and that the convergence to this 
limit is uniform in the other variables (12). 

In order to complete the integration over t, we intro
duce the change of variables, u = 1/t, 

Theorem 3.5: If 0 < c<, 1, O<,u<, 1, and the coefficients of 
the quadratic forms P and Po are restricted to any compact 
region for which P and Po are non-negative, then the distri
bution (1 - u2

( 1 + ic) W) tv is uniformly Cauchy in all of 
these quantities and may be extended to a distribution de
fined and continuous on the closure of the region indicated. 

Proof The proof is almost the same as that of Theorem 
3.4 and its corollary, except that the (q) region Po,>m2/3 is 
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further partitioned into two regions: 
(1) m 2/3 + 1/(3u2)'>Po,>m2/3, and 
(2) Po,>m2/3 + 1/(3u2). 
In the first of these regions, the integral over q is easily 

bounded uniformly in u, epsilon, and the quadratic form 
coefficients. 

To complete the proof, we define E 2(x) in the same way 
asE (x), Eq. (3.18), but with its support translated to region 2. 
We then obtain, in analogy to Eq. (3.24), 

(1 - u2(1 + ic) W)A (ifJE2(po)) 
(2(c2 -1-2ic))-·ku -2k(I_u2(1 +ic)W)"+k 

(A + I)(A + 2) ... (A + k) 

X (( p1i aao q?)k (ifJE2(PO)))' (3.26) 
01- 1 ql 

The proof is then completed by the same arguments as were 
made before. 

We are now ready for the principal theorem of this 
section. 

Theorem 3.6: Every circuit breaker regularized forest 
term (psft) with positive epsilon defines, in the epsilon to zero 
limit, a tempered distribtuion in the external momenta. 

Proof We need only prove the epsilon to zero limit ex
ists and is continuous in ifJ. Using the form of the psft given by 
Theorem 3.3, we interrupt the t integration at t = 1, and 
apply Lemma 2.3 to show that the coefficients of the qua
dratic forms lie in a closed and bounded region. For the first 
term, 0 <, t < 1, by the corollary to Theorem 3.4, the epsilon to 
zero limit of the integrand is approached uniformly in the 
region of integration. Therefore the limit exists and, by 
Theorem 3.4, is continuous in ifJ. For the second term, 
1 <, t < 00, we make the change of variables u = 1/ t, 0 < u <, 1. 
Using Theorem 3.5, the contribution from integrating from 
u = 0 + to a sufficiently small positive number can be 
bounded uniformly in epsilon. Theorem 3.5 then enables us 
to conclude that the second term also has the required prop
erties. This completes the proof of Theorem 3.6. 

4. THE EXCHANGE OF REGULATOR AND 
DISTRIBUTIONAL LIMITS 

We combine the terms of the point split forest formula 
(BPHZ) into a point split Feynman amplitude for the graph 
r (r-psFa), J r;1(s,q), which is then given by Eq. (1.12). In that 
equation we have been able to perform the Feynman param
eter integrations before performing the internal momenta 
integrations because the integrals are now absolutely conver
gent (ac) for positive epsilon' and are therefore subject to 
Fubini's theorem. In addition, since the integrals converge 
uniformly in S. 

IimJr;'(s,q) = Jr;I(O,q) = Jr;'(q). 
s· .0 

It is known, and also will be shown below, that JI<I(q) con
verges to a tempered distribution in the epsilon to zero limit. 
It is, of course, this distribution which is the renormalized 
Feynman amplitude. On the other hand, Jr;'(s,q) converges 
in the epsilon to zero limit to a tempered distribution, be
cause, by Theorem 3.6, each psft does. It is the principal 
object of this section to show that this distribution is continu-
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ous in the breaking parameters. In other words, we will show 
that we can introduce the regularization and take the epsilon 
to zero limit before removing it without affecting the result. 

We procede by combining all terms of the forest formu
la~ into a single fraction. The denominator of this fraction is 
of the form of a product of propagators. In this way, R iJJ is 
treated as any forest term, and J1-I(s,q) is a psft and is given 
by Eq. (1.11) with T1-1 replaced by J1-I(s,q). 

This result was not dependent, in its form, on the choice 
of basis for the internal momenta, i.e., not dependent on the 
choice of g-chord of G. We will make use of this by choosing 
a g-chord appropriate to each Hepp sector. 

A Hepp sector5 of R" is a region of R" in which 

arrjll >arrj2) >a17j3»···>a17j#IG)I' (4.1) 

where 1T is some permutation of the lines of G. We use this 
permutation to label the sector. Different sectors intersect in 
a region of measure zero; we can consider Ra to be, in effect, 
partitioned by the collection of sectors, at least as far as the 
integrals defining the psft are concerned. 

U sing the Hepp sectors, we perform an analysis of the 
Feynman parameter formulas of circuit based graph theory. 
This analysis is similar to that performed by Lowenstein 15 in 
a modification of the work of Hepp5 and Speer. 12 

Definition 4.1: If B~ G = [1,2,3, ... ,#(G) J, then by 
seq B we mean the first line of B in the sequence (1T( 1), 1T(2), ... , 
1T( # G )), where 1T is determined from the relevant Hepp sec
tor through Eq. (4.1). 

In each Hepp sector we choose a g-chord, 

T: = [II' 12, 1,,···0G, l 
through the recursive relationship 

f, =seq[f: dr"~ dr,,"" d l , I,d( is linearly 
independent.l 

Equations (4.1) and (4.2) with Definition 4.1 imply 

a( = sup[a(: d( , d(, ... , dr , d l , I 2 I I 

(4.2) 

(4.3) 

is linearly independent.l (4.4) 

In particular II is the first line of the sequence (1T( 1), 1T(2), ... , 
1T( #(G ))) for which d l , is not identically zero, i.e., the first 
line of the sequence which carries internal momentum. The 
quantity dj is sometimes called a momentum routing vector; 
one is assigned to each line; the components of djare the 
coefficients in Eq. (1.2) for the internal momentum of that 
line. 

We rewrite the r-psFa, Eq. (1.11), as a sum of the inte
grals over the various Hepp sectors. For each term, TI<), 

corresponding to a particular sector, 1T", we calculate Eq. 
(1.11) by doing the internal momenta integrations in the ba
sis provided by the g-chord T: of Eqs. (4.2) and (4.3). As 
usual, we freely omit factors which are defined, continuous, 
and bounded functions of E alone for E>O. The result is then 
still represented by Eq. (1.11) if we replace R" by 1T". 

We will find the analysis clarified by a change of the 
variables. It is convenient to define these new variables in 
terms of a singularity family developed from Eqs. (4.2) and 
(4.3). For r>O, we let 
Gr = G - [(EG:[ ('(1,(2"",(r l 

is linearly dependent. I , (4.5) 
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so that 

GM =G-G=0, 

the empty set, since T: is a g-chord. We also note that if all 
the lines of G carry internal momentum, then Go = G. 

The singularity family is then defined as 
MIG)-I 

WIT = u [Gjl)u{[f]:fEG-T:}. 
j ~ () 

(4.6) 

Clearly 

#(W IT) =M(G) + #(G) -M(G) = #(G), 

where, on the left-hand side, # is used to indicate the num
ber of sets in the family. 

For each HEW IT' we assign a variable tf{E[O,I] with 

a( = II t/l' 
II, 

1~IIEI rr 

For the lines [,ET: this results in 
i-I 

a( = IItG , , } 

j~ 0 

which implies 

II ai, =rr)'fitGj 
(,ET"! i= Ij=O 

_ tMIGI-j_ tMIG,1 Mlil~- I MIGil--- I 
- G, - G

1 

j~O j-O 

(4.7) 

(4.8) 

(4.9) 

where M (Gj ) is the number of number of complete g-circuits 
of G which are left in Gj . 

Theorem 4.2: If A, defined by Eq. (1.4) is expressed in 
terms of the (t) variables, Eq. (4.7), then 

detA = Cf~Ito It~IG')}1 + P)S, 

and S is a positive number and P is a non-negative polynomi
al in the variables til' 

Proof We note that for f; E T:, [ (, l':0/ 7T' This allows us 
to define tl(,1 = 1. Then, according to Eqs. (4.6) and (4.7), 

(4.10) 

with 

(4.11) 

Since Gj is defined by deleting from G the lines which 
are dependent on the first) elements T:, 

MjP>~I~ =M(Gj ). (4.12) 

Otherwise, M (Gj ) > M jp would imply that more lines of T * 
than of T: have been deleted from G to form G/ In that 

J 

case, more than} lines of T * would be dependent on the first} 
lines of T:. This would contradict the linear independence 
of the lines of T*. Therefore, we conclude Eq. (4.12). 

Theorem 4.2 is now immediate from Eqs. (2.2), (4.10), 
and (4.12). 

Theorem 4.3: The Jacobian of the transformation de-
fined Eq. (4.7) is 

I 
a(a) I = MIU I , 11 t #IG,) I 

a(t) ,~O G, 
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Proof For convenience, we relabel the lines of G so that 
in 1T",T: = (1,2, ... ,M(G)J, and if M(G»i>}>I, then 
a,<,aj • 

We observe that for each of the lines lEG - T *, there is a 
number r( f) defined by 

(4.13) 

That is, there is a first Gj from which I has been deleted. We 
relabel these # (G ) - M (G ) lines in order of increasing r( f) 
and in order of decreasing a 1 for each r( f). The new labels for 
these will then be the integers from M (G) + 1 to # (G ). Then, 
for 1 <,i<,M(G ), 

(4.14) 

and 

aa 
--' =0 

atG, at l/ ] 
(4.15) 

for}>i and (flEW IT' 

For #(G »i>M(G) + 1, if ((jEW IT' we obtain 

aa. M 
--' =011 11 tG' 
at l !] ,-0' 

(4.16) 

With an appropriate ordering of the t variables, then, all 
elements to the right of the diagonal vanish and the Jacobian 
is therefore 

~:;i ~ (]'(r(IG,) lC :~: "Cl1:G') ) (4.17) 

= C:V: It ~IG)-j- I)C~ij() It ;{IGd . MIG) + '). 

(4.18) 

Equation (4.17) is obtained by noting that the second 
product of that equation contains a factor of tG , for every line 
(ET: for which r(f»k. By the definition of r, this second 
condition on (is equivalent to (EG,. We therefore obtain one 
factoroftG, foreachlinefl::G, for which f>M (G) + l,i.e., by 
our special labeling of the lines, one factor for each 
(EG, - T:. Of course 

#(G" - T:) = #(G,) -M(G) + k. (4.19) 

Theorem 4.3 then results from combining the factors. 
Theorem 4.4: Under the transformation from (a) to (t), 

Eq. (4.7), the sector 1T", described by Eq. (4.1) is mapped into 
the region described by 

('ifHEW
IT

) O<,t ll <,1. 

Proof We take the same labeling as in the proofofTheo
rem 4.3. From Eq. (4.8), a I = tGo implies O<tG

o 
<, 1. Next, 

a 2 =tGJG, =altG, anda l >a2 impliestG , =a2Ia ,<,1 im
plies O<,tG , <,1. We continue in the same way until we have 
exhausted the parameters assigned to the lines of T:. Ac
cording to Eqs. (4.6) and (4.7), the parameters assigned to the 
remaining lines are of the form 

a( = tcJ) I) =aJ)I)' 

Theorem 4.4 now results from Eq. (4.4). 
Theorem 4.5: For any g-graph, G, there is a number B 

such that in any Hepp sector, 1T, for every} 
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IA Ii II <,B la, = B / (JXtG.). 

where the lines of G have been labeled so that T* = 
p,2, ... ,M(Gll. IT 

Proof The definition of ag-circuit states that d ~'=I=O iff i 
is an element oftheg-circuit e. In that case, by Lemma 2.2, 
(iluT* is ag-chord ofG Ie. With this, Theorem 4.5 then 
follows from Eqs. (2.1) and (2.2) and the positivity of the 
coefficients d~ •. 

Remark: The symmetry of A Ii I implies that theorem 
4.5 is also true with i and} exchanged. 

We now turn our attention back to Eq. (1.11) for the r
psFa with ' 

N= #(G)-2M(G). (4.20) 

We decompose the polynomial ::;P(k,q) into parts P'/,(k,q) 
which are homogeneous separately in k and q with multi
index degrees 0 and 1/, respectively. 

From Eqs. (1.8) to (1.10) with F= i(V + AW + Z 1.1), 
we calculate 

aF '~) -a = 2.. (q,t ad k)(A - I kg,t'l 
Xj" k ~ I 

iE - gllli 
+ 2.1 (1 + E2?\,(A .. Ik, (4.21) 

and 

(4.22) 

Therefore P (( 1 I i)(a I aX),q )eF consists of terms of the form [cf. 
Eq. (3.2)] 

e
l
.( ~;)"( a~~) n, (4.23) 

where 

(4.24) 

The r-psFa therefore consists of a sum of terms each of 
which is of the form given by Eqs. (3.7)-(3.10) with 1T" sub
stituted for R", P = 2, 

jl<)(a,q,x) 
k ~ MIG) 

=g(E)q'/ ::II~ C~)q,.adl(A -I),. y 
" .. I 

('~I -I )n: kM-.J¥1 ··1 n" X I.?-I X" (A Lk - r,. H ((A )j,), (4.25) 

~I 

and 

N= #(G) - 2M(G) -Inl + Irl-Inl, (4.26) 

and with O<r~<,n~, Inl and Inl subject to Eq. (4.24), andg(E) 
continuous and defined over [0,1]. 

According to the convergence proof for the forest for
mula,' the superficial degree of divergence of R 1<1 is 

4M(G) - 2#(G) + Inl + 21nl- 1. 

Combining this with Eq. (4.26), we obtain 

N>~ - ~Inl + Iri>~ - ~(Inl-Irl)· 

Richard R. Hampton 

(4.27) 

(4.28) 

1756 



                                                                                                                                    

N= #(G) - 2M(G) -Inl + Irl-Inl, (4.26) 

and with O<;r~ <;n~., In I and Inl subject to Eq. (4.24), and g(e) 
continuous and defined over [0,1]. 

According to the convergence proof for the forest for
mula,3 the superficial degree of divergence of R lEI is 

4M(G) - 2#(G) + Inl + 21nl- 1. (4.27) 

Combining this with Eq. (4.26), we obtain 

N> ~ - ~Inl + Irl>~ - Wnl - Irl)· (4.28) 

If N is positive, that is, if Inl - Irl = 0, Eqs. (3.7) and (3.8) 
simplify. This case will be discussed later. Otherwise, 
I n I - I rl > 0, and we integrate by parts S times using Lemma 
3.2. After folding in a test function, we use Theorem 3.3 to 
obtain 

TI<I(¢) = i (da) glEI(a) 
"'" detA 2 

[nC~~i(A -')lk Y' -r' ][UIA -');']Is(eW
¢) 

X inl _ Irl _ , ' 
a (4.29) 

where gl<l(a) is defined, continuous, and bounded almost ev-
erywhere in 1ra with e dependence restricted to a separate 
factor which is a function of e alone, defined and continuous 
for eE[O, 1]; the quantity a is given by the positive root from 
Eq. (3.10), 

(4.30) 

Hs is given by Lemma 3.2, and S is the number of integra
tions by parts, i.e., 

S= Inl-Irl- 1, and 

n k = Ink I and rk = Irk I '1-' , l' • 

(4.31) 

(4.32) 

Lemma 4.6: There is a positive number B independent 
of the breaking parameters and of a, such that ('ili)('ilk) and 
for 1 <;v<;3, ifa=tO, then 

Proof By Theorem 4.5, ('ili)('ilk )(3B, >0) 

(A -')7, <;B i I(a,ai ) 

implies 

IXiv(A -')ik 1<; IXi" IB,IJakai . (4.33) 

Furthermore, by Lemma 4.1 of Ref. 1, for some B2 > ° 
(4.34) 

iJ 

Since B, and B2 are independent of X and a, the theorem 
follows withB = B,IB}, andBdepends only on the structure 
of the circuit-based graph G. 

We are now ready to obtain the principal results of this 
section. 

Theorem 4.7: The terms of TI<I(S,q), here denoted by 
TIEl, for which Inl - Irl =to vanish in the regulator limit, 
whether that is taken before or after the distributional limit: 
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IimTIEI(¢ ) = lim limTI<I(¢ ) = limT(O)(¢ ) = 0, 
s ~O s·~ <~O 5-~ 

for any ¢EY. 
Proof In Eq. (4.29; we make the change of variables 

defined by Eqs. (4.6) and (4.7). By Theorems 4.2-4.5 and 
Lemma 4.6, the resulting integrand is bounded Over the re
gion of integration for some positive constant B by 

Mlcg.- , 
BiEI(a) 11 t h~IGI-'- 2MIGI + 2il 

i=O 

If one additional integration by parts is done on Eq. 
(4.29), the integrand is in the same way bounded over the 
region of integration for some positive constant B by 

1=0 

(4.36) 

We distinguish two cases. In the first of these, Inl - Irl 
is odd, and we perform the additional integration by parts. In 
this case, the bound ofEq. (4.36) applies, and Is + , is the odd 
case of Lemma 3.2 and Eq. (4.30). It was shown in Theorems 
3.4, 3.5, and 3.6 that Is + ,(eW ¢ ) is continuous and bounded 
almost everywheres in Ra. in the epsilon to zero limit. The t 
integral which defines Is + \ also clearly converges uniform
ly in 5 since the 5 dependence is restricted to a factor in the 
integrand of sin(at ) and the proof of convergence eliminates 
this factor in the dominating integrand (cf. the proof oftheo
rem 3.6). 

The (a) integrals, now re-expressed in terms of the t /I 
variables, also converge uniformly in 1r". In the bound, Eq. 
(4.36), the power on each t G, is at least -~. To see this, note 
that setting the internal momenta of the lines of G - Gi [cf, 
Eq. (4.5)] constant defines a hyperplane in internal momen
tum space. Since G - Gi consists of the first i lines of T ~ 
together with all lines of G dependent on these first i lines, 
the number of independent variable lines on this hyperplane 
is 

M(Gi ) =M(G) -i. (4.37) 

According to the convergence theorem of BPHZ (3), the su
perficial degree of divergence has been reduced on every hy
perplane by the subtractions of the forest formula so as to 
give convergence on every hyperplane. The power on each 
tG , is just one less than minus one-half the superficial degree 
of divergence. Therefore this power is at least - ~. Therefore 
the bound, Eq. (4.36), guarantees that the integral over 1r" 

converges uniformly in S. Since 

lima = 0, 

and the t integral defining I, + , contains a factor of sinat, 
taking the 5 limit inside of the a (i.e., til) and t integrals 
implies Theorem 4.7 for the case that Inl - Irl is odd. 
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Otherwise Inl - Irl is even and we partition O<tG , < I 
into two regions: 

(1) O<tG, <8, and 

(2) 8<tG, < 1. 

In this case, by Eq. (4.31), S + 1 is even, and the factor of 
sinat is not available to help us if we do the additional inte
gration by parts. On the other hand, If we do not do the 
additional integration by parts, the possibly negative powers 
of tG) in the bound of Eg. (4.35) makes the bound useless in 
neighborhoods of the tG, origin. The partition of the region 
enables us to overcome these difficulties. 

There will then beM (G) regions in which at least one of 
the f G, obeys (1) and one more region in which all of the tG , 

obey (2), and 1T a is contained in the union of these regions. 
For the regions of the first kind, we perform the addi

tional integration by parts and use the bound ofEq. (4.36) to 
show that each region contributes at most 

2BtNs -+- I (eW ¢> ) 

to the values of the integrals. By theorems 3.4 and 3.5, 
I, + I (eW ¢> ) is bounded and continuous over Ra for all 
EE[O, 1]. Therefore, for any positive E I' we may choose 8 so 
small that the total contribution from the regions of the first 
kind is less than E /2. 

For the remaining region, all of the lG, are subject to (2). 
In this case, we do not perform the additional integration by 
parts. The bound ofEq. (4.35) produces, on integration over 
the region (2), possibly negative powers of 8, but this bound 
also contains a factor of sup; Ix; I. We simply choose the SI 
[cf. Eq. (1.7)] so small that the total contribution from this 
region is also less than E I /2. 

In other words, 

(VEl > O)(VEE[O, I ))(3b(E))SUpl/sdl <b(E) 
I 

implies TIE)(¢> ) < E I' This completes the proof of Theorem 
4.7. 

Theorem 4.8: For any subtracted amplitude of BPHZ, 
JIP(q) with r-psFajlE)(s,q), the regulator (s--->-O) and distribu
tional (£--->-0 + ) limits may be taken interchangeably. That 
is, for any <jJEf', the test-function space of Eq. (3.1) of func
tions on JRN with N at least four times as big asthe number of 
independent external momenta, 

!i~ ~i~I(dq) J~)(s,q)<jJ (q) 

= !i~ 1i~f(dq) jlEI(S,q)¢> (q) 

= Iimf(dq) JlEI(q)<jJ (q). 
f ~O 

Proof By Theorem 4.7, in whatever order the limits are 
taken, the terms for which Inl - Irl #0 contribute nothing. 
Otherwise In I - Irl = 0, and the r-psFa terms are given by 
Eqs. (3.7) to (3.10) with Eqs. (4.25) and (4.26). By Eq. (4.28), 

N + 1> 3/2. 

This assures the necessary convergence properties of the in
tegral of Eq. (3.9), and Theorems (3.4) and (3.5) lead to a 
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bounding of Io(eW ¢> ) = H (eiV¢> ) over 1T" for He[O, 1]. Equa
tion (3.8) now contributes only a factor of unity to the Hepp 
sector term because N is here positive. 

Upon making the change of variables of Eqs. (4.6) and 
(4.7), with no integration by parts but otherwise following 
the procedure by which we obtained Eq. (4.35) and inserting 
the bound on Io(eiv ¢> ), the integrand of the Hepp sector term 
is now bounded by 

I #IG,I 2MIG,) 
MIi4:' I 

B 11 t G, 
,_ I 

I L 1//.. 11 

<,j 

/, " I 

where B is some positive constant. 

(4.38) 

By Eqs. (4.26) and (4.28), the integral of this bound over 
the bounded region1T" is absolutely convergent. Therefore 
the integral which is the r-psFa converges uniformly in f; 
and EE[O, 1]. Since the integrand of the r-psFa is continuous 
in 5, Theorem 4.8 then follows by taking the limits inside of 
all the til and t integrals. 

Since these limits have also been shown to exist and to 
be continuous in ¢J (which follows from Theorem 3.6 if one 
notes that 10 is bounded independently of S), we have also 
proven 

Theorem 4.9: A Feynman amplitude renormalized ac
cording to the Zimmermann forest formula is, in the epsilon 
to zero limit, a tempered distribution in the external 
momenta. 
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A manifestly covariant relation is discussed between electromagnetic gauge transformations and Lorentz 
transformations, while analyzing the contributions to the free field 4-potential coming exclusively from 
lightlike momenta. Transverse 4-potentials are thus introduced relative to each inertial frame which belong 
in the Lorentz gauge, behave as completely invariant objects under general gauge transformations. and give 
rise to one and the same frame-free electromagnetic field tensor. The (proper orthochronous) Lorentz 
covariant transformation law of the gauge-invariant transverse 4-potential is established. from the standpoint 

of the active transformation from one inertial observer to another. 

PACS numbers: 11.1O.Np. 11.30.Cp. 03.70. + k 

1. INTRODUCTION 

In this paper we present a free field relationship be
tween the group of gauge transformations in electro
magnetic theory and the Lorentz group. A bas is for a 
description of free photons is thus obtained, which 
seems much more consistent with all other particles, 
since we drop the unphysical variables while retaining 
the relativistic invariance of the whole formalism. 

It is well known that for zero-rest-mass particles, 
obeying the zero-mass proca equations (Maxwell's 
equations), one has a larger set of symmetry groups 
than those holding for massive Proca particles. Indeed, 
the behavior of the electromagnetic purelltials under the 
group of Poincare transformations uniquely character
izes these quantities as components of a 4-vector in 
flat space-time. Photons have zero rest-mass, how
ever, and therefore Maxwell's equations are also 
gauge invariant. 1 Thus, to the lO-parmetric POincare' 
group (which describes the external symmetries of the 
system) one has to add the invariance group corres
ponding to gauge transformations of the second kind. 
These electromagnetic gauge transformations consitute 
a realization of an additive function group which maps 
the manifold of all allowable potentials into itself. In 
contrast with the Poincare invariance, the gauge 
mapping corresponds to an internal symmetry of the 
system.2 

A dynamical formalism containing gauge-dependent 
degrees of freedom leads to well-known difficulties in 
field theory. In order to overcome these difficulties, 
one has to separate the field variables into two sets, 
one being gauge-dependent quantities (i.e., gauge arti
facts), while the others are gauge-invariant. 3 By the 
choice of some suitable gauge conditions, one may then 
drop the unphysical variables, retaining only those 
gauge-independent quantities associated with the true 
degrees of freedom of the system; these are uncon
strained physical variables able to describe the con
figuration of the field. However, this approach works 
well if (and only if) the variable classification corres
ponds to a gauge-independent scheme and, moreover, 
if (and only if) it entails a Lorentz invariant classifica
tion. 

A sim ilar feature is quite familiar in general rela
tivity, where the coordinate symmetry group is also a 
function group which operates as a gauge symmetry for 

the gravitational potentials. 4 Nevertheless, the whole 
invariance group of the general theory mixes the ex
ternal with the internal symmetries, in such a strong 
way, that it becomes impossible to separate this group 
(in a well established manner) into a Lie group and an 
additive group involving arbitrary gauge functions. 5 

Thus, it seems to be important to search for the rela
tions which might exist between the electromagnetic 
gauge group and the Poincare group of special relativ
ity,6 in order to be able to identify the true configura
tion variables of the radiation field without spoiling its 
space-time symmetry. In general relativity this would 
be a very complicated undertaking (perhaps raising an 
impossible problem). It is the main purpose of this 
paper to show how this problem can be solved for the 
free radiation field of electrodynamics. 7 

The very problem posed by the internal symmetry of 
the second kind is that, when handling the potentials 
with their full gauge freedom, we are dealing with 
redundant variables for the description of the true de
grees of freedom of the electromagnetic field. 8 When 
special gauges are imposed as subsidiary constraints, 
gauge subgroups of the full gauge group become realized 
in electromagnetic theory. Among these special gauges, 
the Lorentz gauge constraint presents two well known 
and important features: 1) it preserves the Lorentz in 
variance of the theory,9 and 2) it brings Maxwell's 
equations into the form of the zero-mass Proca equa
tions. The Lorentz gauge introduces just one subsidiary 
condition for the components of the 4-potential and, 
therefore, leaves three independent variables. Within 
the Lorentz gauge, however, the 4-potential is not un
iquely defined, since restricted gauge transformations 
are still allowed. Hence, the Lorentz gauge constraint, 
by itself, does not completely disclose the true degrees 
of freedom of the Maxwell field. Further reduction is 
still necessary. 

We wish to remark here that, from a group-theoretic 
point of view, the existence of both Poincare and gauge 
invariance of the ele;::tromagnetic field means tha t the 
4-potential plays a double geometric role: 1) It pro
vides a basis for a linear irreducible representation of 
the Lorentz group, and 2) it furnishes a "basis" for a 
realization of the continuous abelian gauge group of the 
second kind. '° It becomes clear then that in order to 
isolate the true degrees of freedom of the radiation field, 
we have to search for a completely "irreducible" reali-
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zation of the full gauge group. In other words, we have 
to identify the part of A~(x) which remains completely 
invariant under general gauge transformations, while, 
moreover, we have to arrive at this irreducible basis 
(say) in a manifestly Lorentz invariant fashion. As we 
shall see, this gauge-invariant Lorentz-covariant real
ization can be attained within any given inertial frame. 

The program of this note follows. In Sec. 2 we start 
with a brief review of the free-field-potential formalism 
in momentum representation. In Sec. 3 we analyze 
further the contributions to the free potentials coming 
exclusively from lightlike photons (i.e., physical free 
photons); we identify the locus of the Lorentz gauge, 
and we end up with a transverse 4-potential relative to 
a v-frame as the completely gauge-invariant potential 
within the Lorentz gauge. The kernel of the radiation's 
gauge projection formula is next analyzed in Sec. 4, 
while in Sec. 5 we briefly show how the Coulomb gauge 
is regained within the Lorentz gauge in the present 
formalism. In Sec. 6 we discuss the covariant trans
formation law of the completely gauge-invariant poten
tia I from one inertial observer to another. Finally, the 
two degrees of freedom of the electromagnetic field are 
briefly presented in Sec. 7. 

2. THE FREE FIELD POTENTIALS IN MOMENTUM 
REPRESENTATION REVISITED 

For the sake of completeness we begin our work with 
a brief review of the familiar momentum-space formal
ism for the free electromagnetic field. Let us con
sider the following plane wave superposition represent
ing the free vector potential: 

A~ (x) = (271) -2 J d 4k A~ (k) exp(ikx) , (2.1) 

where kx stands for k~ x~ = kOt - k· x. The reality con
dition for A/l(x) requires At(k) = A~ (-k). If no gauge 
condition is assumed, the free field equations take the 
form 

k2A~(k)-k~kVAv(k)=0, (2.2) 

which is manifestly invariant under general gauge 
transformations; namely, 

A~(k) =A~(k) +ik~g(k), (2.3) 

where g(k) is an arbitrary scalar function defined in 
momentum-space, provided its Fourier transform ex
ists and conforms to the reality condition. 

Equation (2.2) behaves rather singularly on the light 
cone. We thus analyze it first off this locus, where it 
has a simple geometric meaning; i.e., since k2 '* 0 there, 
we have 

(2.4) 

Hence, the Fourier amplitude A~(k) is a purely longi
tudinal field everywhere off the light cone, and we write 

(2.5) 

where y(k) is an arbitrary scalar density. As a matter 
of fact, it is clear that these off-light-cone longitudinal 
contributions to the free radiation field are devoid of 
physical meaning, since they correspond to a pure 
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gauge artifact. Therefore, no true degrees of freedom 
of the free electromagnetic field can be obtained from 
these contributions. 

Next, let us consider Eq. (2.2) on the light cone. 
Since now k~ is an arbitrary light like vector, Eq. (2.2) 
splits into two homogeneous equations: 

and 

where k2 = O. The first equation is singular, and its 
general solution is quite familiar: 

(2.6) 

(2.7) 

(2.8) 

where the amplitudes P (k) are defined everywhere on 
the light cone and satisfy f t(k) = f ~ (-k) for a real field. 
The second equation [Eq. (2.7)] tells us that these cone
supported Fourier amplitudes are transverse. Thus we 
have 

(2.9) 

everywhere on the light cone. 
Of course, Eq. (2.9) means that the light cone con

tribution to the free field comes from a 4-potential 
which automatically belongs in the Lorentz gauge. In 
this sense, one could say that the Lorentz gauge affords 
the natural gauge of the theory. Furthermore, it is 
clear that the same gauge transformation which fixes 
the Lorentz gauge also eliminates the longitudinal off
the-light-cone contributions to the free potentials. 

Moreover, Eq. (2.9) shows that the P(k) field has the 
following general structure (since k~ is lightlike): 

(2.10) 

where the vector field CI'~(k) has to be spacelike trans
verse, i.e., 

CI' ~ (k)CI' ~ (k) < 0 , 

k~CI'~(k) =0, 

(2.11) 

(2.12) 

while the scalar f3 (k) is an arbitrary field defined on the 
cone. 

Hence, the most general solutions to the homogeneous 
Maxwell's equations in momentum representation are 
of the form: 

A~ (k) = oW)[CI' ~ (k) +ik~ f3(k)] + ik~y(k); (2.13) 

i.e., correspondingly, the following general decomposi
tion of the free 4-potential holds: 

(2.14) 

The A~«Y)(x) and A~(B)(X) components have their Fourier 
support on the light cone in momentum space. Each of 
them necessarily belongs in the Lorentz gauge and, 
therefore, A~( (y)(x) and A~( B )(x) separately satisfy the 
zero-mass Proca equation. The third contribution, 
A~(y)(x), comes completely from the off-cone region in 
momentum space, where it satisfies Maxwell's homo
geneous equations in their general gauge-invariant 
form. Furthermore, it is clear that the two components 
A~(B)(X) and A~(y)(x) are just gauge artifacts, since both 
are gradients of scalar fields. 
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3. THE COMPLETELY GAUGE-INVARIANT 
POTENTIALS 

In this section we analyze further the contribution to 
the potentials coming exclusively from the light cone in 
momentum space. Clearly, it is only this part of the 
potentials which genuinely corresponds to zero-mass 
free photons, and therefore it must be enough for a 
complete description of the free field. 

Recalling Eqs. (2.8) and (2.10), we have 

A~(on )(k) = oW)[ QI ~(k) + ik~ ,B(k) J. (3.1) 

This vector belongs in the Lorentz gauge. According to 
the previous discussion, one observes that the vector 
r(k) lef. Eq. (2.10)] lies in the hyperplane orthogonal to 
the lightUke vector kP • This hyperplane is a 3-flat tan
gent to the light cone along k~, and represents the 
locus of the Lorentz gauge in momentum space. Figure 
1 is a sketchy representation of the Lorentz gauge 
hyperplane (i. e., plane OK LT in that figure), with the 
vectors f~(k), a~(k), k~, and k P f3(k), all belonging in 
this locus, as shown. 

In this sense, once the vector f~ (k) is given, it be
comes clear that every displacement along the lightlike 
line T L (of Fig. 1) corresponds to an allowable gauge 
transformation within the Lorentz gauge. Therefore, 
all vectors drawn from 0 up to the line T L are phy
sically equivalent to r (k), in the sense that they all 
belong to the same electromagnetic field. Moreover, 
it is easy to show (as we shall do presently) that these 
spacelike OF-vectors (with F moving along T L) all have 
the same Minkowski norm; i. e., Lorentz gauge motion 
(along T L) preserves the norm of the fl1 (k) vectors. 
Here an intimate relation reveals itself between Lorentz 
transformations and electromagnetic gauge transforma
tions taking place within the Lorentz gauge. We will 
come back to this issue in Sec. 6. 

Of course, we cannot claim for A~(,,)(x) the property 
of being a completely gauge-invariant potential. In 
effect, it may happen that the spacelike amplitude QlP(k) 

~,~"::~~---.::T-- ~ -
I 

---- - --+-----
I 

FIG. 1. The Lorentz gauge locus in momentum 4-space. 
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has a gauge component along k P relative to a given 
Cartesian frame (as a glance at Fig. 1 neatly shows). 
In other words, for the sake of having a completely 
gauge-irreducible 4-potential one has to introduce a 
fixed inertial frame, specified by a given 4-velocity 
v~. Indeed, the vector f'i-(k) = (OT)~ (shown in Fig. 1) is 
obviously the only vector, belonging in the same gauge 
as f~, which has no component along k~ from the point 
of view of the v-frame. (As a matter of fact, this is the 
standpoint adopted in Fig. 1.) We observe that f'!r is a 
spacelike vector simultaneously orthogonal to k P and v p

• 

Let us discuss these features in a manifestly Lorentz 
covariant fashion. Once vP is given, we define a new 
decomposition of r (k), instead of Eq. (2.10), according 
to the fo llowing scheme: 

f~(k)=f'i-(k;v)+ik~fL(k;v), 

such that 

vpf'!r(k;v)=O, 

k~f'!r(k; v) =0. 

(3.2) 

(3.3) 

(3.4) 

Covariant expressions for the new Fourier amplitudes 
are easily obtained if we use the identity 

rot - (k\V\)-lk~vvJkv=O, (3.5) 

which holds everywhere in k-space. We thus have 

f'!r(k; v) = [o~ - (k\ v') -lkv vvJr(k) , 

f L(k; v) = -i(k,v\)-lvJV(k) , 

(3.6) 

(3.7) 

quite directly, that is, without previous recourse to 
decomposition (2.10). (These transformations obviously 
preserve the reality conditions.) 

The rank-two tensor 

(3.8) 

behaves as the transverse left-prOjector within the 
Lorentz gauge hyperplane, since (from the left) it brings 
every transverse vector f ~ (k) into its gauge-irreducible 
form f~(k; v) relative to the v-frame. From the right 
R~(k; v) behaves as the identity on f~(k). One shows: 

(3.9) 

(where TJ uv stands for the Minkowski metric), and there
fore 

(3.10) 

as we have already remarked. 
Representing the new decomposition (3.2) we have, in 

coordinate space, 

N(x) =A'!r(x; v) +Af(x; v) (3.11) 

(relative to the v-frame), instead of decomposition 
(2.14), for the same electromagnetic potentials. Clear
ly, the field 

A;;'(x; v) = 

(211)-2 f d 4 k oW)[o~ - (k, v')-lkP vv J!"(k) exp(ikx) 

(3.12) 

corresponds to the transverse 4-potential relative to 
the v-Jrame, and therefore it represents the only com-

Jorge Krause 1761 



                                                                                                                                    

pletely gauge-irreducible basis for the realization of the 
full electromagnetic gauge group we were searching for. 
(We further analyze this matter presently.) 

After one has been able to identify the momentum 
geometry construct yielding the irreducible potentials, 
one may generalize the result stated in Eq. (3.12), for 
the sake of handiness. In effect, since the left-projec
tion for mula (3.5) holds quite generally for all kinds 
of k~ wave vectors, one has 

(3.13 ) 

everywhere in momentum 4-space, where A~(k) cor
responds to a free Maxwell field without assuming any 
gauge (cf. Eq. (2.13)]. Hence, the following expression 
definitely obtains for the transverse potentials relative 
to a v-frame: 

A~(x; v) 

= (27T)-2 f d4k[6~ - (k,V')-'k~ v" ]A"(k) exp(illX), (3.14) 

where the Fourier amplitudes A"(k) satisfy Eq. (2.2). 
Starting from definition (3.14), one immediately shows 
that A~(x; v) is endowed with the following properties: 

v~A~(x; v) =0, 

Y' ~AIHx; v) = 0, 

l~Aj.(x; v) = O. 

(3.15 ) 

(3.16) 

(3.17) 

Moreover, N~(x; v) is a completely gauge -invariant 
4-potential, in the sense that a gauge transformation 
of N(x), according to Eqs. (2.3) and (3.5), induces 
no change on A~(x; v). On the other hand, if one gauge
transforms A~(x; v) directly, Le., A'~(x; I:) = A~(x; v) 

+ \,"G(x; 1'1, and requires that Ai: is a new transverse 
4-potential (cf. Eqs. (3.15), (3.16), and (3.17)], then it 
follows that G(x; u) =0. 

Equation (3.14) shows explicitly how to reduce a given 
4-potential to its completely gauge-invariant transverse 
form, relative to any given inertia 1 wor king frame. 
Equation (3,14) is a gauge transformation associated 
with the originally given 4-potential and inertial scaf
fold themselves. In Sec. 5 we shall discuss further the 
(already evident) fact that these A~(x; u) potentials be
long in the Coulomb gauge of the I'-observer. Hence
forth we shall refer to Eq. (3.14) as the radiation gauge 
projection formula. 

4. KERNEL OF THE RADIATION GAUGE 
PROJECTION 

The fundamental result (3.14) invites us to introduce 
the following kernels: 

R"" (x; 1') = (2n) -4 f d4I<16~, - (k, (' \) -lk~ IIv] exp(ikx) , 

(4.1) 

G/I"(x; v) = (27T)-4 f d 4 k (k'\II')-lk~ l'"exp(ikx) , (4.2) 

corresponding to the decomposition of the identity: 

R~,,(x; 1') + GP,,(X; [I) = 6~ 6 (4\X) . 

In this manner we get the radiation gauge projection 
formulas 
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(4.3) 

A~(x;v)= !d4YRfJ,,(X_V;v)A"(y), (4.4) 

(4.5) 

out of any free 4-potential AI\x) whatsoever. 
Some immediate properties of these kernels follow: 

GP (X' 1') =O(4)(X) /)' ' , 
VIIG~,,(X; Ii) =V,,6(4\X) , 

Y' G "( ,,(.) - '" ,,(4)(X) 
/I )J -\, - v rJ l) • 

Defining the scalar 

G(x:;u)=-i(27T)-4 f d4k(k)v\)-lexp(ikx) , 

one easily shows 

G",,(x; u) =(l'\\,\)-l(U" Y'fJ)6(4\X), 

since clearly 

G(x; 1·)=(I')Y'))-1'j(4)(X). 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11 ) 

The kernel G(x; u) is an inuariant D-function. It seems 
that the form presented in Eq. (4.9) cannot be reduced 
to any of the well-known invariant functions which occur 
in quantum field theory.ll [The evaluation of G(x; I'), 
however, is quite simple once we introduce its j) rojle r 
fra/JIe; i.e., once we set /"" = (1,0) 1. 

Of course, the problem already tackled in Sec. 3 can 
also be solved more easily in a symbolic manner. We 
have followed a more lengthy path of argumentation in 
momentum space, in order to explicitly show the 
underlying geometry of a free electromagnetic field. 
We think that approach more conducive to the physical 
understanding of the issue. However, for the sake of 
having a more handy notation, the statement of the 
problem and its symbolic operator solution briefly 
follows. 

One has to solve Maxwell's free field equations for 
the potentials, when no gauge is assumed: 

['Ali (x) - v~Y',.A"(x) = 0 , (4.12) 

while searching for a new 4-potential Aj., out of A" ex
clusively, such that it satisfies condition (3.15). l We do 
not need to impose the Lorentz constraint (3.16). for 
it comes out automatically J. In order to solve this 
problem forma lly, it is enough to assume the existence 
of a linear gauge transformation able to produce the 
desired answer, Le., A~(x; 1') =A"(x) +Y'Pb:,. (\; I'; \1).11", 
say, where Ali is any solution to Eq. (4.12). Then, 
after some simple manipulations, one gets the answer: 

(4.13 ) 

One shows next that, because of the homogeneous 
Maxwell's equations (4.12) satisfied by A", the trans
verse field N~ belongs in the Lorentz gauge. Equation 
(4.13) corresponds to a gauge transformation and, more
over, if we arbitrarily gauge -transform the potentials. 
the new LW(X; u) potentials remain quite the same. 
Thus, A~(x; /I) is a completely gauge-invariant 4-poten
tial for the free electromagnetic field. Of course, the 
inverse differentiation operators are defined, as usual, 
by means of the corresponding Fourier transforms. In 
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this manner, we arrive back to the explicit solution 
(3.14), previously found in Sec. 3. 

5. THE COULOMB GAUGE REGAINED AS A 
SUBGAUGEOFTHELORENTZGAUGE 

Before we go any further, it is important to examine 
the electromagnetic field tensor under the scope of the 
present approach. Once AP (x) is already decomposed as 
in Eq. (3.11), where AHx;v) is just a gauge artifact, 
we have 

(5.1 ) 

Clearly, the electromagnetic field tensor must be an 
absolutely v-independent object. Indeed, from Eq. 
(4.13), we get 

aA'Hx; v)/avv = -(v~ V'~ )-lV'p A,,(x) +( v~ V' ~) -2V'p V' pAP(x) , 

(5.2) 

which holds formally for all v/
i 
vP > O. Therefore, the 

following identity obtains 

aFpv(x)/av' =0 (5.3) 

(as it should), even when Vp vP = 1. 
By the same token, if uP is another 4-velocity (uP oF v") 

one has, for the same field: 

FIJV (x) = V' P A~(x; u) - V' v A~(x; Il) , 

where now 

A~(x;u) =(o~ - (V',u')-lV'P lI vlAV(x); 

lIpA~(x;u) =0, 

V'/JA~(\';u)=O, 

OA~(x; 11) = O. 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

It is important to observe that these relations hold 
with respect to any inertial frame (not necessarily the 
u-frame). A gauge transformation relates these two 
transverse irreducible 4-potentials; namely, we have 

A~x; 11) = A~(x; 1') + A~ (x; v) - A~ (x; u), quite simply. 

Nevertheless, a more enlightening form for this gauge 
transformation will be shown presently, in terms of the 
active Lorentz tranformation which relates vP with uP 
(cf. Sec. 6). 

The physical meaning of the Fourier integral which 
corresponds to Eq. (5.1) is clear: no spurious fictitious 
free "photons" are explicitly exhibited when handling 
the Fourier integral with respect to the v-frame; that 
is, when one takes vP = (1,0) in order to evaluate the 
integral transform of Eq. (5.1). The F P" (x) tensor com
ponents, however, do not depend on this particular 
choice (and this is the main point in this approach). 
For this reason, we refer to the v-frame as the prope y 
frame of the A~(x; v) potentials. 

Therefore, for the description of a given free Max
well field, every inertial observer introduces his own 
transverse potentials. This must be so, since no 
fictitious quanta of the free field may appear relative 
to any inertial observer whatsoever. Furthermore, it 
does not matter what particular frame we choose to 
work with, since all these equivalent potentials will 
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give us the same electromagnetic field. Clearly, this 
property is related with the fact that photons have no 
rest frames. 

As the Lorentz condition itself, the transverse sub
sidiary gauge condition (cf. Eq. (3.15)] represents a 
covariant constraint. The Lorentz condition, however, 
is an absolute constraint; while v-transversality is a 
relative constraint, for it anchors somehow the irre
ducible 4-potential to a given inertial frame. There
fore, a genuine transverse 4-potential associated with 
free photons satisfies two independent covariant gauge 
conditions, and we are left with only two degrees of 
freedom for the complete description of the free radia
tion field, as we must be. 

In particular, if we Lorentz-transform this scheme to 
the proper frame of the A~(x; v) potentials [for that pur
pose, we set vP=(l,O) in Eq. (3.14)], we get 

A r(x;1,O)=A(x)-(27T)-Z f d 4kW)-lkAO(k)exp(ikx) , 

(5.9) 

and also 

A~(x; 1,0) =0, (5.10) 

which corresponds to the transverse gauge condition 
(3.15). So we get 

(5.11) 

as corresponding to the Lorentz gauge condition (3.16). 
Hence, the irreducible 4-potential of the free electro
magnetic field belongs in the Coulomb gauge with re
spect to its proper frame. In this formalism gauge in
variance of the irreducible 4-potential appears as a 
projective property. This property enhances a co
variant generalization of the radiation gauge, which thus 
behaves as a subgauge of the Lorentz gauge. 

We wish here to remark on the fact that neither in 
Eq. (3.14), nor in the equivalent symbolic form (4.16), 
can we factor out the 4-velocity parameters vP which 
figure in the momentum integrals, for they also occur 
nonlinearly in the denominator of the projection opera
tor. Formal as it is, this fact tells us that it is impos
sible to arrive at the present formalism by means of 
algebraic and/or differential manipulations performed 
exclusively in coordinate space-time. Recourse to 
momentum representation is an essential feature of the 
present approach. 

This last formal comment is important because a 
different way of handling the Coulomb gauge, in a 
manifestly covariant fashion, can be found in the litera
ture,'2 working exclusively on the local geometry of the 
coordinate representation. We repeat here some fea
tures of that formalism for the sake of comparison 
with our treatment. Given a free 4-potential AP (x) and 
a fixed 4-velocity vP , one defines two relative poten
tials: 

A~(x; Ii) = (o~ - v P u)AV(x) , (5.12) 

and 

Anx; 1') = v P v"A"(x). (5.13) 

These are projective transformations performed in 
coordinate space-time. Hence, A~(x; u) belongs in the 
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v-transverse gauge: v~A~(xjv)=O. Moreover, if A~(x) 
belongs in the Coulomb gauge with respect to the v
frame, then A~(xj v) also belongs in the Lorentz gauge, 
and vice -versa. On the v-frame (and only on that frame) 
we have: A~(xj1,O)=Oand, also, A s(xj1,0)=A(x). 
Hence, transformations (5.12) and (5.13) afford a co
variant generalization of the Coulomb gauge. 

However, in order for the radiation gauge to appear 
as a subgauge of the Lorentz gauge, let us assume the 
constrain V ~A~(x) =0 from the beginning. Then we get 

(5.14) 

so that, in general, A~(x; v) does not belong in the 
Lorentz gauge [unless we have u,~f)(x) = 0; but then 
everything becomes trivial]. So we see that this ap
proach does not present the Coulomb gauge as a sub
gauge of the Lorentz gauge, and, therefore, it fails 
to afford a realization of the electromagnetic radiation 
gauge group as a subgroup of the Lorentz gauge group. 
The disadvantages of this fact for quantum electrody
namics are immediate. 

Moreover, one can see that [in contrast with Eq. 
(4.13) J Eq. (5.12) does not correspond to a guage trans
formation. Plainly, this means that A~(x; u) is not 
physically equiva lent to ;1 i' (x), since both electromag
netic 4-potentials belong to different Maxwell fields. 
This fact makes a strong contrast with our result. 

6. COVARIANT TRANSFORMATION LAW OF THE 
TRANSVERSE POTENTIALS 

We now set ourselves the task of finding that trans
formation law which brings A~(xjll) into A'~(x'j v), as
sociated with the active Lorentz transformation L(vju) 
which brings 1I~ into ui': 

(6.1) 

Of course, the transformation law of these potentials 
must be such that it preserves both covariant gauge 
constra ints. 

The tensor L(vjll) has the form '3 

L~" (v, 11) = 15 u" - (1 + V).lI ).) -I( v ll + /( LJ)( I'" + /I,.) + 2 Villi II , 

and corresponds to an active proper orthochronous 
Lorentz transformation 

(6.2) 

Lil,,(V,!I)x" = x"'. (6.3) 

The transformed event x' has precisely the same space
time coordinates with respect to the I'-frame as the ob
ject event x would have, once transformed to the new 
u-frame. It should be understood that all transforma
tions considered in this paper are active. 

Given any Galilean working frame and two timelike 
unit vectors, vLJ and /Ii!, we have the potentials A'~(x; I') 
and A'~(X;/I), obtained from a free 4-potential N(x), as 
given in Eqs. (4.13) and (5.5), respectively. But then, 
since 

(6.4) 

we have 
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(6.5) 

Hence, under the active Lorentz transformation (6.3), 
one must set 

(6.6) 

i.e. , 

A'.f'(x'; /J)=V'I!(I',u)lo~ - (VpuP)-IVf)u)"lA~(x;v), (6.7) 

where we have written A'I (x' j I') for A i' (x' ; u'), accord
ing to Eq. (6.1) (namely: u' U = uP, by definition). Equa
tion (6.7) tells us that, as observer v uses the potentials 
A'~( 'j u) for the description of real photons in the u

frame of reference, so observer u uses the potentials 
A ~ (x' ; l'l for the description of the same photons in the 
lI-frame of reference. (It is not necessary at all to set 
u" = (1,0) in order for this interpretation to hold i). 
Therefore, Eq. (6.7) states the covariant transforma
tion law of the transverse potentials. It is easy to 
show that Eq. (6.7) may be also written in the form 

A'';'' (x'; r) = lo~ - (V' piP )-IV,M l'v \ LV)" (v, u)A ~(x; v) ,(6.8) 

which makes it evident that vuA'.f'(x';I')=O and 
V~A'/(x'; I') =0, as required. 

7. THE TWO DEGREES OF FREEDOM OF THE 
ELECTROMAGNETIC FIELD 

Let us finally concentrate on the properties of the 
transverse potentials relative to the v-frame, as 
revealed in the momentum geometry of these fields. 
Since the Fourier amplitudes f~(k; 1') have to conform 
simultaneously to the Lorentz gauge as well as to the 
I'-transverse gauge, these are spacelike vectors per
taining in a 2-flat which is a subspace of the Lorentz 
gauge 3-flat. So let us introduce (as usual) two linearly 
independentjJOlarization vectors: E~(k, v), A = 1, 2, 
which belong in this 2-flat gauge locus relative to r; 
i.e. , 

I.' /' E ~ (I" !') = 0 , 

and such that 

(7.1) 

(7.2) 

(7.3) 

corresponding to two mutually orthogonal spacelike 
unit vectors. Hence, the set {vI!, I<~, E~(I" 1'), A = 1, 2} 
is a tetrad whose completeness relation gives us 

0ABE~(k, ~')E~(1<, 11) 

(7.4) 

Next we define two quantities, which are (apparently) 
v-dependent 

PA(k, 1') = -I]I,,,E~(!', df'~(k, v) , 

for A = 1, 2, so that 

jj(l" r) =I5ABt~(!.', u)PB(k,!'). 

(7.5) 

(7.6) 

Once the E~(k, 1'), A =1,2, have been suitable chosen, 
we also define the new local polarization base given by 

(~(!" II) ={6~ - (kl'll,,)/(i?~u,)} E~(k, u), 

which vectors have the properties 
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u~E~(k,u)=O, 

k~E~(k,u)=O, 

and also 

(7.8) 

(7.9) 

l]u"E~(k,lt)E~(k,u) = -OAB' (7.10) 

and thus afford us a new complete tetrad 
{UI1,kU,E~(k,u)L A=1,2. Therefore, we define two new 
u-dependent quantities, as in Eq. (7.5), 

PACk, II) = -I)w' E~(k,lI)f~(k, u), (7.11) 

so as to have 

f"r(!?, u) = 5 A8E~(k, u)PB(k, u). (7.12) 

But then one has the following important result: 

PA(k,u) 

= -7)Uj,{o'j - k~lI/krup}{l)~ - kVuJI"Oupt E~(k, v)f'"r(k, u) 

= -{lh T - (k;llr +1( \kT )/kPu p} E ~(1?, v)f'"r(k, v) 

= - 11\ T E ~ (k, v)f':r(k, v) = P A (k, v) , 

since, clearly ref. Eq. (6.5)], 

f'~(k,lI) ={6~, - k~II,/1<}U,~f'~(1<, v). 

Hence, we may define, quite generally, 

(7.13) 

(7.14) 

(7.15) 

since these quantities are the same for all inertial ob
servers. So we write 

f"r(k, v) =IjABE~(k, u)PB(k) , 

jj(I?, u) = ij ABE~(l?, u)p B(l<) , 
(7.16) 

relative to all 4-velocities, VII, u~, etc. We thus iden
tify these PA(l<) quantities with the true degress of free
dom of the Maxwell field. 14 These are v-independent 
objects, since in the description of one and the same 
free field it is only the polarization vector that changes 
from one inertial observer to another. 

The true degrees of freedom, as presented in Eq. 
(7.5) or (7.11), are manifestly scalar fields defined on 
the light cone in momentum space. Nevertheless, it 
is interesting to strengthen this fact, by explicitly 
showing how they behave under active Lorentz trans
formations. Of course, as in Eq. (6.6), we must have 

<1'(1<', G')=Lu,,(V,llh:'~(h,u), 

and, therefore, we get [directly from Eq. (6.13) I 
f'f/(k', c) = ° ABE'J (1/, v)o' B(k') 

=L~(v,1t){6j; - k"II/I?pup } OABE~(l<, u)P8(k) 

= U,,(v, 11)05 ABE~(h, u)PB(k) 

= 6 ABE'; (k', u)p B(I?) , 

i.e. , 

(7.17) 

(7.18) 

(7.19) 

whenever k'll =Lllv(V,u)k", as it must be. Clearly, these 
P A(k), A = 1,2, are the only true dynam ical variables one 
should quantize. 14 

[Electrodynamics, in fact, could not be maintained gauge-
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invariant were the photon to have a finite mass. There are 
some interesting discussions on this point in the literature; 
cf. J. Schwinger, Phys. Rev. 125, :l97 (1962); V. r. Ogie
vetskij and r. V. Polubarinov, Ann. Int. Conf. High-Energy 
Phys. 11, 666 (1962) rCERN, Geneva (1962)1; P. Bandyo
padhyay, Nuovo Cimento A 55, 367 (1968). Also, on the 
zero mass of the photon, see L. Bass and E. Schrodinger, 
Proc. Roy. Soc. A 232, 1 (1955); for a relatively recent re
view of this most important matter, see A. G. Goldhaber 
and M. N. Nieto, Rev. Mod. Phys. 43, 277 (1971). 

2It is also well known that, besides these two symmetry groups, 
the electromagnetic theory is endowed with the invariance of 
the Maxwell field equations under transformations of the 
fifteen-parameter conformal group. It is still not clear, at 
this time, exactly what symmetries and conserved quantities 
are introduced into the physical picture by the group of con
formal transformations; cf. F. Rohrlich, T. Fulton, and 
L. Witten, Rev. Mod. Phys. 34, 442 (19G2). We shall not 
touch on the intriguing issue of conformal symmetry in the 
present work. 

"A different approach to overcome these difficulties can be 
found in the literature; cf. S. Mandclstam, Ann. Phys. 
(N. Y.) 19, 1 (19G2), where a Lorentz invariant theory is 
presented for quantum electrodynamics, written entirely in 
terms of gauge invariant quantities. [The same scheme is 
proposcd for the quantization of the gravitational field in 
S. Mandelstam, Ann. Phys. (N. Y.) 19, 25 (1962) 1. However, 
Mandelstam shows that there is no Lorentz-invariant varia
tional principlc for this formalism, and so it fails to produce 
conservation laws associated with the symmetries of a La
grangian density. 

4See , for instance, P. G. Bergmann and A. Komar, Int. J. 
Theor. Phys. 5, 15 (1972). 

5An attempt to obtain such a separation can be found in M. Hal
pern and S. Malin, J. Math. Phys. 12, 21:3 (1971), where the 
novel mathematical structure of "quasigroup" of coordinate 
transformations in curved space-time is introduced. 

GThe unification of the Poincare group and the electromagnetic 
gauge group in a single invariant group has been tried by 
G. Rideau, "Gauge Group and Extensions of the Poincare 
Group," in Colloquium on Group Theoretical AJethods in 
Physics (CNRS, L'niversite d' Aix, Marseille, 1972), p.11-7. 
ff., where the continuous extensions of the Poincare group 
by the gauge group are studied by means of the "extension of 
topological groups" tool. [See H. Nagao, Osaka Math. J. 1, 
:36 (1949)1; The conclusions of Rideau's work, as remarked 
by himself, however, seem to be useless for the needs of 
quantum electrodynamics. Another relationship between 
gauge transformations and the relativistic invariance can be 
also found in C. G. Oliveira and A. Vidal, progr. Theor. 
Phys. 43, 510 (1970). The methods and conclusions of these 
authors are quite different from ours. 

7The same problem for the classical field-source coupled sys
tem, as well as for quantum electrodynamics, will be dis
cussed elsewhere according to the space-time geometric ap
proach introduced in the present paper. [In this sense it is 
also interesting to recall the work of S. Osaki, Prog. Theor. 
Phys. 14, 511 (1955)1. 

8This dynamical redundancy has been the origin of many diffi
culties in quantum electrodynamics, notwithstanding the fact 
that a new canonical formalism for dealing with redundant 
variables has been created by Dirac. [See P. A. M. Dirac, 
Lectures on Quantum j'vJecizanics (Yeshiva V., New York, 
1964)]. It is obvious, on phySical grounds, that only the true 
dynamical variables (degrees of freedom) of a system should 
be quantized. The true degrees of freedom of the electro
magnetic potentials have been covariantly identified by 
A. Valdes in a thesis "Formulacion Covariante del Gauge de 
Radiacion" submitted to the Faculty of Science, Universidad 
de Chile, Santiago 1976, in partial fulfillment to obtain the 
degree of Licenciado. The same issue has recently been dis-
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cussed (for any adopted gauge) by S. Hojman, Ann. Phys. 
(N. Y.), 103, 74 (1977); cf. also, R. Gambini and S. Hojman, 
Ann. Phys. (N. Y.) 105, 407 (1977). Some important fea
tures of these analyses come very close to ours; there are 
substantial novelties, however, in the approach adopted in 
the present work. 

90ther relativistic covariant gauges have been known for a 
long time in quantum electrodynamics (Lc., the Landau 
gauge, the Feynman gauge, the Yennie and Fried gauge). 
See, for instance, B. Zumino, J. Math. Phys. 1, 1 (1960). 

IOU is well known that, according to gauge field theory, the 
group structure of gauge transformations as realized in 
electromagnetic theory corresponds to the Yang-Mills group 
extension of U(l); the 4-potential thus appears as the com-
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pensating field, while the electromagnetic tensor appears as 
the Riemann tensor, of the locally extended symmctry. 

l1The author has been unable to find any reference concerning 
this invariant G Ct;v) function in the current literature; as, 
for instance, in J. M. Jauch and F. Rohrlich, The Theory of 
Photons and Electrons (Addision-Wesley, Cambridge, Mass., 
1955), Appendix AI, p. 419. 

12F. Rohrlich, Classical CharKed Particles (Addision-\Vcsley, 
Heading, Mass., 1965). 

13This tensor, performing active (proper orthochronous) Lo
rentz transformations, is discussed by J. Krause, ,J. Math. 
Phys. 18, 889 (1977); 19, :>70 (1978). 

14Cf. S. Hojman, and also R. Gambini and S. liojman (refer
ences given in Ref. 8). 
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Let .cj' n be the trivial principal bundle with structural group G and base space 9 n _ I' .'Y I being 
the usual fiber bundle of gauge theories. In order to give a geometrical interpretation to the 
Faddeev-Popov fields, as weII as to the Becchi, Rouet, and Stora transformations, we need to use 
the fiber bundle .'Y 3' The gauge fields and the Faddeev-Popov ghost and antighost fields appear as 
part of certain one-forms defined on the base space .92, The anticommuting character ofthe ghost 
and antighost fields is essentially due to their identification with one-forms. The Becchi, Rouet, 
and Stora transformations are identified with generalized infinitesimal gauge transformations on 
/;/} 3 of parameters related to the ghost fields. We obtain a further invariance of the action given by 
a similar generalized infinitesimal gauge transformation on ,'Y 3 related to the antighost fields. 

PACS numbers: 11.1O.Np, 11.80.Jy 

I. INTRODUCTION 

Immediately after the introduction of nona bel ian gauge 
field theories I by Yang and MiIls/ the relationship between 
gauge fields and the internal geometry of the space of group 
parameters was becoming more and more evident. Gauge 
fields were indeed linked to the connection while the kinetic 
tensor played, with respect to the internal symmetry, the 
same role as the Riemann tensor did regarding the geometry 
of the space-time manifold. 

The use of differential geometry techniques to handle 
gauge theories was revived by a paper by Wu and Yang} 
where the gauge group was interpreted as the structural 
group of a principal fiber bundle. Gauge fields were deter
mined by the connection form on the fiber bundle while the 
kinetic tensor was, essentially, the curvature form of this 
connection. 4 

The quantization of gauge theories leads to the require
ment of introducing a gauge-fixing term in the Lagrangian 
which allows the free propagators of gauge fields to be writ
ten. This term implies the presence of nonphysical degrees of 
freedom which must be cancelled by means of the Faddeev
Popov (FP) Lagrangian of ghost fields. 5 However the FP 
fields were not identified as geometrical objects -(see, for 
instance, the Wu and Yang dictionary3) so that the problem 
is to get a satisfactory geometrical interpretation for the FP 
fields, in the same sense as that given to the gauge fields. As 
we shall see below the FP ghost and antighost fields do not 
have a place in the usual principal fiber bundle of gauge 
theories, so that the geometrical structure must be enlarged 
in the way discussed in this paper. 

A first attempt along this direction was made by 
Thierry-Mieg6 who interpreted the FP ghost fields as one
forms belonging to the vertical part of the connection associ
ated to the gauge fields in a principal fiber bundle. Neverthe
less, Thierry-Mieg's method is not, in our opinion, entirely 
satisfactory, mainly for the foIIowing reasons. 

(i) The FP ghost fields are given a space-time depen
dence by means of nongauge transformations 

(ii) The FP and gauge fields are explicitly dependent on 
the parameters of the gauge group. This is essentiaIIy due to 
the fact that the defined transformations assign different ele
ments of the group to points of the fiber bundle lying on the 
same fiber. In this way any relation with the physical mean
ing provided by the gauge transformation is lost. 

(iii) The FP anti ghost fields have no geometrical 
interpretation. 

(iv) The Becchi, Rouet, and Stora (BRS) transforma
tions7 are not related to gauge transformations in this 
scheme. 

The aim of this work is to present a geometrical inter
pretation ofFP fields, inspired by Thierry-Mieg, but solving, 
to our mind, the four difficulties mentioned above. 

We introduce a principal fiber bundle of structural 
group G and whose base space is another principal fiber bun
dle. The gauge and FP ghost and antighost fields appear as 
parts of certain one-forms defined on the base space and 
associated to connections in the principal fiber bundle. 

Point (iii) above is solved by the choice of the base fiber 
bundle while the gauge transformations on the overall prin
cipal fiber bundle dissipate the difficulties about points (i) 
and (ii). The BRS transformations may be interpreted as in
finitesimal generalized gauge transformations whose param
eters are two-forms related to the FP ghost fields. 

As a consequence of our theoretical construction, the 
Lagrangian appears as a BRS invariant two-form. Further
more, it is worth stressing that we obtain a new invariance 
property for the action under generalized gauge transforma
tions whose parameters are related to the FP antighost 
fields. 

In Sec. II we introduce the mathematical tools neces
sary to study gauge transformations. The construction of 
our particular principal fiber bundle and some mathematical 
results concerning gauge transformations on it are described 
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in Sec. III. Section IV is devoted to giving the definition of 
FP fields, to studying their change under gauge transforma
tions, and to briefly reviewing Thierry-Mieg's approach. In 
Sec. V the structure equations are analyzed and we obtain 
expressions for the variations of the fields under exterior 
differentials. Last, but not least, in Sec. VII a new variance of 
the action (unknown in the previous literature on gauge the
ories) is proved. 

II. GAUGE TRANSFORMATIONS: SOME 
MATHEMATICAL TOOLS 

We begin by introducing two operations that will be of 
great relevance when dealing with gauge transformations. 

Let G be a Lie group and [§ its Lie algebra. Let N be a 
smooth manifold and C '" (N,G ) the space of smooth maps 
from N into G. C "'(N,G) inherits from G a group structure, 

y·o (P)=y(P)o (P), pEN;y,OEC "'(N,G). 

If eEG is the identity, then the constant map p-+e is the 
identity ofC 00 (N,G ), and the inverse ofyEC =(N,G), y-I, is 
defined by y-I(p) = y(p)-l,pEN. 

Let A k" (N) be the space of [Y -valued k-forms on N. For 
each YEC = (N,G) we define a linear map from A ~ (N) into 
itself, as follows. 

(ad(y-l)w)p(XIP ,···,xkP) = ad(y(p)-'ll wp(Xlp ,···,xkp) j. 

For all pEN, XIP,. .. ,xkpETp(N) and wEJi ~,,(N). The map 
y-+ad(y-') has the following properties: 

then 

(i) \;Jy,OEC 00 (N,G ), ad ((y·o )-1) = ad(o-I) ad(y-I). 

(ii) If N' is a second smooth manifold and gEC 00 (N,N '), 

\;JYEC"'(N,G), g*ad(r-')=ad((yg)-')g*. (2.1) 

We have composition offunctions everywhere (except 
when the dot appears explicitly) which is the group product 
of C =(N,G). 

Let Obe the left invariant [§ -valued canonical one-form 
on G x (Oa = La 'Oa' aEG, where La ,is the left translation on 
G and La 'Oa is its differential at the point a). Then y*OEJi ~'l 
(N) if YEC 00 (N,G ). 

N ow we define an affine map from A ~'l (N) into itself as 
follows: yt w = ad(y- I)W + y*O, wEJi ~'/ (N). 

The mapping has the following properties 

(i) \;Jy,DEC 00 (N,G ), (y.D)t = Dtyt, 

(ii) If N' is a second smooth manifold and gEC 00 (N',N), 
then 

(2.2) 

The next step will be to introduce the connections and 
the structure equations on fiber bundles. 

Let M be a smooth manifold and let 9 = .'7 (M, G, II ) 
be a principal fiber bundle with base space M, group G, and 
projection n. Let {U; };El be an open cover of M such that for 
each iEl there is a trivialization, tP;:1l -ii U; )-+U; X G, of &'. 
We have tP; = (II, ¢>;) with ¢>;EC "'(U;,G) and ¢>;Ra = Ra¢>;, 
\;JaEG, R

Q 
being the right translation on G. For each iEl, let 
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a;:Vj-+I1 -ii V) be the preferred local section a,(p) = tP, I 
(p, e),pEU;. It is possible to prove that tP; is fixed once cp, or a, 
are given. The transition maps are denoted by tPij:U;n~-+G. 

Given a connection form wEJi \, (:Jj!) on the principal 
fiber bundle :3' , the curvature form n is related to w through 
the structure equation 

n = dw + Hw, w], (2.3) 

where ([w,w))(X, Y) = [w(X ),w(Y)) is the bracket product on 
[9. 

The connection form w is expressed by a family 
a = (a, )'El of one-forms a,EJi !. (U,) on each U" a, = a;w. 
These one-forms are related by aj = tPta" i,jEl. Conversely, 
given any such family a = (a, )'E!> a,EJi I" (U,) with the prop
ertyaj = tPija" there exists a unique connection form w on 
fJ! such that a i = a;w, with w = cp ill *a, on II - I (U,). 

We get a similar expression for the curvature form n, 
which can be expressed by a family R = (R; ),El of two-forms, 
R,EJi ~ (U,), on each U" R, = a;n. These two-forms are re
lated by Rj = ad(tP,;- ')R, i,jEl. We can regain n from the 
family R by means of n = ad(cp ,- ')Jl*Rj on II -ii U,). The 
structure equation for R reads 

(2.4) 

so we get Ri directly from a" 
Now we pass on to describing the gauge transforma

tions on ?p and their action over connection and curvature 
forms, 

A gauge transformation4 on ,(Jj! is a smooth map 
!//J-+{;? from 9 into itself such that II/ = II and 
fRa = RJ, AaEG, i, e" the fibers are preserved and the map
ping/is equivariant. The gauge transformations are just the 
equi valences of .C;/ ,'} 

As before, a gauge transformation/can be completely 
characterized by a family y = (y, )'El of maps y,Ee =( U" G) 
for each U,' y, = cpJa" Then Yj = ad(tPij l)y,;i,jEl, Con
versely, such a family y = (Yi ),El of maps y,EC ocr Uj! G) with 
the property Yj = ad(tPij I)r, determines a unique gauge 
transformation/given by flu) = (a,II (u)) [(r, II (u))¢>,(u)], 
uEII-I(U;), i. e,,j= (aJ7)[(y,1l )'¢>'] on II-I (U,). 

It is worth noting that the composition of two gauge 
transformationsf, andf2 is a new gauge transformationf /2 
having as local expression YI 'Y2 = (y" 'Y2' )'cel if YI = (y" ),el 
and Y2 = (Y2,),,,1 are the local expressions off, andfl' 
respectively. 

For our purposes it is very important to point out that 
the gauge transformationfacting on a connection form w is a 
new connectionf*w, If w is expressed locally by the family 
a = (a')'El andfby y = (Y')'el,j*W is given locally by yt 
a=(y;a; LEI as can be easily seen using (2,2), Also, if 
n = n (w), thenn (f*w) = f* n and its local expression isgiv
en by ad (r-')R _(ad(Yi I)R,kl' 

So we can handle the connections and curvature form 
on P, and their gauge transformations, directly on the base 
space M, without any explicit reference to p, This will sim
plify the expression of the gauge transformation in Secs, III 
and IV, and in the latter section will also permit us to give a 
space-time dependence to the FP ghost fields without intro
ducing a new disturbing field. 
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III. A PARTICULAR CONSTRUCTION 

In order to give a geometrical meaning to the FP fields 
we will need the construction of the particular principal fiber 
bundle developed below. 

Let 9 1 = 9 (M,G,lll) be a general principal fiber bun
dle of base M, structural group G, and projection lli' Let 
U = {U; lEI be an open cover of M such that there is a trivia
lization (U;, tP; ) for each iE!. Let tP ij be the corresponding 
transition functions. 

Let a = (a; );EI be a family of one-forms a;eA ~ (U;) 
such that aj = tPijadJE!. We know from Sec. II that a de
termines a connection form WleA )'1 (9 1), 

Let 9 2 = 9 I X G be the trivial principal fiber bundle 
of base 9 I and structural group G. Let il2 be the fiber bun
dle projection from 9 2 onto 9 I and II GEC 00 (9 2,G ) be the 
direct product projection from 9 2 onto G. 

In 9 I we consider the open cover that has 9 I as 
unique member and trivialization of 9 2 consisting of( 9 1,1) 
where 1:9 r--+9 I X G is the identity map. Then 
W leA ~~ (9 I) determines a connection form w2eA ~'l (9 2) 
given by W2 = ll~il!wl on II 2-

1(9 I) = 9 2, 
Since W I is a connection form on 9 I we have a corre

sponding curvature form [1 I = [1 (w l)eA ;. (9 I)' The same is 
true for W2 and we have a curvature form [12 = [1 (w2)eA 7'l 
(9 2), 

We now express W2 and [12 in terms of the families a and 
R, where R = (R; );EI is the family of curvature forms on U;. 
iE!, given in (2.4). 

W2 = [(¢;ll2)·llG P(ll.n2)*a;, on II I-I(U;)XG, 

(3.1) 

[12 = ad[((¢;ll2)·llG)-1 ](lllll2)*R;. on II -I(U;)XG. 

We take another step and consider 9 3 = 9 2 X G, the 
trivial principal fiber bundle of base 9 2 and structural group 
G. As before, we consider the family oflocal trivializations of 
9 3 with the unique member! (9 2,1) J, where 
I: 9 r--+ 9 2 X G is the identity map. 

A gauge transformation on 9 3 is given by a map YEC 00 

(9 2, G) that transforms the one-form w2eA ~ (92) and the 
two-form [12eA ;. (9 2) into w; = ytw2eA ~ (92) and 
[1; = ad (y-I)[12eA ~'l (9 2), Note that W2 is a connection 
form of P2 and [12 its curvature form, but w; is not in general 
a connection form on 9 2, However, [1; satisfies the struc
ture equation with respect to w~ . 

[1; = dw; + Hw~,wn, (3.2) 

as follows from (2.4). We can express the new forms w; and 
[1; it terms of a and R as 

w; = yt((¢;ll2)·llG)t(lllll2)*a;. on II 1- I(U;)XG, 

(3.3) 

[1; = ad(y-l)ad[((¢;ll2)·llG)-1 ] (lllll2)*R; , 

on II I-I(U;)XG. 

Let us now consider the expressions in coordinates of 
the forms studied above. Let UC!?li" be an open set and 
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a:U--+Mbe a chart such that a (U)C U; for some iE!. We 
express a; and R; in this chart 

" a;(x) = L AI' (x)dx!1- XEU, (3.4) 
!1-~ I 

R;(x) = L F!1-v(x)dx!1-lI..dxv XEU, 
l<J..t<v<n 

whereA!1-,F!1-v:U--+~ ;/-l,v = l, ... ,n. UsingEq. (2.4) we obtain 

F!1-v(x) = a!1-Av(x) - avA!1-(x) + [A!1-(x),Av(x)], XEU. 
(3.5) 

For the group G we consider V, WC!?lim open sets such 
that OEVnW, andg:V--+G, h:W--G are charts with 
g(O) = h (0) = e. Then b:U X V X W--+P2 given by 
b (x,y,z) = (tP;- I(a(x),g(y)),h(z)) is a chart for 9 2' 

Hereafter we will always denote as x = (xI') the ele
ments of U, as y = (ya) the elements of V, and as z = (zp) the 
elements of W, and a summation over repeated indices will 
be understood, unless explicit mention is made otherwise. 

We suppose that G is given in a matrix representation. 
In that case, if A = yb:U __ G we have 

(g*O)y = g(y) - laug(y)dya, YEV, 

(h *O)z = h (z) - laph (z)dzP, ZEW, 

(A *0 )(x.y.Z) = A (x,y,z)-la!1-A (x,y,z)dx!1- + A (X,y,z)-I 

XaaA (x,y,z)dya + A (x,y,z)-lapA (x,y,z)dzP, 
(X,y,z)EU X V X W. 

Using the equalities (2.1) and (2.2) we obtain the expres
sion for W2'W; ,[12' and [1; in these particular coordinates. 

w2(x,y,z) = ad (h(z)-I)ad(g(y)-I)A!1- (x)dx!1-

+ ad(h (z)-I)g(y)-Iaug(y)dyu + h (z)-Iaph (z)dzl3, 

w; (x"y,z) = ad(A (X,y,z)-1)w2(X,y,z) + A (X,y,z)-I 

xa!1-A (x,y,z)dx!1- +A (x,y,z)-laaA (x,y,z)dya 

+ A (x,y,z)-lapA (x,y,z)dzP, (3.6) 

[12(X,y,z) = ad (h (z)-I)ad(g(y)-I)F!1-v(x)dxl'-lI..dxv, 

[1 ~ (x,y,z) = ad(A (x,y,z) - I )[12(X,y,z). 

Note that the curvature forms [12 and [1 ; have all com
ponents null except, perhaps, those corresponding to the 
(p, v) coordinates. 

IV. THE FADDEEV-POPOV GHOST FIELDS 

In this section we give a geometrical interpretation of 
the FP ghost fields. In order to do that we first dicuss the 
work of Thierry-Mieg6 pointing out some features that, in 
our opinion, are not satisfactory. We can modify these fea
tures using construction described in Sec. III. 

We begin by giving another interpretation of gauge 
transformations. To do it we came back to 9 I and the con
nection form WI' We consider the chart r:U X V--+9 I given 
by r(x,y) = tPi- I(a(x),g(y)). Then 

wl(x,y) = ad(g(y)-I)A!1-(x)dx!1- +g(y)-Iaug(y)dya. (4.1) 

Let/be a gauge transformation on 9 I given by the 
family y = (Y;);E/' where y;EC oo(U;.G)iE!, w; =/*wl is the 
gauge transformed. Then if A = '}1a, 
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(V; (x,y) = ad(g(y)-I) [ad(A (X)-I)A" (x) + A (X)-I 

XJ"A (x) ]dX" + g(y)-IJ"g(y)dy", 

expressed in the chart r. 

(4.2) 

Next we consider another chart s:U X V_PI given by 
s(x,y) = 0, l(a(x),A (x)g(y)) and we express (VI in this new 
chart, 

(VI(x,y) = ad(g(y) l)[ad(A (x) I)AI' (x) + A (X)-I 

XJ"A (x) ]dX" + g(y)-IJ"g(y)dy", (4.3) 

that coincides with the expression of (V; in r. 
Thierry-Miegt> uses the expression g(y) = A (x )g' (y') to in

dicate the change of coordinates from r to s given above. 
Comparison of(4.2) with (4.3) tells us thatcvl and (v; are 

equal at different points of the fiber. Also we have that 
sr I = J, so that the gauge transformation can be considered 
as a change of coordinates. 

I n what follows the base space M will be the space-time 
manifold .'1';4 (or .;1'4) and G any of the usual gauge groups of 
order m, e.g., SU(M), m = M2 - 1. 

We take from the connection form WI the vertical part, 
that in r-coordinates reads as 

e(y) = c" (y)dy", 

where 

(4.4) 

(4.5) 

Since e" (y) belongs to the Lie algebra .'9, we consider a 
basis! - iA" \ of :fJ, and then 

(4.6) 

We identify the FP ghost fields with the real one-forms 

e"(y) = <', (y)dy", 

so that 

c(y) = c"(yl( - iAa)' 

With this notation 

(vdx,y) = ad(g(y) '1)A'/(x)dxl
' + c(y), 

(4.7) 

(4.8) 

(4.9) 

and the gauge fields All (x) = A ~ (xl( - iAa) are related, as 
usual, to the horizontal part of the connection form. 

We express the transformed connection form (v; in a 
similar way to that of W I in (4.9). 

(v; (x,y) = ad(g(y) I)A;I (X)dX" + c'(y), (4.10) 

where 

and 

(4.12) 

From (4.12) we see that the FP ghost fields do not get 
any space-time dependence through gauge transformations. 
This fact gives us the clue to think that the fiber bundle :/' I 
and the connection form W I are not the correct mathematical 
formalism for introducing the FP ghost fields, because we 
know, from the physical picture provided by the path-inte
gral quantization, that they must possess a nontrivial space
time dependence. In order to resolve this difficulty Thierry
Mieg did a coordinate change in Y) I' illustrated by 
g(y) = A (x,y')g'(y'), that is not equivalent to a gauge transfor-
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mation on ./) I' Under this coordinate change, the FP ghost 
fields are transformed according to 

c;,(x,y') = ad(g'(y')-I)A (X,y')-IJ"A (x,y') + c,,(y'), (4.13) 

while the gauge fields transform as in (4.11), but A (x) is re
placed by A (x,i). This procedure is not satisfactory, howev
er, mainly due to the following reasons: 

(a) The transformation used is not a gauge transforma
tion and hence has nothing to do with the invariance proper
ties of the known physical systems. 

(b) The ghost and anitghost ofFP playa very dissimilar 
role. Indeed the antighost has not any geometrical interpre
tation in ;;1' I' 

Next, we see we can to resolve (a) by doing a gauge 
transformation of the connection form W 2 on P2, and we get a 
space-time dependence for the ghost field equal to that given 
by Eq. (4.13). We write W 2 with respect to the b-coordinates 
in the form 

(V2(X,y,Z) = ad [(g(y)h (z))-I]A '1 (X)dX'1 
+ad(h (Z)-I)C(y) + C(z), 

where c(y) is given by (4.8) and 

c(z) = c(!(z)di3, 

with 

(4.14) 

(4.15a) 

(4.15b) 

As before we take the components of the one-form C(z) 
with respect to the basis I - iAa \ of the Lie abgebra :9, 
obtaining m real one-forms c"(z) which will be identified with 
the FP antighosts. 

A gauge transformation on :1') 2 is given by a map YEC ,. 
(PI,G), that in b-coordinates can be expressed by the map 
AEC ~ (U X V,G). If w; is the connection form of P2 obtained 
from (V2 through this gauge transformation, we have 

(v; (x,y,z) = ad [(g(y)h (z)) _. I]A ;, (x,y)dx" 
+ ad(h (z) -1)C'(X,y) + C'(z), 

where 

A;, (x,y) = ad(o(x,y)-I)A'/(x) + O(X,y)-IJ,lO(X,y), 

e;,(x,y) = ad(g(y)-I)o(x,y)-IJ"O(x,y) + c,,(y), (4.16) 

cg = c(3(z), 

with 0 (x,y) = ad(g(y))A (x,y). 
Let us remark that we can do the gauge transformation 

on :/' 2 directly on its base :1" I (as seen in Sec. II) obtaining 
the first two equations of (4.16). Then the antighosts do not 
appear at all, but the ghosts do get space-time dependence. 
Obviously, Eq. (4.16) are equivalent to Eq. (4.13), but now 
they are a consequence of a gauge transformation. So we 
have resolved point (a). 

Looking at (4.14) and (4.16) we see that 
(i) There is a new object, C(z), which may serve to give a 

geometrical interpretation of the FP antighost fields, as seen 
before, that have no place in :7 I' This solves in part point (b) 
above. 

(ii) The antighost field would be, however, invariant un
der gauge transformations on .'/' 2 and hence it does not ac
quire any space-time dependence. 
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Now it is evident, from the above remarks, that if we 
wish to get a geometrical interpretation for the FP ghost and 
antighost fields we need, at least, to consider 0)2' on f!J> 2' and 
if we want to give them a space-time dependence, by means 
of gauge transformations, we need to consider .0/' 2 as the base 
of the principal fiber bundle & 3' cited in Sec. III, and per
form the gauge transformation on 9.1' As noted in Sec. III, 
and in view of the remark after (4.16), we can do the gauge 
transformation directly on .0/' 2 with the additional advan
tage that a new field, undesirable from the physical point of 
view, does not appear. 

We proceed just as indicated. Let YEC W( f!J> 2,G ) be the 
local form of a gauge transformation on ,f'J 3 and A = yb its 
expression in b-coordinates. Let 0); = yt 0)2 be the gauge 
transform of 0)2' We write o)~ in the form 

o)~ (x,y,z) = ad [(g(y)h (z)) ~ ']A ;, (x,y,z)dx" 
+ ad(h (z) ~ I )c'(x,y,z) + C'(x,y,z), 

where 

A;, (x,y,z) = ad(o(x,y,z) -IJA,,(X) + o(x,y,z,)-IO"O(X,y,z), 

c;,(x,y,z) = ad(g(y)-I)o(x,y,z)~ 'o",o(x,y,z) + ca(y), (4.17) 

c;;(x,y,z) = ad [(g(y)h (Z))-I Jo(x,y,z)~ IOpO(X,y,z) + cp(z), 

with 

° (x,y,z) = ad(g(y)h (z))A (x,y,z). 

Here we see that both the ghost and the antighost ac
quire a space-time dependence. The laws of transformation 
(4.17) are deduced from the initial fields (AJL (x), ea (Y), cp(z)). 
Now we will try to reproduce them after a new gauge trans
formation, i.e., considering as initial the fields (A;, (x,y,z), 
e~ (x,y,z), c# (x,y,z)) basing all of them on the three para
menters. Let Y'EC "'(.'7 2,G) be a new gauge transformation 
on [7:1 with A ' its expression in b-coordinates. Let 
0);' = y'to); be the gauge transformed of 0)2' Then 

with 

0)2'(X,y,z) = ad[ (g(y)h (z))~ 1 JA ;:(x,y,z)dxJL 

+ ad[h (z)-'}c"(x,y,z) + c"(x,y,z), 

A ;;(x,y,z) = ad(o'(x,y,z)-IJA ~ (x,y,z) 

+ o'(x,y,z)-'o"O'(x,y,z), 

c~(x,y,z) = ad{(ad(g(y)-I)o'(x,y,z)]-I} 

X (e:, (x,y,z) 

- Crt (y)) + ad(g(y)~ ')S'(X,y,z)~ 1 

Xacco'(x,y,z) + ca(y), (4.18) 

c;J(x,y,z) = ad {[ad[(g(y)h (z))~' ]o'(x,y,z)] -'}(c#(x,y,z) 
- c/3(z)) + ad [(g(y)h (z))~ ']S'(x,y,z)-'o{3o'(x,y,z) + c{3(z), 

where 

° '(x,y,z) = ad(g(y)h (z))A '(x,y,z). 

We must point out that (4.18) is different from (4.17); 
however, we see that if c~ = Cll andc;' = c/3 they coincide. 
On the other hand (4.17) and (4.18) are very complicated. To 
avoid all this we make a final choice for the physical fields. 
The gauge field will be the coefficients of dxJL and the FP 
ghost (antighost) fields will be the components of dy"(dzP) in 
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the one-form 0)2' Explicitly, 

1" (x,y,z) = ad{[g{Y)h (z)}- 'JAil (x), 

c(x,y,z) = ad[h (zr I]e(y), 

c(x,y,z) = C(z), 

(4.19) 

so that the one-form ~ is written, in the initial configura
tion, as 0)2(X,y,Z) = 1;, IX,y,z)dxl ' + c(x,y,z) + ~(x,y,z). For 
this choice for the physical fields, the gauge transformed 0)2 
is given by 0)2 (x,y,z) =0 A;, (x,y,z)dx" + c'(x,y,z)c'(x,y,z), 
where 

A;, (x,y,z) = adl-t (x,y,z)~ 1 J1'" (x,y,z) 

+ 1 (x,y,z)-'O,lA (x,y,z), 

c'(x,y,z) = ad [A(X,y,z) ~'Jc(x,y,z) 

+ A. \X',y,z)- 'dyA. (x,y,z), 

c'(x,y,z) = ad[A x,y,zr I ]c(x,y,z) 

+ A. (x,y,;)-'dzA (x,y,z). 

(4.20) 

As it should be, (4.20) are nothing else than another form of 
(3.6). The curvature form. were extensively discussed in Sec. 
III and we shall not dwel upon them any longer. 

Let us finally remar~ that our choice of the FP fields is 
such that they are one-forms and hence anticommuting 
quantities. This is the crucial properIty from the physical 
point of view. Thierry-Mieg was the first to identify the FP 
fields with one-forms.6 

v. THE STRUCTURE EQUATIONS 

From here on wewill work with a fixed one-form pEA ! 
( f!J> 2) coming from the gauge transformed of a connection 
form on & 2' obtained in the form described in Sec. III. 

To simplify the notation we will write 

p(x,y,z} = AJL (x,y,z)dxP + ca (x,y,z)dya + cp(x,y,z)dz!3, 
(5.1) 

and we do not want to distinguish between the coefficients of 
p that will be referred to aspi' where the index i can take the 
values ,a,a, and p. 

We remind the reader that A", c,n and c{3 are elements 
of the Lie algebra Y. Hence if! - iAa I is a basis of y, then 
AJL = A;( - iAa), ca = c:( - iAu}' andc/3 = cpr - iAu}' In 
this way the gauge fields areA ~ (x,y,z), the FP ghost fields are 
ca = e~dya, and the FP anti-ghost fields are? = epdz!3, 
a = 1, .... ,m. 

The commutation relations between the generators of 
Yare given by [ - iAb' - lllcJ =f~c( - iAa),f~c being the 
structure constants. We designate R by the curvature form 
corresponding to (5.1) and Rij (iJ = ,a,a,p) its components. 
Then the structure equations (2.3) and (2.4) can be written as 

Rij = apj - ajp, + (P"Pj], (5.2) 

and we know from (3.6) that Rij = 0 except, perhaps, when 
(ij) = (,a, v). In this case 

R,,,, = o'L A" - o,.A1' + [A",A,,] = F;lV' (5.3) 

is the well-known strength tensor field F;,v of gauge theories. 
As far as the vanishing components of the curvature are 

concerned, they lead to the following equations. 
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dvA ~l = (Dlle)", 

d z C" = - if~J!} 1\ C, 

d,A;: = (DII C)", 

(S.4a) 

(S.4b) 

(S.4c) 

(S.4d) 

d C"+d e"+f" e"l\cC=O (S.4e) y z be ' 

where (Du e)"-all e" + f%cA :: e' is the covariant derivative of 
the FP ghost field, and similarly for (Due)". These expres
sions are obtained by multiplying the equations R,j byade
quate differentials. Thus, for instance,(S.4a) is obtained by 
taking the product of Raa' = 0 by dyal\ dy'" and summing 
over all a and a'. With respect to the dfferentials dy and d" 
they are the exterior derivatives dy = cady" and dz = a"dzf1. 

We also refer to Eq. (5.4) as structure equations. They 
contain all the relevant geometrical irformation of the the
ory and we will make use of them later. 

VI.THE GEOMETRICAL MEANING OF THE 
BECCHI,ROUET, AND STORA TRANSFORMATIONS. 

As is well known, the BRS tnnsformations7 leave in
variant the Lagrangian of nonabel an gauge field theories, 
including the gauge-fixing term ane the Faddeev-Popov La
grangian. The presence of these tW( terms, gauge-fixing and 
FP, in the Lagrangian is implemented by the covariant quan
tization of the theory, Indeed, the qlage invariance of total 
Lagrangian no longer holds, but is replaced by the BRS in
variance, which plays a fundamental role in the proof of the 
renormalizability of gauge theories. 11,11 

In this section we shall give a ge::lmetrical meaning to 
the BRS transformations by means of the structure equa
tions (5.4). On the other hand, the BRS transformation will 
be interpreted as a "gauge" transformation in a wide sense to 
be explained later. 

We write for the Lagrangian of pure gauge theories, in 
the absence of any matter field, the two-form 

]' = {_l(F~v)2 - ~(a"A ~ FlY - e"d l '(D/ic)a,(6.1) 

where the gauge-fixing and FP terms are given in the Lo
rentz gauge. In what follows we limit ourselves, for simplic
ity, to this gauge but it is clear that our results must be true 
for a more general class of gauges. 

The Lagrangian (6.1) differs from the usual one only in 
the (nonzero) constant two-form 

. 7 = efi"dr] I\dy". (6.2) 

Nevertheless, the presence of ,'7 does not affect the 
physical results of the theory since it is a constant (with con
stant coefficients) and commuting object. 

The Lagrangian density (6.1) is a two-form depending 
on xll,y", and zli, where Xl' are space-time coordinates while 
y" and zli are group coordinates without any physical mean
ing. They have been introduced to give an anticommuting 
character to the FP ghost and antighost fields. To get this 
character we do not need the whole group G, but only a 
neighborhood of a fixed point of G, that can be taken to be 
the identity eEG, corresponding to y" = zP = O. 

In order to completely avoid the undesired dependence 
of the fields on y" and ri we take their values at y" = 0 and 
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zI} = O. Thus the forms become fields with values in the exte
rior algebra of the tangent space of G X G at the point (e,e), 
~c.c) (G X G), the corresponding commuting or anticommut
ing character being preserved. 

However, to conserve the meaning of the operators d
v 

and dz we define the action in the above exterior algebra as 
the action on the Grassman algebra of :yJ 2 followed by the 
particularization to the point (e,e). The same for any other 
operator which we shall do act on the Lagrangian density, as 
for instance Ll and Xbe(ow. 

In view, of this, the Lagrangian density is only depen
dent on the space-time, so that we define the action as usual 

v' -1 V'd 4 ./ - .~ X. 
R' 

(6.3) 

We now prove that the Lagrangian (6.1) is a closed form 
with respect to the y-variables. For this we must apply d), to 
f. 

The FP Lagrangian may be written as 

]' FP = - CUdyiJ'A ~, 

thanks to (S.4b), and using d ~ = O. we arrive at 

(6.4) 

dyY" = - (a"A ~,)dy(iJ'A ;,) 1\.'7 - (dyCU) I\dy(iJIA ~). 
(6.5) 

The derivative of the gauge-invariant Lagrangian den
sity - a(F~v)" is null in the standard way since (S.4b) is for
mally an infinitesimal gauge transformation for A ~, with pa
rameters e". 

We observe that the structure equations (5.4) give us the 
freedom to fix dye" arbitrarily, provided that dze" would be 
constrained by Eq. (S.4e). Thus we choose 

dyCU = - iJ'A ~.'7, (6.6) 

and we get immediately from (6.5) that dy :f = O. 
We obtain the usual BRS transformation 7 as 

!5 = sdy , 16.7) 

where S is an arbitrary nonzero constant real one-form, in
troduced only to give to the exterior derivative dy of the 
fields (S.4a), (S.4b). and (6.6) the same commuting/anticom
muting character as the fields themselves. 

We end this section by showing the relation between 
BRS and gauge transformations. 

We take as gauge function 

A. (x,y,z) = es<lx.y,Z) = 1 + Sc(x,y,z) . 16.8) 

The expression (6.8) has a sense in the exterior algebra 
of the forms and can be considered as a gauge transforma
tion, in a wide sense, since Se is a commuting object (but not a 
function) with values in the Lie algebra of G. 

Using Eq. (4.20) for the gauge-transformed fields, and 
with the present notation, the infinitesimal transformations 
generated by (6.8) are given by 

LlA ~ = d"se" + f~cA ~Sec = (D"set, 

.::lea = dyse" + (c,Se]", 

.::lCU = dzSea + (E,Se]". 

From (S.4b) and (6.9a) we get 

LlA;, = sdyA ~ = 8A ~ , 

M. Quir6s et al. 
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(6.9b) 

(6.9c) 

(6.10) 
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which illustrates to us the well-known fact the BRS trans
form of A ~ is nothing but the gauge transform with param
eter sca. 

As we shall prove, the same holds for the fields ca and C". 
Equation (S.4a) can be written, after multiplication by S' as 

sdyca = Hc,tc)a. 

Hence, 

.1c" = dysca + 2sdyc" = &a = sdyca
. 

Similarly, from (S.4e) we have 

[e,sc) a = sdyC" + sdzca
, 

so that 

(6.11 ) 

.1C" = sdyC" = DC". (6.12) 

Equations (6.10)-(6.12) show that we can identify the 
BRS transformations with infinitesimal gauge transforma
tions, 8 = .1. This is not a trivial fact but a direct conse
quence of the structure equations in the fiber bundle [1"3' in 
sharp contrast with the usual treatment where the BRS 
transformations for the fields c and e are imposed in order to 
get the invariance of the Lagrangian, but without any refer
ence to gauge transformations. 

The infinitesimal "gauge" transformation of the 
Lagrangian 

.1 Y' = Y((A + .1A,c + .1c,e + .1e] - .Y'(A,c,e] 

can be obtained (at first order) by the action of sdy over Y 

.1Y' = sdyY'. (6.13) 

This is true because sdy behaves as a derivation of degree 
two. In fact, dy is a skew-derivation of degree one, so that 
when it acts over a term like e I\Mc we get 

d,,(e I\Mc) = (dye] I\Mc - e I\dy(Mc); 

but the one-form S restores the sign 

sdy(e I\Mc) = (sdye] I\Mc + e 1\ sdy(Mc), 

and we get that sdy is a true derivation of degree two. 
From the above remarks we obviously obtain the invari

ance of the Lagrangian under .1, as 

(6.14) 

VII. AN ADDITIONAL INVARIANCE OF THE ACTION 

We saw in Sec. VI that the well-known invariance ofthe 
Lagrangian, and hence of the action, under BRS transforma
tions is closely related to the behavior of the Lagrangian 
under the exterior differential dy • So we can ask what is the 
role played by dz • Since dy is associated with the FP ghost 
fields, as given by (6.8), it seems reasonable to associate d

z 

with the FP antighost fields. 
In this section we shall study the current relation be

tween dz and the FP antighost fields, through an infinites
imal gauge transformation, and prove the in variance of the 
action under dz • 

Let us first introduce the infinitesimal "gauge" 
transformation 

,f(x,y,z) = eSClx.y.zI = 1 + se(x,y,z), 
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(7.1 ) 

whose parameters are associated with FP anti ghost fields. 
Making use again of(4.20), we obtain from (7.1) the 

infinitesimal transformations 

XA a = D"sC", 

Xca = dysC" + [c,se)", 

XC" = dzsC" + [e,se)a. 

(7.2a) 

(7.2b) 

(7.2c) 

With the aid of Eqs. (S.4c), (S.4d), and (S.4e) and proceeding 
in a similar way as in Sec. VI, we get from (7.2) 

XA~ =sdzA~, 
Xca = sdzca

, 

(7.3a) 

(7.3b) 

XC" = sdzC". (7.3c) 

Next, we study the transformation properties of the La
grangian under d z and we apply them to the invariance prop
erties of the action. 

We write the Lagrangian in the form 

1'=2' - al'(C" I\dyA :,), 

where 

.Y = ! - !(F:'v)2 - ~(a"A :, f j.'7 + (a "C") 1\ dyA :" 
(7.4) 

since Lagrangians differing only by a four-divergence are 
associated to the same action . 

Because of (S.4d), (F:",f is invariant under dz • There
fore we can write 

d 7J' = - (a"A a)d (a'A a) '7 + (al'd C") I\d A" 
Z' Ii Z \' • Z Y Ii. 

-(iI'C")l\dz dyA:'. (7.5) 
By means ofEqs. (5.4) and (6.6), fixed to obtain the usual 

BRS invariance, we obtain the decomposition 

dz'-Y = A 1\.'7 +B, 
where A is the one-form 

(7.6) 

A = - ((I" A a )OC" - fa ({)I'A a )A b aver; _ (avC")a (iI'A a 
p. be J.lv v Ii 

-fa A d(iI'A C )avC" 
de v Ii , 

and B the three-form 

B = - if~ciI'(C" 1\ c) 1\ (ai' cb + fZh A ~ ch) 

+ (J"CV) 1\ [f~A, (Cd 1\ C") 

- f~e (ap C") 1\ CC - f~J:hA ~ CV 1\ c" 

+ f~J;hA ~cE I\CV j. 

After an extensive use of the Jacobi identities and the 
anticommuting character of the fields ca and C", we find 

A= -a!l[(al'C")(aVA~j, 

B=O. 

That, together with (6.6), gives us 

dz·Y = al'(a"C" I\dyC"), 

while for the Lagrangian :f we get 

dz.Y' = a I'T,,, 

where 

'{, = a"C" I\dyC" - dz(C" I\dy A :'). 

(7.7) 

(7.8) 

(7.9) 

As in Sec. VI we have the sdz is a derivation of degree 
two, so that 
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(7.10) 

From there we get for the action the invariance property 

Xs=o. (7.11 ) 

Let us remark that the BRS in variance was the only 
known invariance for the action in nonabelian gauge theor
ies. We have shown the existence of a new invariance, X, for 
the action, which is associated with gauge transformations of 
parameter te. The physical consequences of the invariance 
(7.11) with respect to generalized Ward-Takahashi identi
ties, and properties derived from them, will be considered in 
a forthcoming paper. 

VIII. CONCLUSION 

In this work we have reached a geometrical interpreta
tion for the FP ghost and anti ghost fields. The anticommut
ing character of these fields was essentially due to their iden
tification with one-forms. The gauge transformations on the 
principal fiber bundle ::1 < provide us with the space-time 
dependence for the FP fields. The generalized gauge trans
formations of parameters related to the FP fields provide us 
with the BRS trnasformations and the corresponding invari
ance for the Lagrangian. Furthermore, we obtain a new gen
eralized gauge transformation, with parameter related to FP 
antighost fields, leading to a new invariance property for the 
action. 

As a consequence of the mathematical framework 
which has been developed in this paper, there arise several 
open questions which might be of interest from the physical 
point of view and are worthy of further investigation. 

First of all, the new invariance property for the action, 
which was discovered in this paper, might have physical con
sequences providing identities between Green's functions as, 
for instance, some kind of generalized Ward-Takahashi 
identities. 

On the other hand, a possible physical interpretation of 
the group parameters y and z can be drawn as internal de
grees offreedom while they play, in the present study, a 
subsidiary role, since they have been fixed so that the phys-
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ical fields remain only as functions of the space-time coordi
nates. Concerning these additional internal degrees of free
dom we introduce, let us remember that a similar situation 
also occurs in supersymmetries l2 with the introduction of 
superspace. 

Finally it might be of interest to study the global struc
ture of the overall principal fiber bundle P/'.J whose base, ;/}' 2' 

is essentially different from the usual space-time manifold. 
This study may be relevant in relation with nonperturbative 
objects (as for instance the topological solitons) where the 
global structure of the base space plays a fundamental role. 

Note added in proof After completion of this work we 
found that a particular X transformation satisfying our Eq. 
(5.4) was introduced by Curci and Ferrari [G. Curci and R. 
Ferrari, Phys. Lett. B 63, 91 (1976)] and by Ojima [I. Ojima, 
Prog. Theor. Phys. 64, 625 (1980)] without any refernce to 
the geometrical structure of gauge theories. 
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Relativistic equations in which the fields cotransform under the direct sum of indecomposable 
representations of the Lorentz group are derived and discussed. 

PACS numbers: 11.1O.Qr 

I. INTRODUCTION 

The theory of linear relativistically invariant field equa
tions has had a long and tangled history. It began with 
Schrodinger's proposal of the relativistic wave equation in 
1926, Dirac's wave equation for a massive spin 1/2 particle 
in 1928 and Majorana's pioneering study in 1932 and has 
always been a subject of interest of many scientists. Conse
quently, several systematic approaches to relativistic field 
equations are now available!. the most popular of which are 
perhaps those worked out by Gel'fand and Yaglom,2 by Bru
hae and those based on the Garding's technique.4 

In this work, relativistic equations of the form 

(rpJp + iM)t/J(x) = 0 

are constructed in which field t/J(x), under space-time trans
formations from the proper Lorentz group SL(2,q, cotrans
forms as a direct sum of indecomposable representations of 
SL(2,q. The case in which the field t/J(x) cotransforms ac
cording to a direct sum of irreducible representations of 
SL(2,q was worked out by Gel'fand and Yaglom. 2 (A gen
eralization to a direct integral of irreducible representations 
of SL(2,q was done by Cantoni. 5) Thus the present work 
can be viewed as an extension of the Gel'fand-Yaglom meth
od to indecomposable so-called Harish-Chandra represen
tations of SL(2,q. These representations were studied and 
classified by Gel'fand and Ponomarev6 in 1968. They will be 
briefly reviewed in Sec. 2. Section 3 contains the construc
tion of field equations invariant under a direct sum of Har
ish-Chandra indecomposable representations. Finally, Sec. 
4 is devoted to conclusions and to a brief comparison with 
other relativistic equations ba,sed on indecomposable repre
sentations of the Poincare group. 

2. INDECOMPOSABLE REPRESENTATIONS OF 
SL(2,C) 

Let JI' = !h+,h_,h3,/+,/_,hl denote the complexifi
cation of the Lie algebra of the proper Lorentz group or 
SL(2, q and JI' c = ! h +,L,h 3] the complexification of 
SU(2)-the maximal compact subalgebra ofSL(2,q. Gener
ators of!f satisfy the usual commutation relations: 

[h+,h_ ]=2h 3, [h±,h3 ]= +h±, (2.Ia) 

[1+ ,h+ ] = [1- ,h_] = [h,h3 ] =0, 

[h± ,J;] = +f±, [I± ,h3 ] = +f± ' (2.Ib) 

[ h + ,/ _ ] = [I + ,h _ ] = 2h , 

(2.Ic) 

Let Tbe a representation of 2' which when restricted to 2' c 

decomposes into the direct sum of irreducible representa
tions T; of 2' c , 

T= $ T;, 
; 

(2.2) 

with finite multiplicities (i.e. for every T;. there is only a 
finite number of T; in T equivalent to T;.). The representa
tion T of 2' is said to be a Harish-Chandra representation. 
They were studied by Gel'fand and Ponomarev. 6 The carrier 
space R of Harish-Chandra's representation T can be writ
ten as 

I 

R = $ $ RI,m' 
I m~-I 

(2,3) 

where R I,m are subspaces formed by eigen vectors of the oper
ators H3 and H2 (which correspond to h3 and 
h 2 = !(hk + hJt.) + h ~ in representation T) with eigenval
ues m = 1,1- 1,· .. , -I and I (I + 1),1 = 10,/0 + I,. .. , respec
tively, Representations of h ± ' f ± ./3 on R can be deter
mined by means of the auxiliary operators E ± ' D ± ' Do 
mapping one subspace Rl,m into another in the following 
way: 

E. : RI,m-RI,m + I' m = -I, -I + 1,···,1-1, 

: R/,I-D. 

E_ : RI,m-RI,m_I' m = -I + 1,.··.1. 
: RI,_I-D, 

D. :RI,m-RI+ I,m' m = -I, -I + 1,.··,1, 

(2.4a) 

D_ : RI.m-RI_I,m' m = -I + 1,. .. ,1-1, (2,4b) 

: RI,I-D. 

: RI,_I-D· 

Operators E. and K are isomorphisms of the spaces Rl,m 
with R I,m + I and R I,m _ I respectively and commute with the 
operators D., D_ and Do. The explicit form of the operators 
H ± ' F ± ,F3 onR I•m in termsofE ± ' D ± ' and Do are given 
by the following expressions: 

H ± 5 = [(l ± m + 1)(/ +m)]lt2E± 5, 5ERI,m, m=l= ± /, 
(2.5a) 
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F ± S = ± [(I =t=m)(1 =t=m _1)]1/2DE± S 
- [(I =t= m)(1 ± m + 1)] 1/2DoE ± S 
± W±m+l)(/±m+2)]1/2D+E±s, SER.1,m' 

(2.Sb) 

F3S = [/2 - m2] 1/2D_s - mDot - [(I + 1)2 - m2] 1t2D4, 

sER.1.m . (2.5c) 

The explicit form of D ± ,Do is determined from (2.1c) 
and will be specified in the next subsections. It was shown in 
Ref. 6 that each of the Casimir operators 

.:11 = !(H_ F+ + H+ F_) + H ~3 • 

(2.6) 
.:12 = H_H+ + F_F+ + H~ - F~ +2H3 

has only one eigenvalueA j , i = 1,2, for every indecompos
able representation T of !f. It is given by 

AI = iloll' .1.2 = I~ + n -1, (2.7) 

where 2/0 is an integer and II a complex number. According 
to the values of 10 and II we shall distinguish so-called ordi
nary and special indecomposable representations which will 
be specified in the next subsections. 

Notice that the forms ofthe eigenvalues of A, and .1.2 in 
(2.7) are the same as for irreducible representations of !f. 
For indecomposable representations there are, however, 
also other invariant numbers besides AI and .1.2 which fully 
specify the considered representations (the Casimir opera
tors contain nilpotent operators). 

A. The ordinary Indecomposable representations 
These are the indecomposable representations T of !f 

for which II - 10 is not an integer. The carrier space R of the 
ordinary indecomposable representation is of the form 

1 

R = G) G) R 1•m , 
1>11,,1 m = -I 

(2.8) 

where all R I•m are mutually isomorphic. We may choose the 

{
[In. ] 

[E ± ]I.m = [In, ] 
for 1/01>1>1/" -1 , 

for II> 1/,1 , 

for 1/01<1< II" -1 • 

for 1= 1I11 - 1 • 

for I> 1I11 • 

basis in R I•m , m =f. ± I, in which E ± ' D ± and Do are given 
by 

[E ± 1t.m = [D+II,m = [In], m=f. ± I, 

i/o/\ ([I] + [a ]) (2.9) 
1(/+1) nO' 

I~ - J2 2[] 2 [ 2 
12(4/2_1) II In -/\(In]+[ao]) I, 

m=f. ± I 
where [In] is an n Xn unit matrix (n = dimR I•m ) and [ao] is 
the n X n nilpotent matrix of the form 

o 0 
o 0 

o 
o 

000 1 

000 0 

(2.10) 

Let us recall that subspaces R I, ± I are mapped by E ± ' D ± 

to zero. 
Thus we can see that any ordinary indecomposable re

presentation is characterized by three numbers namely by 
10 ,/, and n which is equal to dimension of R I.m' If n = 1 the 
corresponding ordinary indecomposable representation re
duces to an irreducible representation. 

B. Special Indecomposable representations 

Indecomposable representations for which 1\ - 10 is an 
integer are said to be special. Their carrier spaces Rare of the 
form 

I 

R = Ell Ell RI,m' (2.11) 
1>1101 m = -I 

AllR1•m for 1/01 <1<1/,1 - 1 (resp.l> 1/,1> are isomorphic and 
of dimension no (respectively n I)' It is possible to choose the 
basis in R in such a way that the matrix representations of 
e ±' d ± ' do on R are given by 

(2. 12a) 

(2. 12b) 

(/2 - I ~)(/ i - 12) ( I + Ii ) 
(412 _1)/2 [ n.] Ii _/2 lao] 

[D-hm = (2. 12c) 

for I = lId, 

i/o/\ ([a] + [I ])112 
1(1 + 1) 0 ". (2.12d) 

ilo/\ ([a] + [I ] + [8 ])112 
I (I + 1) \ n, 
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Here, [In.], i = 0,1, are nj X nj unit matrices, [6] and [a j ], 
i = 0,1, are nilpotent matrices, [6], [d ± ] are specified by a 
finite chain of integers and by one complex number. [a j ] are 
expressed by means of the operators 

d + : R1/,1_ ,.m~RI/,I.m , 

(2.13) 

d : Rl/oim-RI/,I_,.m . 

These numbers together with 10 and I, characterize a con
crete special indecomposable representation (for details see 
Ref. 6). 

Later we shall use two simplest special indecomposable 
(reducible) representations (/0'/" + ) for which 

d+ = 1, no=nl = I, d_ =ao=a, =8=0, (2. 14a) 

and (/0,1" - ) for which 

d_ = 1, no = n, = 1, d+ = ao = a l = 8 = O. (2. 14b) 

Notice that the cases in which 
d. = d_ = a, = ao = 8 = 0 correspond either to the finite
dimensional (1/01 < 1/,I,no = l,n, = 0) orinfinite-dimension
al (1/ol>II,I,no = O,n, = 1) irreducible representations of 
Y. 

3. RELATIVISTICALLY INVARIANT EQUATIONS 

We shall construct now relativistic equations for the 
wave function which transforms according to the Harish
Chandra representation T of Y, i.e., according to a direct 
sum of indecomposable representations Tj of y, 

(3.1) 

Since any linear higher order partial differential equa
tion is equivalent to a system of linear first-order partial dif
ferential equations we shall restrict ourselves to the equation 
of the form 

(FI"BI" + iM)J/!{x) = ° , (3.2) 

where I/J{?c) transforms according to (3.1) and, consequently, 
is an infinite component function on the Minkowski space 
and r 1"' /.L = 0,1,2,3 and M are infinite matrices acting in the 
component space of "'. 

The Eq. (3.2) is relativistically invariant if there exists 
the representation T of Y such that the equations 

T(A) -I rl" T(A) =.A (A );rv , 
(3.3) 

hold whenever 

XI"HX~ =.A (A );xv + av ' A (A ),aE the Poincare group, 

and field J/!{x) cotransform according to the rule 

J/!{x'ft--+.""(x') = T(A )J/!{x) . 
The Eq. (3.3) lead to the relations (see e.g. Ref. 7) 

r j = [ro,B j ], i = 1,2,3, (3.4a) 

which express the operators riO i = 1,2,3 in terms of ro and 
to the relations: 

(3.4b) 

and 

(3.4c) 

which specify the transformation properties of ro under Y c 

and the boost F3. Notice that the operators H ± ,H3,F ± and 
F3 denote the operators h ± ,h3,j ± and,/; in the representa
tions of Y described in the previous sections and 

BJ = (l/2l)(F. + F-), B2 = ~(F- - F.) 

and 

A. Equations for the matrix elements of Fo 

First let us specify the basis in the carrier space 

R = Ell R 1) of the Harish-Chandra representation 
j 

(3.4d) 

T = EIlTj in (3.1). By virtue of (2.2) the carrier spaces R T
j of 

j 

the indecomposable representations Tj may be written as 

R Tj = Ell R?m . 
I.m 

By taking the basis! ITj;l,m,i), i = I,2, ... ,dim R ?m, 
1= 10 ,/0 + I, ... ,m = -I, -I + 1, ... ,/) ineveryR ;,~, theba

sis in R can be chosen as a union of the bases of all R ?m 
occurring in R. 

In this basis the relations (3.4b) imply that the matrix 
elements of matrix ro are of the form 

(r,I,m,iIFoIT';1 ',m'n = 611 ·6mm· [X;rJ;;. , (3.5) 

i.e. ro is diagonal with respect to the SU(2) indices m and I. 
From (3.4c) [with the use of (2.5c)] we obtain the following, 
rather complicated, system of algebraic homogeneous equa
tions for matrices [XJrJ: 

[XT~, ][P;+I ][Pi] -2 [PT+, ][X;r][pi] + [PT+, ][Pi][Xi~, ] =0, 

[MT][MJ+ I ][XJ~, J -2 [MJ][X(][Mt+, ] + [XJ~, ][Mt][M; +, ] = 0, 

[Xir]([p;][zt_, J + [zt][Pt]) -2 [ZiHX;rHPt] 

(3.6a) 

(3.6b) 

= 2[piHxi~, ][Z!'_I J - ([Pi][Zi_, ] + [Zi][P[])[Xi~, ], (3.6c) 

[Xi~, ]([Mt][Zn + [Z!'_I ][Mt]) -2 [Zi_, ][Xi~, ][Mi] 

= 2[M/J [X;r] [Zi] - ([M/J [ZlJ + [Zi_, J [MJ])[Xir] , (3.6d) 
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[X iT']([pt][Mt] + [Mt+1 ][Pt+1 ] + [zt][ztD 

= 2([pi][Xr I ][Mt] + [Mit I ][X,T; I ][Ptl I] + [ZF][XiT'][Zt]) 

- ([p,][Mn + [Ml +1 ][P,+ I] + [Z,][Z/1)[X,T'], (3.6e) 

(I + V([X,T'][Mr+1 ][pr+ I ] -2 [Mi +1 ][XlT~1 ][Pt+ I ] + [Ml +1 ][P,+ I ][XlT']) 

+ 1\[Xr'] [Pt] [Mt] -2 [P/] [Xl'::l ] [Mt] + [pn [M[] [Xr']» = [XlT'] , (3.6f) 

where [Z /], lpn, [Mn are matrices matrix elements of 
which are defined by 

and 

[ZiL' = (r;l,m,iIDolr;l,m,i') , 

[P,L, = (r;1 + 1,m,iID.lr;l,m,i') , 

[M,L, = (r;l- l,m,iID_lr;l,m,i'), 

(3.7a) 

(3.7b) 

(3.7c) 

If rand r' are irreducible representations of !f the system 
(3.6a-f) reduces to that solved by Gel'fand and Yaglom.2 

Here, we shall discuss the cases in which rand r' are inde
composable representations of !f. 

B. Matrix elements of To for ordinary indecomposable 
representations 

This case was briefly discussed in Ref. 7. By virtue of 
(3.7a)-(3.7c) and (2.9) and after some algebraic operations the 
solutions of Eqs. (3.6a)-(3.6c) can be written as 

[XlT'] = 1(1 + 1)[/ [Zi][3Y'TT'] - (l + I) [jY'TT'] [ZnJ ' 
(3.8) 

where [,;YOTT') is an arbitrary n' X n matrix. The matrix 
[Xr'] in (3.8) represents the solution of the whole system 
(3.6a)-(3.6f) if and only if 

i. r = (lo,ll,n) and r' = (I b,l ; ,n') are interlocked, i.e. 
either I b = 10 and I; = II ± I or! b = 10 ± I and I; = II and 
ii. [yt'TT'][ an = [a; ][JY"'T') . By virtue of (2.10) the last 
condition leads 

[Yr~l ~O 
0 0 dYl dY2 K. ) 
0 0 0 dYl dYn_1 
0 0 0 0 dYl 

for n'-;;.n (3.9a) 
or 

dYl dY2 dYn' 

0 dYl dYn'_1 
[dYrr'] = 0 0 dYl 

forn'<n. 

0 0 0 

0 0 0 
(3.9b) 

Thus we have proved the following result: 
Theorem: The Eq. (3.2) in which tP(x) cotransforms as 

tP(x~tP(x') = T(A )tP(x) under the Poincare transformation 
(A,a) of x is relativistically invariant if the matrix elements of 
ro is of the form 

(r;l,m,iiTolr',I' ,m',i') = 01/' 0mm' !f2(l + I) [Z iL [,W'TT'Lr 
-/(1 + 1)2 [,W'TT'Lj' [Zt])'i' 1, 

(3.10) 
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where matrices [Z nand [dYrr'] are defined in (3.7a), (2.9), 
and (3.9), respectively. The matrices r j are given by (3.4a). 

The peculiar form of dYrr' yields further restrictions on 
the choice of rand r' as stated in the following lemma. 

Lemma I: Let the wave function tP be a nontrivial solu
tion of the relativistic equation (3.2) with M #0 which trans
forms according to a direct sum of ordinary indecomposable 
representations. Then to any indecomposable component 
r = (/o,/l,n) in the direct sum there is an indecomposable 
representation r' = (I b,l; ,n') which is interlocked with r 
and for which n'-;;.n. 

Proof Let there be a representation r = (/o,!l,n) such 
that for every r' = (I b,l; ,n') interlocked with it n' is smaller 
than n. Then, by virtue of (3.10), we have 

(r;l,m,ilrolr';I',m',i') =0 for i>n'. 

Consider Eq. (3.2) expressed in p-representation. Then, in 
the rest frame, we obtain 

0= (r;l,m,i1 p(l'oltP> = - M (r;l,m,iltP> 

for any I,m and i > m'. This means that tP actually transforms 
according to a direct sum of representations i smaller than r. 
In other words, tP transforms according to i = (/0'!1,1i) inter
locked with r' and for which Ii<n'. 

Corollary I: There must be at least two indecomposable 
interlocked representations with maximal n in representa
tion T. 

Corollary 2: If T = r Ell r' then 
i. r = (/o,!\,n) must be interlocked with r' = (I b,l ; ,n') 

(i.e. either I b = 10 ± 1, I; = II or I b = 10 , I; = II ± I) and 
ii. n = n'. 
Example: There are two well-known field equations in 

which the fields transform according to infinitely dimen
sional irreducible representations of the Lorentz group-the 
Majorana equations. The fields in them transform according 
to one of the self-interlocked representations (O,D or G,O) 
(see Ref. 8). Let us consider their generalizations, i.e. the 
equations based on the indecomposable self-interlocked re
presentations q,O,n) or (O,!,n). We call them the extended 
Majorana equations. The corresponding matrix ro has a di
agonal block form in I,m consisting of 

[Xrr] = (I + D[dYTT
] or [X iT] = \(l + !)[In] + [aJ 1 

X [JY'TT] 
(3.11) 

respectively, where [JY"'T) is n X n matrix given by (3.9) and 
[ao) by (2.10). Thus, taking into account (3.5), (3.4a), the 
extended Majorana equation based, for instance, on (!,O,n) is 
of the form 
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+ ~(i~ - ~)I((/_m_l)(I_m))I/2[JY']¢/~l,m+I_((/+m+2)(I+m+l))I/2[M{][JY'1¢1 +1.m+ll 
2 aX I aX2 

_ ~(i~+ ~){«/+m-l)(/+m»lt2[JY']¢/~l,m~1 _«I_m+2)(/+m+l»1/2[MnrJY']¢I+I,m~1 J 
2 aX I aX2 

+ iM¢I.m = 0 , (3.12) 

Here, ¢Im is a column vector consisting of n components; 
[Jrj and [M n are n X n matrices given by 

JY'I JY'2 Kn 
0 K. Kn~1 

[JY'] = . . (3.13) 

0 0 ~2 
0 0 ... 0 ~l 

and 

[Mn = : { 
[aof + 2/1 [ao] - [In]}, f2-J7 

(3.14) 

where 'W"j are unspecified constants and [ao], [In] are de
fined in (2.10), (2,9) respectively. 

Concerning the mass spectrum ofEq. (3.12) we can easi
ly find that to any "spin" I there corresponds the mass 
M /(1 + ~). Thus the situation is the same as for the Majorana 
equations except that, now, the "mass operator" consists 
also of nilpotent operators. 

C. Matrix elements of Fo for special indecomposable 
representations 

In contrast to the previous case we do not know the 
general explicit solution of system (3,6a)-(3.6f) for special 
indecompossable representations since the generators of 5t' 
are represented by more complicated structures. We can 
solve, however, system (3.6) in some particular cases, e,g. 
when ¢ cotransforms under the representation 
(~,/i' + ) a1 ( - VI' -). Let us denote (VI' + Jandt - VI -) 
by 1" and 1"' respectively. Then the matrices (3.7) are numbers 
of the form 

z; = - z t = if /2(/ + 1)1 , (3.15a) 

(3.15b) Pi = I, 

(3.1Sc) 

for 1#1/11, 

for 1= 1/11, 
(3.1Sd) 

for 1 # j/lj , 

for I = jill. 
(3.15e) 

The corresponding solutions of system (3.6) are given by 

, {/ I(I + ~)~T', for 1< 1I11 ' 
XT'" = (3.16a) 

0, 1;:;.1/11 , 
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and 

(3. 16b) 

Here, KT7', ?'T are constants and T and 1"' are interlocked. 
However, the interrelations of special indecomposable re
presentations for a nontrivial relativistic equation might be 
more tricky than in the case of ordinary indecomposable 
representations as the following lemma indicates. 

Lemma 2: Iffunction ¢ in Eq. (3.2) cotransforms under 
the Poincare transformation according to representation 
(V I' + ) a1 ( - V., - ) then the corresponding relativistic 
Eq. (3.2) has only a trivial solution. 

Proof From Eq. (3.2) in the rest frame and the matrix 
elements (3.16) of To we obtain 

0= Po (T;I,mITol¢> = (T;I,ml¢> for I;:;. lid , 
M 

and 

(3.17a) 

0= Po (1"';I,mIFol¢> = (T';I,ml¢) for l< 1/.1. (3.17b) 
M 

Since the matrix elements of To can be nonvanishing 
only for T and 1"' interlocked then by virtue of (3.2), (3.16), 
and (3.17b) we get 

(T;/,ml¢) = Po (1";/,mITol¢) 
M 

= Po (1";I,mIFoIT';I,m)(1"';I,ml¢> 
M 

= Po ?r'/.(/ + J)(T';I,mlt/J> = 0 for l< 1/.1 
M 

and analogously 

(T';/,ml¢) = Po JY'T'TI1(/ + ~)(T;I,ml¢> = 0 for 1;:;.1/11. 
M 

Consequently I¢)==O. 

4. DISCUSSION 

The indecomposable representations of the Poincare 
group appear naturally in the case of massless particles.9 As 
emphasized in Ref. 10 the indecomposable representations 
provide also a suitable framework for description of unstable 
particles. Moreover, quantum field theory of fields trans
forming according to indecomposable representations re
veals new interesting features. II

,12 Thus, it seems to be inter
esting to investigate the field equations associated with the 
indecomposable representations. 
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The indecomposable representations of the Poincare 
group T4(xSL(2,q arise in three possible ways: 

i). by taking indecomposable representations of T4 and 
usual decomposable representations of SL(2,q, 

ii). by taking representations of T4 decomposable but 
representations of SL(2,C) indecomposable, and 

iii). by taking both representations of T4 and ofSL(2,C) 
indecomposable. 

The first possibility was investigated by Adamczyk and 
Raczka 13 by using the technique of induced representations. 
In particular the new finite-component field equations asso
ciated with indecomposable representations for spin ~ and I 
were discussed in detail. 

The second possibility was treated in the present paper 
(see also Ref. 7). As we have seen the corresponding new 
relativistic field equations are associated with the Gel'fand
Ponomarev indecomposable representations of SL(2,C). 
They were classified by using Gel'fand-Yaglom's algebraic 
technique. All appear to be infinite-dimensional multispin 
equations. Although they carry new quantum numbers their 
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physical relevance is not clear. 
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Neutrino "zero modes" in curved spacetime, the analog of static solutions of the neutrino 
equation in flat space, are defined as the kernel of an elliptic operator obtained from a "3 + 1" 
decomposition of the neutrino equation relative to a spacelike hypersurface. In this paper, 
vacuum, globally hyperbolic spacetimes that admit "zero modes" are characterized. 

PACS numbers: 11.1O.Qr, 14.60.Gh 

I. INTRODUCTION 
In flat spacetime "zero modes" refer to static or zero

frequency normalizable solutions of a given field equation. 
Our purpose here is to introduce a notion of "zero modes" of 
the neutrino equation in a background curved spacetime and 
to address the following problem: Characterize vacuum spa
cetimes, i.e., solutions of vacuum Einstein's equations, that 
admit neutrino "zero modes." 

There are several physical situations that motivate this 
investigation. We mention two. The first is directed towards 
understanding the structure of the "vacuum state" in quan
tum gravity. The idea follows that of Jackiw and Rebbi, I 
who consider (in flat spacetime) a theory of Dirac field (gauge 
invariantly) coupled to a Yang-Mills theory of spontaneous
ly broken isospin symmetry with a triplet of spin less mesons. 
The latter, in the absence of the fermion, is known to possess 
static monopole (soliton) solutions with finite energy. In the 
background field of this soliton, the Dirac equation has (c
number) "zero mode" solutions. Jackiw and Rebbi I have 
shown how the existence of these "zero mode" solutions can 
be consistently interpreted at the quantum level as signalling 
a degenerate soliton state with fermion number ±~. Their 
analysis follows a general strategy2 for extracting informa
tion about solutions of a quantum field theory by studying 
fluctuations about a classical background field (such as the 
soliton). One might expect to gain insight about the "vacuum 
state" in quantum gravity in a similar fashion. Thus, for 
instance, consider a neutrino field minimally coupled to 
gravity. In the absence of the fermion, one solves the vacuum 
Einstein's equations (possibly with a cosmological constant) 
for a c-number solution which will serve as a background 
field (spacetime). Next look for "zero modes" of the neutrino 
equation in this background spacetime, and, if they exist, try 
to interpret the result in the manner described by J ackiw and 
Rebbi. Clearly, the key step in this program is to search for 
(vacuum) spacetimes that admit neutrino "zero modes." 

Another situation where neutrino "zero modes" playa 
role is in a theory of a spin-3/2 field coupled to gravity (su
pergravity theory). In a semiclassical approximation, one is 
led to consider a quantum theory of a massless spin-3/2 

"'Supported in part by the NSF, under Contract PHY 78·24275 with the 
University of Chicago. 

h'Fellow of Center for Theoretical Physics, University of Maryland. 
"Present address. 

(Rarita-Schwinger) field on a background Einstein space
time, i.e., solutions of vacuum Einstein's equations with or 
without cosmological constant. The spin-3/2 field has a 
gauge freedom up to addition of a gradient of a neutrino 
field. It turns out that in the quantum theory of the spin-3/2 
field the gauge can be unambiguously "fixed" if and only if 
the underlying spacetime does not admit neutrino "zero 
modes.,,3 If the spacetime does admit the "zero modes," 
then one is forced to consider a quantum theory on an indefi
nite metric Hilbert space, the physical consequences of 
which are yet unclear. 

The strategy for the analysis of the problem is simple. 
The key step is to obtain a "3 + 1" decomposition of the 
neutrino equation relative to a spacelike hypersurface ~ in 
the spacetime. Setting the "time" derivative of the field to 
zero, the notion of "zero mode" emerges as the kernel of an 
elliptic operator on~. The conditions imposed on the space
time by requiring the kernel to be nonzero then characterize 
the spacetimes that admit neutrino "zero modes." Since our 
method crucially involves the use of the vacuum Einstein's 
field equations, we have restricted attention to only vacuum 
spacetimes. 4 

The central result of this note, contained in the theorem 
in Sec. III, is that vacuum, globally hyperbolic spacetimes 
with a complete Cauchy hypersurface that admit neutrino 
"zero modes" are algebraically special of Petrov type III 
(hence, also type N or flat). The proof of this result rests on an 
assumption, presented here in the form of a conjecture, that 
on a complete Cauchy hypersurface the boundary terms, re
sulting from certain intergration by parts, are negligilble. 
For closed or asymptotically flat hypersurfaces, this as
sumption is indeed valid. 

We begin by summarizing the technique of"3 + 1" de
composition of spinor field equations in Sec. II, primarily to 
fix our notation and to assemble the results needed for the 
main theorem. Details of this technique is given in Ref. 3. 
The main theorem is proved in Sec. III, and in the final 
section we conclude with a discussion of the result. 

II. PRELIMINARIES 

We briefly review here the technique for obtaining a 
"3 + 1" decomposition of spinor field equations in curved 
spacetime and assemble the main results which we shall use 
in the next section. (For details see Appendix A of Ref. 3.) 
We shall throughout work with two-component or Weyl 
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spinors (rather than Dirac 4-spinors) and our notation will be 
that of Pirani.5 

We briefly review here the technique for obtaining a 
.. 3 + I" decomposition of spinor field equations in curved 
spacetime and assemble the main results which we shall use 
in the next section. (For details see Appendix A of Ref. 3.) 
We shall throughout work with two-component or Weyl 
spinors (rather than Dirac 4-spinors) and our notation will be 
that of Pirani. 5 

A. Space spinors 

Consider a globally hyperbolic, orientable spacetimeO 
(M,gab) and let 2 denote a Cauchy hypersurface in M with an 
everywhere timelike future-directed unit normal vector field 
t ". Given a spinor field on M, its restriction to 2 is defined to 
be a spinor field on 2 or a space spinor field. Let S I denote 
the collection of all space spinor fields on 2. One property of 
space spinors is that they can be described entirely by spinors 
of one kind, say unprimed spinors, on 2. The reason for this 
is that the vector field t a

, regarded as a Hermitian (space) 
spinor t A 'A, provides a natural isomorphism between primed 
and unprimed spinors. This isomorphism is displayed in the 
foIlowing notation which we shall adopt. Given AA ,ESI , the 
corresponding unprimed space spinor will be denoted by 

,,{A t- =,j2tAA'''{A'' 

Since t a is unit, 

(1 ) 

(2) 

where 8 A B is the Kronecker delta symbol. From (1) and (2) 
note that 

(3) 

The Hermitian spinor t A 'A is positive definite,7 and thus 
one obtains a natural Hermitian, positive-definite inner 
product (, ) on the space Vofunprimed space spinors defined 
by 

(4) 

The group that preserves the structure of (V,( , ),E AB) (where 
EAB is the usual symplectic form on V) is SU(2). So space 
spinors are in fact SU(2) spinors on 2. It is this feature which 
allows us to relate space spinors to the geometry of the three
dimensional hypersurface I with the induced (negative-defi
nite) metric hab: = gab - ta th • 8 Henceforth, we shall denote 
elements of S I by unprimed spinor fields on 2 and shall raise 
and lower spinor indices with EAB in the usual way.'" 

Spatial tensors can be expressed in terms of space spin
ors on I. [A tensor on M is said to be spatial relative to 2 if 
the contraction of any of its indices with t aor tb ( = t agab ) 
vanishes.] A spatial covector, for example, is represented by 

(S) 

where S AA' is the usual spinor form of the covector Sa' The 
symmetry of the indices AB in SA B follows from the fact that 
t ,1,1 'SAA' = 0, i.e., Sa is spatial. In general, to express any 
spatial tensor in terms of SU(2) spinors on 2, the rule is to 
replace each tensor index by a pair of symmetrized (un
primed) spinor indices. 

1782 J, Math, Phys., Vol. 22. No.8, August 1981 

Two spatial tensors of particular interest are the spatial 
metric hab on2 and the extrinsic curvature 1T'ab( = 1T'luh)) of 2 
defined by 1T'ab = ha mhb n''V m tn' where 'Va is the derivative 
operator defined by gab' (Tensor indices are raised and low
ered using gab') In terms of SU(2) spinors, 

1T'ab=1T'ACBD = 1T'(AC)(BD)' 

Also, since 1T' ah = 1T' ha , 

(6) 

(7) 

1T'ACBD~B = !£CD 1T', (8) 

where 1T' = 1T'oh hoi, is the trace of the extrinsic curvature of I. 
The last step in (6) is obtained from the definition 

and 

B. Derivative operator 

We introduce a "spatial" derivative operator on space 
spinors, which refers only to the intrinsic geometry of 2. Let 
Ac be a space spinor, and consider a derivative operator 
DIAB ) whose action on Ac is defined by 

DABAC: = (V2)t(AA'Y' B)A'AC + (l!V2)1T'ABCDA D, (9) 

where Y' A 'A is the spinor form of the torsion-free covariant 
derivative operator Y' a on M defined by gab' The action of 
DIAB ) on scalar fields ¢> on 2 is 

A' -I. 
DAB¢> = Iv2)t1A V B)A'!" 

and its action on spinors of higher valence is extended by 
Leibniz's rule, It can be shown3 that DAB defined by (7) is 
indeed the unique derivative operator on 2 defined by the 

metric hab' 
The following two important properties of DAB are use-

fuL (We state them without proof, referring the reader to 
Ref. 3 for details.) 

(i) DMIADBtAc = *12R ACBD - EAn EcD R!2jA D, (10) 

where R ACBD is the spinor form of the Ricci tensor Rub of 2 
and R = Rabh ab is the scalar curvature of 2. 

(ii) (DABAc)+ = - DABA c" , (11) 

where 

(DABAc)+ = (2f/2tAA'tn"'tcC'DA'B·iC', 

I C'l Ai = (\l 2 )tc /l-C'. 

C. "3 + 1" decomposition 

To express a field equation in "3 + 1" form, we need to 
write the covariant derivative operator V A 'A in terms of a 
spatial derivative and a suitable time derivative. The first 
step is to "un prime" the primed index A ' in VA 'A: 

(V2)t n ,1''1 A 'A = ~(V2)EABt.Y' + (V2)t(A A 'Y' B)A" (12) 

where t·Y' = t M'MY'M'M is the time derivative. The second 
term in (12) can be expressed as a spatial derivative DAn de
fined by (9), We give two examples. 
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1. Neutrino equation 

\JA 'fA A = 0; (13) 

"unpriming" the primed index in the neutrino equation (13) 
and using (12) and (9), one obtains 

[(t·\J)/V2]AA + {DAMA M + [(1T!2v2)]AA} = 0 (14) 

This is the "3 + 1" form of the neutrino equation. Setting 
{.\JA,1 = 0, one obtains the neutrino "zero modes" as the 
(normalizable) solutions of the equation 

( 15) 

2. Spin-3/2 equation 

Consider a spinor field tP AA 'B' satisfying 

tPAA 'B' = tPA (A 'B')' (I6a) 

\JBA'tPAA'B' =0. (I6b) 

Equations (16) describe a massless spin-3/2 field (Rarita
Schwinger) field ofa particular helicity. We are interested in 
this particular field because, as we shall show, some proper
ties of(I6b) playa role in our analysis of neutrino "zero 
modes." 

To obtain a "3 + 1" form of (I6b), it is convenient ot 
express tPAA 'B' on ~ as a space spinor. Define 

tPABC = 2tB B'tc C'tPAB'C' 

which can be decomposed into irreducible pieces as 

tP ABC = tP(ABC) - ~A (B1]Ci' 

(17) 

(18) 

where 1]c: = ~BtPABC' The pair (iI'(ABCP1]A) can be viewed as 
the initial data on the slice~ for the field equation (I6b). The 
"3 + 1" equations for (I6b) can be expressed as equations on 
this pair (tf(ABCI'1]A)' One begins by writing 

TABc = (v2)tc C'\J B B'tPAB'C' = 0, ( 19) 

and decomposing TABC into irreducible pieces as 

T ABC = ~ABC) + ¥C(Af1.B) + ¥-(A€C)B' 

wheref1.B: = €cATABc, AA: = ~BTABc· Since TABC = 0, 
each irreducible piece must vanish separately. Thus one ob
tains a set of three equations. Two of these equations involve 
t·\JtfIABC) and t·\J1]c; these are not interesting for our pur
poses here so we avoid writing them explicitly. The third 
equation is 

DAlltf(CAB) - (lIV2)1TABcDtfIDAB) 

- HDcM1]M + (1T!2v2)1]c = 0]. (20) 

Equation (20) involves no time derivatives and is, in fact, a 
constraint equation on the pair (tP(ABC,1]A)' The important 
point to observe in (20) is that a data of the form (0, 1] A) 
satisfies the equation 

(20') 

In other words 1]A is a neutrino "zero mode" [see Eq. (15)]. 
Another property of the spin-3/2 field which one needs 

is the fol\owing. Given a solution tP AA 'B' of (I6b) define an 
inner product yl , ) by 

yltP,tP): = I - V2)L~'ABtPAA,B'dO'B'B' (21) 
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One may check that the right-hand side of (21) is indepen
dent of the choice of hypersurface~, by virtue of the field 
equation (16b). Since (21) is obtained by restricting tfAA 'B' to 
~,one can express (21) in terms of the pair (tP(ABC) ' 1]A)' The 
result is 

y(tP, tP) = L(tP + (ABC)tfABC - *1] + A1]A )d~ , (22) 

where d~ is the volume element on ~ defined by 
dO'A'A = tA'Ad~. 

For data on ~ of the form (0, 1]A)' (22) shows that the y 
inner product is negative definite on~. Since the definition 
of y is independent of the choice of ~, y must be negative on 
another slice i. Hence, on i, the spin-3/2 field must induce 
data of the form (0, 7]A ),9 which must satisfy the constraint 
equation similar to (20.1) on i. In otherwords, if there is a 
neutrino "zero mode" relative to one Cauchy hypersurface 
~, then there must exist a neutrino "zero mode" relative to 
all Cauchy hypersurfaces. 

III.MAIN RESULT 

In this section we investigate the restrictions imposed 
on vacuum spacetimes by the requirement that they admit 
neutrino "zero modes." 

An important feature of our analysis will be to integrate 
by parts certain expressions on ~ and neglect the resulting 
boundary terms. Thus our results will apply to only those 
manifolds ~ (Cauchy surfaces) which guarantee that the 
boundary terms vanish. Such manifolds will be said to have 
negligible boundaries. Closed or asymptotically flat Cauchy 
hypersurfaces have negligible boundaries. In the latter case, 
one can check by observing that, in Minkowski space, the 
leading term in the multipole expansion of solutions of 
(LA)A = 0 (that vanish at infinity) is of 0 (lIr2

). \0 The rel
evant boundary terms that one encounters are then zero. In 
general, it is difficult to characterize Cauchy hypersurfaces 
(three-dimensional Riemannian manifolds) with negligible 
boundaries. It seems plausible, however, that 

Conjecture 1: All complete, \\ three-dimensional, Rie
mannian, smooth manifolds have negligible boundaries. 

With this caveat about the boundary terms in mind, we 
proceed to address the problem of this section. 

Consider a vacuum spacetime (M, gah)' i.e., one whose 
Ricci curvature vanishes: Rub = O. Let ~ be a complete, 
Cauchy hypersurface with extrinsic curvature 1Tah and met
ric hab [of signature (- - -)]. Let H be the space of 
smooth spinor fields A A of compact support on~, with an 

inner product (A A' 1] A ): = L A A + 1] A d~. Denote by Ii the 

Cauchy completion of (H, ( , »). Next consider the linear 
operator L : = DABEllC + (1T/2v2) 8A C defined on the 
dense domain D (L ) = H. 

Definition: AA is a neutrino "zero mode" if AA EkerL. 
(Note:L is an elliptic differential operator and it can be 
shown that kerL consists of C "" spin or fields:') 

From the initial value formulation of general relativ
ity, \2 we know that the extrinsic curvature 1Tab is constrained 
by the fol\owing equations in a vacuum spacetime: 
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- R - 1T"b1Tab + rr = 0, 

Da(1T"b - 1Th ab) = 0, 

(23a) 

(23b) 

Lemma 1: In a vacuum spacetime admitting a complete 
Cauchy surface .I, 

(LA)A = O<=:>DABAc - (1IV2)1TABCDA D = ° on.I. 
Proof 

where R is the scalar curvature of the 3-manifold.I. Assum
ing Conjecture 1 to hold, Eqs. (23a) and (23b) give us the 
following: 

«(LA}A ,(LA)A) = (DABA B + (1T12v2)A.A>DAcA C + (1T12v2)A.A) 
= (DA BAB,DA CAc) + i(1TAA,1TAA) - (1I2v2)(1TAA,DA CAc) - (1I2V2}(DA BAB ,1TAA) 
= - (AB,DBADA CAc) + i(AA>rrAA) + (1I2V2)(AB,(DB

A1T)A.A) 
= (An.(!DMNDMN - iR )A.B) + i(AA.rrAA) + (1I2V2)(AB,(DBA1T)A.A)' (24) 

In the second step, the first term is obtained from the fact that DAB is skew-symmetric in the norm ( , ) [using (11)], and the last 
term is a result of simple integration by parts. The first term in (24) is obtained by simplifying DBA D AC using Eq. (lO). Since, 
from (23a). - R + rr = 1T"b1Tab , 

«(LA)A .(LA)A) = HAB.D MNDMNAB) + i(AB,1T"b1TabAB) + (1I2V2)(AB.(DB A1T)A.A) (25) 

Using the second constraint equation (23b) to replace DB A1T by DCD 1TCD B A in the last term in (25) and integrating by parts, we 
have 

«(LA )A,(LA}A) = !(DMNAB,DMNAB) + i(1TabAB.1TabAB) + (I/2v2) [(DMNAB.1TMNBAAA) + (1TMNB AAA ,DMNAB) 

Since~BC D1TABCE = ¥ED1T"b1Tab' it is easy to check (1TabAB.1TabAB) = 2 (1TMNB AAA' 1TMNB AAA)' 

Then 

«(LA )A' (LA )A) 
= !(DMNAB.DMNAB) + !(1TMNBAAA .1TMNBAAA) + (1I2V2) [ (DMNAB,1TMNB AAA) + (1TMNBAAA .DMNAB)] 
=!( [DMNAB - (1Iv2)1TMNBAA A]. [DMNAB - (1IV2)1TMNBAA A 1>. (26) 

From (26). (LA)A = ~[DMNAB - (1IV2)1TMNBAA A] = 0. 
The converse is trivial. This completes the proof of 

Lemma 1. 

Lemma 2: A spinor field AA on.I which vanishes at a 
point and satisfies D ABAc - (1IV2)1T ABCDA D = ° vanishes 
everywhere on .I. 

Proop 3
: 

DABAc - (1IV2)1TABCDA D = ° 
DABA t + (lIV2)1TABCDA D+ = 0. 

(27a) 

(27b) 

Hence 

A C + DABAC _ (1IV2)1TABCDA C + AD = 0, (28a) 

A CDABA t + (1IV2)1TABCDA D + A C = 0. (28b) 

From (28a) and (28b) follows 

i?tB(A c+ Ac) = (V2)1TABCDA C + AD. (29) 

Let tP = A C + Ac and define a spatial vector V'===:A (A A B 1+ . 

Then (29), in tensor form, is 

DatP = (V2)1Tab yb. (30) 

Suppose A A (hence tP j vanishes at some point p E 2. Choose a 
C I curve r passing through p and let nQ be the tangent to r. 
Then from (30) 

naDatP = (v2)na1Tab yb 

so 
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for some real nonnegative constant C, where 
Va = 1Tab vband Ilvll = ( - VOVa )112. Note that - yaVa = tP 2. 

Now, for a real function/Is) of a real variable s, (i) 
Id/ldsl <elfl, e > 0, and (ii)/> ° at s = So implies/Is) is posi·, 
tive for all s. [If/(so) = /0> 0, then, on the interval containing 
So over which/Is) is positive, one has/o - es<ln/<fo + es, so 
Its) can vanish only as s-+oo.] We apply this result to (31). 
Since tP = A C + Ac is positive, tP is positive on r except (at 
least) at p where it is zero. But this contradicts (31). Hence tP 
must vanish everywhere on r. It is now easy to see that tP 
must vanish everywhere on.I since ris arbitrary. Hence if tP 
vanishes at a point p on.I, tP (hence A A) vanishes everywhere 
on .I. This completes the proof of Lemma 2. 

Theorem: Vacuum globally hyperbolic spacetimes with 
a complete Cauchy hypersurface which admit neutrino 
"zero modes," i.e., kerL #0, are algebraically special ofPe
trov type III (hence of type N or flat.) 

Proof From Lemma 1, a neutrino "zero mode" AA 
must satisfy 

(27a). 

Regard the spinor index pair AB as a spatial tensor index a, 
and let TaA : = DaAA - (1IV2)1TaABA B. The integrability 
condition for Eq. (27.1) is obtained from Dfb TaJA = ° or 
equivalently 

(32) 

where Eabc is the three-dimensional alternating tensor de-
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fined by the metric on~. Using Eq. (lO) and the spinor form 

of Em • a, one gets 

+ [EMN
Pq

Dp1TqCD]A D 

+ i[R MNcD + 1TaMN~ CD - 1T1TMNCD]A D = O. (33) 

(Note: We are using mix~d tensor ~~d spinor indices.) To 
understand the integrabIlity condItIOn (33), one needs the 
following known results. Recall that the electric and ~ag
netic parts of the Weyl tensor Cabed aredefinded respectIvely 

by 

Eab = t mt nCambn 

Bab = t mt n *Cambn , *Cambn = ¥am pqCpq bn 

and can be expressed as 14 (in vacuum spacetimes) 

Eab = - Rab - 1Ta m1Tmb + 1T1Tab' 

Bab = E(apqDp 1Tq b)' 

Further, since 

Cabed==1JIABCDEA'B,Ec'D' + IPA'B'C'D,EABEcD 

and 

Cabed + i *Cabcd=EA 'B,EC'D' IJIABcD , 

one has 
E MNCD + i B MNcD = IJIMNCD ' 

where 

E MNCD = 2tMN'tcD'EN'ND'D' 

B MNcD = 2tMN'tc
D

'BN'ND'D 

(34) 

(35) 

are just the SU(2) spinor form of Eaband Bab , respectively. 
Using (34) and (35), one can express (33) as 

IJIMNCDA D + !i [EMNpqDp 1TqCD - ECDPqDp1TqMN]A D = O. 

Further simplication is achieved by defining 

n '-c pqD1T N 
(AB)' - "N(A P qB) . 

Then (36) takes the form 

(36) 

IJIMNCDA D + !i(EMCn(ND I + ENDn(MC)lA D = O. (37) 

Contract indices MC in (37) to obtain 

n(NDIA D = 0 =>n(ND) = aANA D , aEC. (38) 

lienee (37) reduces to 

IJIMNCDA D + !i(ENDaAMAclA D = 0 

or 

(39) 

From Lemma 2, if AA #0, then AA #0 everywhere on.2". 
lienee, from (39), IJI MNCD is of Petro v type III (see, for exam
ple, Ref. 5) on the entire surface.2". To complete the proof, we 
show that 1JI MNCD must be of type IlIon every slice.2". Recall, 
from Sec. lIe, that ifthere is a neutrino "zero mode" on one 
slice.2", then there is a "zero mode" relative to every slice. 
Thus we can repeat the above analysis on every slice and 
hence establish that IJI MNCD must be type III everywhere on 
the spacetime. The proof is now complete. 

In the above proof, we have regarded type III to include 
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integration by parts. Although this step anticipates the valid
ity of Conjecture 1, the result holds at least for a large class of 
physically interesting spacetimes, namely closed or asy~p
totically flat spaces. The second fact was that the spacetIme 
satisfied Einstein's equations so that the constraint equa
tions (23a) and (23b) could be used. Iiowever, the require
ment that the spacetime be vacuum is not crucial at this stage 
as the following argument shows. Consider, as before, a glo
bally hyperbolic spacetime (M, gab) satisfying Einstein's 
equations with matter. Then, the constraint equations of 
general relativity on a spacelike (Cauchy) hypersurface are 

- R - ~b1Tab + r = 2f.l, (23a') 

Da(~b_1Thab)=Jb, (23b') 

'.':here f.l andJ a are the energy density and momentum densi
ty, respectively, of the matter, as measured by an observer 
whose 4-velocity is normal to.2". One further requires that 

f.l>IJUJa 11/2, (40) 

which says that the apparent energy-momentum of the mat
ter is timelike. Thus (40) is a physical requirement. If one 
uses (23a') and (23b') instead of in (23a) and (23b) in Eq. (24), 
one obtains the following equation instead of (26): 

«(LA)A, (LA)A) = 1< [DMNAB - (1Iv'2)1TMNBA A A], 

[DMNA8 - (l/v'2)1TMNBAA A 1) 
+ !(AA>(p.8A

B 
- (v'2)JA

B
lAB), (41) 

where JAB is the spinor form of J a. Now the condition (40) 
ensures that the last term in (41) is nonnegative. lienee (LA )A 
= 0 implies each term on the right in (41) must vanish sepa

rately, whence Lemma 1 is seen to be valid even for space
times with matter satisfying (40). 

The integrability of (27a) is the final step in the proof. 
Iiere the requirement that the spacetime be vacuum enters at 
two stages. First, in the interpretation ofEq. (33) leading to 
Eq. (39). In the presence of matter, there are additional terms 
in the expression (34) for Eab • Consequently, not much in
sight about the underlying spacetime can be obtained. Sec
ond, to establish that the Weyl tensor IJIABCD must be of type 
III everywhere, one uses some property of the spin-3/2 field 
discussed in Sec. nc. Now, the spin-3/2 equation can be 
shown to be free from inconsistencies (Buchdahl conditions)3 
if the underlying spacetime is Einstein, i.e., Rab = Agab . 

Thus, on vacuum spacetimes, one can legitimately use the 
required properties on th spin-3/2 field. Incidentally, for 
A> 0, one can show, by a method similar to the one given in 
this paper, that there are no neutrino "zero modes." For 
A < 0, nothing can be said about the existence of "zero 
modes" by our methods. 

We end this note by suggesting a stronger version of our 
theorem: Vacuum, globally hyperbolic space times admitting 
neutrino "zero modes" arefiat. The reason is that type III 
and type N solutions represent gravitational waves in gener
al relativity. Now, the simplest type N solution, the plane 
wave,s does not admit any Cauchy surface. 15 One might find 
a piece of the plane wave spacetime with a Cauchy surface, 
but it will not be complete. One expects this situation to 
persist for the general type III or N spacetimes. Thus the 
only candidates must be flat. 
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type N or type 0 (flat) as special cases, corresponding respec
tively to /3 = 0 or 1[/ MNCD = 0 in Eq. (39). 

IV. DISCUSSION 

We summarize the important steps involved in argu
ments given above. Neutrino "zero modes" relative to a 
Cauchy surface .I in the spacetime are normalizable solu
tions of the (elliptic) equation (LA)A = 0 on.I. Lemma 1 
showed that the "zero modes" must satisfy Eq. (27a) 
DABAc - (lIv2)1TABcDA D = 0 as well. Two facts were cru
cial in establishing this result. The first was the validity of 
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The Schwinger parameter formalism is used to derive a new integral equation verified by the sum 
of the "open amplitudes" of the ladder graph series with a cp3 interaction. We prove the existence 
of a solution to this equation and of the corresponding Green's function. This solution, for any 
finite value of the coupling constant, is a finite sum of solutions to Fredholm integral equations 
plus the sum of a convergent series. Its set of singularities is a set of poles from which the spectrum 
of Regge poles is obtained. 
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INTRODUCTION 

The question of studying particle interactions in terms 
of Lagrangian field theory is one of the great up-to-date 
problems. Lagrangian field theory gives us the amplitude as 
a perturbative series in terms of the coupling constant g, each 
term of this series being defined as a sum of Feynman 
integrals 

A (P,g) = ! gnan(P) , (1) 
n=O 

where P denotes collectively the external momenta [or the 
Lorentz invariants which can be built from them, e.g., in the 
2 particles -+2 particles case the Mandelstam variabless, t, U 

(see Fig. 1) and the square of the external leg momenta]. 
From the four point amplitude, we are able to build the 

physical observables. In some situations, the amplitude 
A (P, g) can be approximated by the low order terms of the 
series (1). This is the case if the particles interact weakly 
(g« 1) and the series is convergent or asymptotic (in fact, in 
general this series is known to diverge, the asymptotic case 
being the best we can hope for). Sometimes this is also the 
case when we are dealing with a strong interaction (via the 
property of asymptotic freedom). However, many physical 
problems force us to face the whole series: The correct treat
ment of most of the strong interaction phenomena (Regge 
behavior of cross section, Bjorken limit, etc.) requires the 

5 

FIG. I. The two particles ~ two particles reaction. The Mandelstam varia. 
bles are definedas s = (P, + P2)', t = (P, - p,)', u = (P, - P4)', the p/s 
bemg the quadnmomenta attached to the external legs. 

summation of the entire series. We are then faced with an 
infinite summation problem. 

The question we want to contribute to in this work is the 
property of the four point strong interaction amplitude. In 
fact we will work not with A (s,t, g) but with its s-Mellin 
transform A (X,t, g) 

A (X,t, g) = fO s -x-1A (s,t, g) ds. (2) 

The reasons for working with A (X,t, g) are of two differ
ent types: (1) First, there are technical reasons which are 
linked to the Wick rotation problem and to the Landau sin
gularities. These points and also the mathematical aspects 
(singularities of the integrand, convergence of the integral) of 
the exact definition of A (X,t, g) will be discussed in Sec. II. (2) 
On the other hand it is well known that the Mellin space is 
very well adapted for the discussion of the amplitude at high 
energy, where the Regge model is relevant. The Regge mod
el, which has a strong theoretical foundation and which re
produces well the principal features of the experimental 
data, gives a phenomenological form of the amplitude. In the 
high energy domain, the hadronic amplitude behaves as 

A (s,t,g) = L y;(t)sa;(t) , (3) 

where the index i runs over a finite number of values and 
where the Regge trajectories a;(t) are the positions of the 
moving poles of the amplitude in the complex space of the 
angular momentum of the crossed channel. A Regge trajec
tory a;(t) is associated, in general, with a physical particle of 
mass M; and spin J; and satisfies the relation 

(4) 

The set of singularities of A (x,t, g) in the Mellin space em
bodies the same physical information as the set of singulari
ties in the angular momentum space. 

The positions of the singularities of A (x,t, g) in the vari
a.!>le x are functions of the other two variables t and g: 
A (x,t, g) is singular when 

x = x;(t, g) (i = 1,2,.··) . (5) 
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IE fact, it is strictly equivalent to look for the singularities of 
A (x,t, g) in the form 

g = g,(x,t) , (6) 

where g,(x,t) is the inverse of the function x,(t, g) . The 
strength of the method presented in this paper is to give us 
entirely this set offunctions g, (x,t). 

Series (I) has been studied for a long time, essentially in 
momentum (or energy s) space. Two general methods can be 
applied for that purpose: The first one relies on the proper
ties of the an (P) and consists of attempting to actually per
form the summation. The alternative method is nonpertur
bative; it exploits global properties of the sum A (P, q) such as 
the Bethe-Salpeter structure of the four point Green's func
tion, to provide us with an integral equation. 

(I) The perturbative method, applied for the Regge lim
it problem, requires as a first step knowledge of the dominant 
part a~S(p) for large incoming energy s and fixed momentum 
transfer t, for all n. This first step is very difficult. This as
ymptotic problem consists in giving explicitly the r = fl 
term in 

(7) 

This problem, in the scalar Lagrangian case, together with 
the subsequent summation, was first solved for an infinite 
subseries of (I), the ladder graph series. In that case the con
vergence radius is nonzero; approximating the asymptotic 
terms by retaining only the leading logarithm part, or even 
all the logarithms of the leading power terms of (7), the 
Regge behavior of the amplitude was proved a long time 
ago. 1 The first attempts to get rid of this approximation and 
to go further than the ladder case was done by Zav'Yalov, 
who derived prescriptions for (7) for general graphs. 2 For 
scalar cp3 and cp4 Lagrangians and planar graphs, the com
plete summation was finally achieved a few years ago, exhib
iting Regge behavior. 3 

This approach is confronted by several intrinsic 
limitations. 

(i) First, it cannot be checked that we actually obtain 
the asymptotic part of the amplitude through the sum of the 
asymptotic part of each graph: Behavior of the infinite sum 
of subdominant terms cannot be controlled directly. 

(ii) Of course only information inside the convergence 
radius (if any) can be obtained: Nothing can be said after the 
first singularity. 

(iii) Finally, the more complete calculation3 proves the 
reggeization of the four point amplitude but gives trajector
ies and residues in terms of a perturbative series. 

(2) The Bethe-Salpeter structure of the four point 
Green's function r (P, g), provides us with an integral 
equation 

r(p, g) = r 1(p, g) + g f K(P,P') r(p', g) dP', (8) 

and the nonperturbative approach consists of solving (8). To 
be more precise we should speak ofa family of integral equa
tions. The first term and the kernel are indeed dependent on 
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FIG. 2. The Jadder graph series. 

the Lagrangian, and of course on the eventual approxima
tions, Under conditions of sufficient regularity of the first 
term and of the kernel, the analytic structure of the solution 
of an integral equation is controlled. The best example is the 
Fredholm case: Provided the kernel and the inhomogeneous 
term are of finite !.I' 2 norm, the solution r (P, g) is a ratio of 
two holomorphic functions of g. More precisely, under the 
above-mentioned conditions, if r (P, g) satisfies Eq. (8), then 

r(p, g) =N(P,g)ID(g) , (9) 

where D (g) depends only on the kernel K (P,P '). General 
results of this kind make the integral equation method for 
our problem very powerful. Equation (8) has been extensive
ly studied in the ladder graph approximation. Complete so
lutions can be given only for rather special mass cases 
(Wick-Cutkovsky model).4.5 (For a review of the work on 
the Bethe-Salpeter equation, see Nakanishi. 6) 

In this work also, and as first step in the course of our 
study, we will restrict ourself to the ladder graph case. In 
that case, only the terms even in n contribute in (1), and each 
term corresponds to a single graph. I t is convenient to use the 
following notation for the amplitude M corresponding to the 
infinite sum of the ladder graphs (see Fig. 2) 

M(x,t) = ! Mn(x,t,.,t) , 
n ,-'--- 0 

where A. = i, and n denotes now the number ofloops of the 
ladder graph (of course, the A. dependence of Mn is through a 
multiplicative factor A. n ~ 1). 

Now, in order to exhibit our integral equation, we make 
extensive use of tools employed for the perturbative ap
proach, in particular the Schwinger integral representation 
ofFeynman amplitudes [we recall that we are working in the 
Mellin space, see (2)] 

Mn(x,t,).) = 100 (I) da,) In(!a, J, x,t,).), (10) 

where a, are scalar variables attached to each internal line of 
the graph. Recurrence relations are exhibited for the inte
grand In (! a, j,x,t,). ) of the Feynman amplitudes [see Eq. 
(1.6)]. These recurrence relations are the fundamental ingre
dient upon which this work relies. 

Let us call external the quantities attached to external 
legs of the graphs (e.g., incoming momenta) and internal 
ones those attached to internal lines. The Feynman ampli
tude is obtained through integration upon all internal varia
bles. Let us define the "open" Feynman amplitude of a given 
graph as being the function obained when some of these inte
grations are left over. The Feynman amplitude is then unam
bigously obtained by performing these remaining integra
tions. In our case for the graph of order n in A., 
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(11) 

where Fn is the open Feynman amplitude and J denotes a 
subset of the set I i} of internal lines. Of course, FH is defined 
only for n sufficiently large, 

where nJ depends on the choice of J. In our problem, nJ is 
equal to 1 [see Eq. (1.4)]. 

Let us finally define the "open" four point amplitude 
F(aJ , x,t,A) as the following infinite sum 

F(aJ , x,t,A) = f Fn(aJ , x,t,A.). (12) 
n=l 

The recurrence relations satisfied by the integrand 
In (! a i J, x,t,A ) induce for the open amplitude an integral 
equation 

F(aJ , x,t,A) = F\(aJ , x,t,A) + A 1''' K (aJ , aj, x,t) 

XF(aj,x,t,A) daj , (13) 

where, as we are in the ladder approximation, the inhomoge
neous term FI and the kernel K are explicit functions. 

This integral equation is not equivalent to the Bethe
Salpeter one [see (8)], which would imply for an "open" 
Green's function defined analogously, an equation of the 
type 

i\P,aJ ) = F1(P,a J ) 

+ A 2 f K (P,P',aJ ) F(P',aJ ) dP', (14) 

which integral equation does not involve the same category 
of variables as Eq. (13). 

After deriving integral equation (13), we present in this 
paper a method for solving it. We find that the kernel K is too 
singular to fall within the scope of the Fredholm theory. 
However, we prove that, as would be the case if the integral 
kernel was sufficiently regular, the solution F(aJ , x,t,A) has 
only poles and can be written in the form 

F(a J , x,t,A) = N(a J , x,t,A )/D(x,t,A). (15) 

Moreover, the function N (a J , x,t,A ) is such that the integra
tion upon a J is possible, and such that the equation 

D (x,t,A) = 0 (16) 

gives the set of poles of the amplitude M (x,t,A ). 
This paper is the first one of a series of publications and 

is devoted to the exposition of the method. After the state
ment of the basic formalism, we obtain in Sec. I a recurrence 
relation verified by the topological polynomials in the ladder 
case [Eq. (1.3)], and we end this section by establishing the 
integral equation verified by the open amplitude (1.11). 
Some comments and fundamental properties of this integral 
equation are grouped in Sec. II, where particular cases are 
also shown. Section III is devoted to explaining and proving 
a general theorem on the solution of a wide class of integral 
equations. Then the open amplitUde is shown in Sec. IV to lie 
within the scope of this theorem. Finally, the physical ampli
tude is built, and its singularity structure given (Sec. V). Let 
us stress that the strength of the method presented here, as 
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compared to the Bethe-Salpeter one, is that the same analy
sis provides us with both the spectrum of Regge singularities 
and the expression of the amplitUde itself. Indeed, from the 
method initiated by Lee and Sawyer, the Regge singularity 
analysis is obtained from an analytic continuation of the par
tial waves, the problem of the summation of the partial wave 
expansion, which gives the amplitude, being left over. If one 
is interested in the amplitude, other methods must be used 
(such as the perturbation-theoretical integral representa
tion6 for instance), and so the complete study of the proper
ties of the amplitUde through the Bethe-Salpeter equation is 
difficult and lengthy. 

A following paper will then be devoted to quantitative 
results on the dominant Regge trajectory, and next the set of 
daughter trajectories will be studied. The last step will be to 
extend our theorem for general graphs of qJ3. 

Let us finally end this introduction by stressing the con
tribution of the above-described method. One of its strengths 
is that it allows quantitative work. In particular for the 
dominant trajectory, we are able to check various existing 
approximations. The most natural one, the trace aproxima
tion, whose use in the Bethe-Salpeter case is questionable, is 
here very simple and turns out to be an accurate 
approximation. 

Moreover, the solution ofEq. (16) 

D (x,t,A ) = 0 , 

provides us with the entire set of subdominant trajectories 
(daughters), and in that sense this method allows us to go 
further than other types of approaches. 

Another interesting point is that it gives us an external 
check of the perturbative approach. We recall that the most 
complete calculation done in that framework provides us 
with a dominant Regge trajectory given in terms of a series. 
If we work with that series in the same way that we treat the 
perturbation series, we find an integral equation which is in 
some sense a first order approximation of a particular devel
opment of the two sides ofEq. (13). Comparing the singular
ity structure of the two solutions, we observe that this "first 
order" provides us with part of the complete set oftrajector
ies (and among them, as expected, the dominant one). This 
proves first that the asymptotic approximation is correct, 
and also that one obtains correctly part of the set of the 
subdominant trajectories. 

I. DERIVATION OF THE INTEGRAL EQUATION 

We recall that in this work, among the whole series of 
graphs generated from the interacting Lagrangian gqJ 3, we 

keep only the ladder graphs. The Schwinger-integral repre
sentation for the Feynman amplitude Mn of a ladder graph 
with (n + 1) rungs (see Fig. 3) is 

Mn (s,t ) = (Ai)" + I 

xL" iDI (da i da; e . ira, + a;l"") 

X IT (dfJ, e - i/3,"" ) _1 
i~O P~ 

X exp i n H ~i ~ I Pi n 
( 

sAs +tA' +~4 2Ai) 
P

n 
,(1.1) 
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P, 

a, a; 

~ 
FIG. 3. The ladder graph with (n + I) rungs (n loops). 

where the scalar variables ai' a;, and.8i are attached to each 
internal line as shown in Fig. 3. In the expression (1.1), the 
invariants s, t, and p~ must be thought of as having a small 
imaginary part when needed for the convergence of the inte
gral, i.e., above the Landau singularities. 

Pn, A ~, A ~, A ~ are polynomials, homogeneous in all 
variables ai' a;, .8i' of degree n for Pn and (n + 1) for the 
others. Their complete definitions are given in Appendix A. 

We now arrive at an important point: The existence of 
the integral equation is the consequence of the recurrence 
relations verified by the polynomials. 

Letf be a function of (3n + 1) scalar variables. Then we 
will denote 

f=f(Pn,an,a~,Pn-1 ,an_ 1 , ... ,.80), 

and 

f* = f( P ~ ,a~ ,a~*,(3n - 1 , an - 1 ,···,(30) , 

where 

with 

P~=(PJCn+I)Pn+1 , 

a~ =an +(Pnlcn+l)an+1 , 
a~*=a~ +(.8nICn+l)a~+I' 

Cn + 1 =.8n + 1 + an + 1 + a~ + 1 + Pn . 

Then we can write the recurrence relations 

Pn " 1 = C n + 1 P ~ , 

A~+I (~: )* Pn+1 

A ~+I an+la~+1 
+ (~: )* Pn+1 cn+ 1 

A ~+I (~~r if i = 2,4, 
Pn rl 

A ;,+1 an -+-1 13n -+- 1 + (~: )* 
Pn + 1 Cn + 1 

(1.2) 

(l.3a) 

(l.3b) 

(l.3c) 

(l.3d) 

(1.3 e) 

These relations, which reflect the topological properties of 
the graphs, are proved in Appendix A. 

The recurrence relations (1.3) do not allow us to write a 
recurrence involving the amplitudeMn (s,t) itself. Now let us 
define the "open" Feynman amplitude [see Introduction, 
equality (11)] by choosing a J as being the scalar variables 
attached to the lines constituting the upper loop [i.e., ! an' 
a~,.8n I for Mn (s,t )]. We will denote them collectively as the 
closing variables, but we maintain the subscripts n wherever 
an ambiguity is possible. We then have 

Fn (an ,a~, Pn; s,t) 

= (AI)" + 1 L>O ~V: [dai da; e - i(a, + a;)m'] 

X nlf (dPi e - i{3,m) ~ 
i=O P n 

(
. sA ~ + tA ~ + !.i= 1 p~ A ~) 

X exp I . 
Pn 

(1.4) 

Then the amplitude will be obtained by performing the last 
three integrations left over 

Mn(s,t) = i~ dan da~ d.8n e - i(a" + a;, + {3 .. )m' 

(1.5) 

Now the structure of the recurrence relation (1.3) clearly 
leads to distinguishing between two sets of internal variables, 
the closing variables on one hand, the remaining internal 
variables on the other: The * operation leaves invariant this 
lost subset, while on the closing variables it induces the 
transformation (1.2). This fact provides us with a recurrence 
for the functions Fn 

Fn _+ 1 (an -+- I ,a:1 + I' 13n +- I; s,t) 

+ p~a:, + 1 .8" + I). 
(1.6) 

Equation (1.6) is a straightforward consequence of the rela
tions (1.3). It is convenient to rewrite it under a form that will 
make obvious the existence of an integral equation verified 
by the sum of the open ladder [see Introduction, Eq. (12)]. 
For that let us re-express the integrals in (1.6) in terms of the 
*-transformed variables. From now on, the only internal 
scalar variables that will appear will be (i) the closing varia
bles of the ladder with (n + 1) rungs, which we will refer to 
hereafter as! a, a',.81; (ii) the *-transform of the closing 
variables of the ladder with n rungs, whose notation will be 
! a*, a'*,.8 * l· 

The domain of variation of the variables a*, a' *, .8 * is 

{ 

O.;;a* < 00, } 

O.;;a'* < 00, 

J a* a'*) 
O<.8*<.8in.\I'~'7 =.8U. 

(1.7) 

A ;,+1 a~+l f3n+l 

Pn + 1 Cn + 1 
+ (~:r (1.3f) Taking into account the Jacobian of this transformation, we 

rewrite (1.7) under the form 
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Fn + I (a,a', /3; s,t) 

where 

= A L'" da* da'* d/3 * / (a,a',/3; a* ,a'*, /3 *) 

xF,,(a*,a'*,/3*;s,t) , 

/( , /3' * ,* /3*) - . 1 e(U-/3*//3) a ,a, ,a ,a, - I - -'--'---"--'-

/3 a + a' +/3 

(1.8) 

xexp[L - im2(a* + a'* + /3 *) - im2(/3 + a + a') 

(/3*//3)2] [.taa' +p~a/3+p~a'/3 ( /3*)] X exp I 1- - . 
1 - /3 *1/3 a + a' + /3 /3 

If (1.9) 

F(a,a',/3;s,t)= ! F,,(a,a',/3;s,t) , (1.10) 

then (1.8) implies 

F(a,a', /3; s,t) 

= F,(a,a', /3; s,t) 

n= t 

+ A L'" da* da'* d/3 * / (a,a', /3; a* ,a'*, /3 *) 

XF(a*,a'*,/3*;s,t), (1.11) 

where J is given in (1.9), and where F 1(a,a', /3) is the term 
n = 1 in (1.10) and corresponds to the square box graph 
F,(a,a', /3; s,t) 

= (Aif r~ d/3o e - ;(3"m' , 1 ~ 
Jo (a + a + /30 + /3 )-

(
.05/30/3 + taa' + p~ a'/3 + p~a/3o + p~a'/3 + p~a'/3o) 

xexp I . 
(a + a' + /30 + /3 ) 

(I.12) 

Equation (1.11) is the fundamental equation upon 
which all this work relies. Before ending this first part, we 
are going to give two generalizations of it. 

1. The integral equation in dimension d 

The expression of the Feynman amplitude Mn in di
mension d is 

M~(s,t) 
(00 " 

= (Ai)'" 1 Jo ;Uo Ida; da; exp[ - ira; + an m
2 ]J 

X IT [d/3; exp( - i/3;m 2
)] 

1=0 

(I.13) 

If we apply exactly the same method as previously we find 
that the open amplitude Fd (a,a', (3) in dimension d verifies 
the integral equation 

Fd(a,a', /3; s,t) = F~(a,a', /3; s,t) 

with 

1791 

+..-1. 1"" da* da'* d/3* J d(a,a',/3; a*,a'*,/3*) 

XF d (a*,a'*, /3 *; s,t) , 
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(I.14) 

Jd (a,a', /3; a*,a'*, /3 *) 

( 
/3 - /3 * )Id - 4)/2 

= J(a,a', /3; a*,a'*, /3 *) , 
/3 (a + a' + /3 ) 

(1.15) 

and where F~ is obtained from (1.12) through the only 
change 

C + a' ~/3() +/3Y --+ C + a' ~/3() +/3Y/2. (I.16) 

2. The integral equation with different mass on 
horizontal lines and vertical lines 

Let us call m the mass of the particle in a vertical inter
nalline and,u that in a horizontal internal line. The Feynman 

amplitude M ~m.!,) of the (n + I) rungs ladder is 

M;;n.,tI(S,t) 

= A n + 1 100 lI, (da; da; exp [ - ita; + a;) m
2

] 1 

X IT [d/3; exp( - i/3; ,u2)] 
j -= 0 

( 
1 

)
2 ( sA S + tA I + L4 _ p2 A ; ) . n n I - 1 I n 

X - exp I . 
Pn Pn 

(1.17) 

The integral equation verified by the corresponding 
open amplitude is 

+ A f j<m'!')(a,a', /3; a* ,a'*, /3 *) 

XF(m'!')(a*,a'*, /3 *; s,t) da* da'* d/3 * . (1.18) 

The only difference between /(m"l) andJ = J(m,m) is the 

replacement of the factor 

by 

( 
_ m 2 (/3*//3)2 ) 

1-/3*//3 

(
_ 2 /3*//3 +m2 /3*) 

,u 1-/3*//3 /3 
in the definition (1.9), In the same way F~m",) is obtained 
fromF l = F\m.m) by the replacement of the factor(/3o m2)by 

(/30,u2) in Eq, (1.12), 

II. COMMENTS, FUNDAMENTAL PROPERTIES, AND 
PARTICULAR CASES 

We obtained in the first part an integral equation veri
fied by the infinite sum of the open amplitudes F", The aim of 
this part is to obtain a problem equivalent to (1.11) but more 
easily soluble. 

Let us make some comments on the singularities of Eq. 
(1.11 ), 

(I)ThefunctionF(a,a', /3; s,t) has two kinds of singular
ities, In addition to the singularities already discussed in the 
introduction and coming from the zeros of the function 
D (x,t,A.) [see Eq, (16)],F(a,a', /3; s,t ) also has all the Landau 
singularities of each F" (a,a', /3; s,t), In Sec, 11.1 some results 
about these singularities and about the Wick rotation will be 
recalled, In Sec, 11,2, in order to get rid of these singularities, 
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we will consider the Mellin transform of the amplitude, and 
finally an equation in which all the quantities are real is 
obtained. 

(2) The kernel J(a,a', (3; a*,a'*, (3 *) also presents sin
gularities when the variables a, a', and (3 go to zero [see Eq. 
(1.9)]. (i) The 11(3 pole is a true singularity which prevents 
the Fredholm theory of .,5t'2 kernel to be directly used. It will 
be the object of Sec. III of this paper to give a general theo
rem which generalizes the Fredholm results to our case. (ii) 
The lI(a + a' + (3) term is not an actual difficulty, and it 
will be suppressed in Sec. II.3 by making the simple change 
of variables 

(a,a', (3 )~(a = a + a', 8 = a/a, r = (3/a) . 

In fact the real necessity of this change of variable will 
be completely clear only in Sec. IV where we will apply the 
general theorem of Sec. III to our integral equation. 

At last, in Sec. 11.4 we write the integral equation in two 
particular cases: First, for the value t = 0 of the transfer and 

pf = m 2 of the squared external momentum, and second for 
the case r = O. In these two cases it happens that the integral 
equation becomes much simpler because the number of inte
gration variables is reduced from three to two. 

Due to the large number of formal manipulations, the 
notations needed in this section are quite laborious. Once our 
problem is correctly stated we will return to simple 
notations. 

1. Landau singularities and Wick rotation 
It is well known that each amplitude Mn (s,t) is singular 

for some value of the invariants s, t, andp;(i = 1-4). If the 
transfer t is less than the elastic threshold of the t channel 
and if the external masses P7 are not too different from m 2

, 

the only Landau singularity (LS) of Mn (s,t) is the threshold 
singularity in the direct channel for s = [en + l)mf. The LS 
comes from the limit (a;, a;,/3;)~oo in the integral ofEq. 
(1.1). 

Let us make the change of variables 

(aua;,{3;)~(ii; = iauii; = ia;,iJ; = i{3;), (ILl) 

in the integral (1.1) [we recall that Pn (resp. A ~, A ~,A ~) is 
an homogeneous polynomial of degree n (resp. (n + 1»]: 

Mn (s,t ) = A. n + I 

X roo (IT dii; dii; e - (ii, + tr;)m') 
Jo 1= I 

X (IT djj; e - p,m') ~ 
1=0 P n 

(
sA ~ + tA ~ + ~; = I P7 A ~ ) 

Xexp . 
P" 

(II. 2) 

The integrand becomes a real function of the new variables. 
If the integrand goes to zero sufficiently rapidly when the 
variables go to infinity, and as we do not encounter singulari
ties in the first quadrant, it is possible to make the Wick 
rotation (WR), that is to say, to replace the integration on 
the imaginary axis by an integration on the real axis4 

Thus, when the WR is allowed, the amplitudeMn (s,t) is 
real and has no singularity. It is a well-known property of the 
WR 6 that it can be carried out only when the values of s are 
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less than the value of the first LS: s < 4m2
• 

The open amplitudes F" (a,a'. (3; s,t) possess singulari
ties similar to the LS. When the energy s is less than the two 
particles threshold. it is possible to make the WR in the inte
gral (1.4) and, if we define new functions F" by the relation 

F" (a,ii', iJ; s,t) = iF" (~ , a.' , ~ ; s,t) , 
1 1 1 

(II.3) 

we find that F" is a real function of ii,ii', iJ 

F" (a,a', iJ; s,t ) 

= A. n + I roo ("If da; dii; e - Iii; + tr;)m') 
Jo 1=1 

X (" ff djj; e - p,m') ~ 
;=0 p" 

(
sA ~ + tA ~ + ~; = I P7 A ~ ) 

Xexp , 
p" 

(II.4) 

and is related to M" by 

Mn (s,t) = 100 

da dii' diJ exp[ - (a + a' + iJ) m 2
] 

X Fn (a,a', iJ; s,t) . (II. 5) 

The integral recurrence relation (1.8) becomes a relation be
tween real functions, and the integral equation (1.11) verified 
by 

IS 

F(a,a', P; s,t) = FI(a,a', P; s,t) 

+ A. 100 

da* da' * dP * i (a,a', P; a*,a' * , P *) 

XF(a*,a'*, P*; s,t), (11.6) 

where i(a,a', (3; a*,a'*, (3 *) is deduced from 
J(a.a', {3; a*,a'*, (3 *) ofEq. (1.9) through the change i~l, 
and similarly for FI(a,a', (3; s,t) [see Eq. (1.12)]. 

We see again that j and Ft are real functions. 

2. Mellin transform 

The Mellin transform/ex) of a functionf(s) which is 
integrable and regular when s goes to zero is defined by the 
relation 

(II.7) 

where -I <Rex <0. 
For the other values of x,/(x) can be defined either by 

analytic continuation or by an explicit relation different 
from the previous one and which takes into account the sin-
gularities of the integral. _ 

In this paper we need the Mellin transform Mn of the 
amplitude M" . If we use the Schwinger representation (1.1) 
of M" , it is possible to explicitly perform the integration 
(II.7), and we obtain 

M"(x,t) = (1)"+1 e-;rrx r( -x) 

X roo (.IT da; da; e-· ;(a, + a;)m') 
Jo 1= I 
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x (Vo d/3i e - i(3,m') 

I (iA ~ )X (.tA ~ + l'.i = 1 P; A ~ ) X- -- exp I . 
P~ p" Pn 

(II.8) 

Part ofthe singularities of M" (x,! ) are set explicitly into 
the F function. The integral has no singularity in x for 
x> - I and defines an analytic continuation of if" (x,t ) for 
these values. In the following, all the calculations are done 
inside the domain 

-1 <Rex < 00. 

The results for Rex < - I will be obtained by analytic con
tinuation. As the LS come from the limit (a"a;, /3i>- 00, the 
factor (iAJP"Y which grows less quickly than an exponen
tial introduces no new singularities in the integral: The expo
nential behavior of the integrand when the variables go to 
infinity is the same as the one of M" (s,t ) when s = 0 and thus 
the WR can always be done when Re(x) is larger than ( -1). 
The amplitude M" (x,!) is the product of a factor 
e - ;,rx F ( - x) which is independent of n by a real amplitude 
~ -

M which we call the regular part of the Mellin transform M 
_ . .A 

M"(x,!) = e -Irrx F( - x) M"(x,t), (II.9) 

with 
.A 

M (x,! ) = A n + 1 

X (OO ( IT aa, da; e - (a, + a;)m') 
Jo 1= 1 

X ( IT d/f e - p,m') {A ~ Y 
i=O I p~+2 

(tA ~ + ~;= IP~ A~) 
Xexp , 

p" 
(II.lO) 

where the WR has been performed. 

The Mellin transform of the open amplitude presents 
no new difficulties. It is possible to commute the integration 
on s which defines the Mellin transform [Eq. (II. 7)] and the 
one on (a,a', /3) which links F" ang M" [Eq. (1.5)], and to 
carry out the WR. We find that, if F is the regular part of the 
Mellin transform of (iF"), then 

A 

Fn = A" + I 

X ('" (nil' da; da; e - (a, + a;)m') 
Jo 1= I 

X ( "iI' diJ e - fj,rn') (A ~ Y 
i=O 1 p~+2 

( 

( 'C'4 2 i) fA " + k i = I Pi A" Xexp , 
p" 

(II.ll) 

""" """ and M" and Fn are related by 

(= " Mn (x,t) = Jo dada' d iJ F" (a,a', iJ; x,t) 

X exp[ - (a + a' + iJl m 2
] • (II. 12) 

Let us now come to the important fact that the function 
.A """ ~ 
F = l::= I F" verifies the same integral equation asF. As has 
been seen in Sec. I the kernelJ ofthe recurrence relation (I. 8) 
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comes, on the one hand, from the Jacobian ofthe change 
variables 

(a",a~,/3n)-<a*,a'*,p*) , 

and, on the other hand, through the part of the recurrence 
laws for the ratios A ~t,iIP" which deviates froJtl the ·~per
ation [see (13)]. The only difference between F" and Fn 
comes from the replacement of exp[s(A ~/Pn)] by 
(A ~ 1 Pn Y, which does not change anything in the kernel be
cause A ~/Pn obeys exactly the *-law [Eq. (I.3b)]. 

The structure of the kernel J [Eq. (II.6)] is such that it 
leaves invariant some subspaces off unctions. For example, 
due to the term e (u - /3·1/3) in J, the subspace offullctions 
with a /3'< singularity when /3 goes to zero is sta~le.IJ has 
such a singl,darity (see (II.1I) and {A 12)], thusF2, F3," and 
their sum Fhave the same singularity. It is convenient to 
define new functions Pn which are regular when /3 goes to 
zero (we recall that we work in the domain Rex> - l) 

Fn (a,a', /3; x,t) = /3'< p" (a,a', /3; x,t) . 

The function 

P= LPn 
n 

verifies an integral equation 

P(a,a',/3; X,f) 
= F,(a,a', /3; X,f) 

(11.13) 

+ A i oo 

da* da'* d/3· j (a,a', /3; a*, a'*, /3 *) 

xP(a·,a'*,p*;x,t), (II. 14) 

whose kernel j is 

j{a,a', /3; a*,a'*, /3 *) = (f3 *//3Y J{a,a', /3; a*,a'·, /3 *) . 
(II. IS) 

3. Final form of the integral equation 

Finally, we are going to perform a change of variables. 
Let us define a new set of variables {IT,D, y I by the relations 

{
:: :/: a' with 

y=/3/lT 

{II. 16) 

• We also define a new function Fby: III _ 

F(lT,8,y; x,t) = (IT/A 2)F{lT8, 0(1 - 8), oy; x,t). 
(II. 17) 

In order t£ simplify the writing of the following parts, the 
function F(lT, 8, y; x,t) will be written as F(lT,8,r). 

We have now reached the definitive shape of the inte
gral equation. F(lT,8,r) verifies 

F(lT,8,y) = F ,(lT,c5,r) + A i= dlT* f db· 

with 

X i= dr* J(lT,c5,y; (T*,b*,y*)F(T·,c5*,y*), 

(11.18) 

J(lT,8,y; (T*,8*,y*) 
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u*1 ( u*y*) =--L u8y'u* £*--, " ,0, 
U Y u Y 

xe( U(u,8; u*,8*) - :: ~), (II. 19) 

where 

L (u,8,y; u*,8*,u) 
= [UXj(l + y)] exp[ - m2u* + uA (8,y,u)], (11.20) 

with 

A (t5,y,u) = 2 U 2 u2 

-my---m --
I-u I-u 

tt5(1 - t5) + p~ oy + p;(l - t5) y 
+ (1- u), 

l+y 

and 

. ( u* t5* u* 1 - t5*) U(u,o;u*,t5*)=mf 1,--,---- . 
u 8 u 1-8 

In (II. 18), F\ is 

l oc Yo 
F, = dY0(l x+2 exp[uB(8,y,yo)], 

o + y + Yo) 

with 

B (o,y,yo) = - m 2yo 

(II.21) 

(11.22) 

(II.23) 

t8(1 - 8) + pi 8y + p~ t5yo + p~(l - 8) y + p~(l - t5) Yo 
+ . 

1+ Y + Yo 
(II. 24) 

Before ending this part we must give the way to come back 
A. 

fromF (u,8,y) to the physical amplitudeM (s,t). FirstM (x,t) 
is obtained from F(u,t5,y) by 

M(x,t) =It 2 100 

du f d8 fX> dyy' u x
+

1 

Xexp[ - u(l + y) m2
] F(u,8,y). (II.25) 

Then we use the inverse Mellin transform to build M (s,t ), 

M(s,t) = -. dxr r( -x) e -irrx M(x,t), 1 1" Ii", 
27Tl " ioc 

(I1.26) 

with -1 <u<O. 
In fact, this inversion formula is valid only when the 

A-

real part of the polesxi(t, g) of Mare less than u. If this is not 
the case, Eq. (11.26) must be replaced by 

I 1a 
+ ioo . A. 

M(s,t) =-. dxr r( _x)e- LrrX M(x,t) 
27Tl ,,- ioo 

Re[x,(t, g) 1> a 

(11.27) 

4. Particular cases 

In this subsection the expression of the integral equa
tion is given in two particular cases; it is shown that the 
number of integration variables is reduced from three to two. 

a, The integral equation with t = 0 and pf = m2 

This first particular case is of deep physical interest as 
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the poles of the amplitude F taken at the value zero of the 
transfer are related with the intercept of the Regge 
trajectories. 

Ifin the expression of A [Eq. (11.21)] andB [Eq. (11.24)] 
we put t = ° and p~ = m2 for i = I to 4, we find that the 
functions Land F\ do not depend on the variable 8. This is 
not the case for the kernelJ(u,8,y; u*,8*,y*) which depends 
on 8, but only through the limits of the integration region 
(the () function). These limits in the plane (8 *,y*) at fixed u* 
are shown in Fig. 4. 

The integration region has an important property: The 
length of the segment DD " that is to say the value of the 

integral S~': d8* when u* and y* are kept fixed, is equal to 

(1 - y* Iy) and is independent of 8. Thus if we integrate in 
this region a function/(u,y) which is independent of 8, the 
result is also independent of t5 

f du* d8* dy* /(u*,y*) () ( U(a,8; a*,8*)- ~L) 
a y 

= roo da* dy* /(u*,y*) (1 _ L) 
Jo y 

( 
_u* L), X () V(u, u*) -
a y 

(11.28) 

with 

V(u,u*) = inf(1,u*lu). (I1.29) 

So, since F\(a,8,y) does not depend on 8, Fz,F3 , ... ,Fn 

and thus their sum F(u,8,y) does not depend on 8. Let us 
write F (a,y), this last function, which verifies the integral 
equation 

F(u,y) = Fl(U,y) 

+ It 100 

du* dy* l(a,y; u*,y*) F(u*,y*), 

(I1.30) 

with 

l(u,y; u*,y*) 

U*I( Y*)( u*y*) = -;;-r 1 - r I u,y; u*'--;;r 

X() (V(u, a*) - :: ~), (11.31) 

where 

,. 

, -----------------

FIG, 4, The integration domain in the space (y. ,6·), <T. being kept fixed. for 
Eq. (11.18). 
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UX 

I (CT,y,a*,U) = -- exp[ - m 2CT + a(CT,y,u) CT] , 
l+y 

2 U 2 u2 

a(CT,y,u) = - m y -- - m --
1-u 1-u 

+ m 2 -y- (1 - u) , (II. 32) 
l+y 

V(CT,CT*) = inf( 1, ~), 
and 

F (CT ) - L"" d YoX 
1 ,y - Yo (1 )x+2 

o + y+ Yo 

X exp( - CTm 2yo + CTm 2 Y + Yo ). 
1 + y + Yo 

(II.33) 

The reduction of the number of integration variables from 
three to two is a consequence of the well-known result? that 
in the equal mass case and at t = 0, the rp3 ladder graphs have 
a supplementary symmetry. 

b. The integral equation with y = 0 

Usually when an integral equation is written for a par
ticular value of a variable the number of integration variables 
does not diminish. Here if we put y = 0, the interval ofinte
gration for the variable r* disappears. More precisely, ifin 
Eq. (11.18) we put r = 0, we find that the function 

F(CT,b) = F(CT,b,y = 0) 

verifies an integral equation 

F(CT,b) = Fl(CT,8) 

+ A f'" dCT* Sa' d8* j(CT,8,CT* ,8*) F (CT* ,8*) , 

(11.34) 

with 

j(CT,8; CT*,b*) = LU 

L (CT,b,y = 0; CT*, b*, u) du, (11.35) 

L (CT,b,y = 0; CT*, b*,u) 

= U
X exp( - m 2CT* - m 2 ~ CT + tb(l - b)(1 - u) CT), 

l-u 
(II. 36) 

and 

Loc y; 
Fl(CT,b) = dyo -.-.:...--

o (1 + roY +2 

( 

2 tb(1 - 8) + p~ 8ro + p~ (1 - 8) Yo) 
X exp - CTm Yo + CT . 

1 + Yo 
(11.37) 

This result will be very useful in the Sees. III and IV. 

FIG. 5. The series deduced from the ladder series with r put equal to zero. 
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Let us remark that the integral equation does not depend on 
the variables p~ and pj . F (CT,8) represents the open amplitude 
of the sum of graphs shown in Fig. 5. 

c. The integral equation with t = 0, pf = m 2 and y = 0 

In this case we obtain a one-variable integral equation 
for the function 

F(CT) = F(CT, y = 0) at t = O,p~ = m 2
, 

(1I.38) 

F(CT) = F1(CT) + A fO j(CT,CT*) F(CT*) dCT* , 

with 

j(CT,CT*) = LV du (I - :. u) UX 

and 

X exp( - m 2CT* - m 2 ~ CT) , 
I-u 

(1I.39) 

l "" rt ( 2 Yo ) FI(CT) = dro exp - CTm --- . 
o (I +yoy+2 I +Yo 

(11.40) 

III. SOLUTION OF A FAMILY OF SINGULAR INTEGRAL 
EQUATIONS 

In this section we want to study the family of integral 
equations which can be written 

I(x,y) =g(x,y) 

+ A1X 

dx* J: dy* K (x, y; x*, y*) I(x*, y*) , 

(111.1) 

where the kernel K has a lIy singularity when the variable y 
goes to zero. The variable x and the limit of integration can 
stand for a set of variables x = 1 x l' .. ·..x n 1 and 
X = IX" ... ,xn j. The Xi can be either finite or infinite. The 
integral operator corresponding to the kernel K will be de
noted Y. These integral equations cannot be solved in gen
eral by applying directly the classical methods: Due to the 
lIy singularity the kernel K is neither bounded nor square 
integrable, and the classical Fredholm theory cannot be ap
plied. It can be verified that the theory of compact operator~ 
which generalizes the Fredholm results to a larger number of 
situations is also unusable. 

Here we prove the existence of solutions of the family of 
singular integral equations and we give their analytic struc
ture. In a first step we define the function spaces and the 
operator spaces in which we are going to work and we give 
some of their properties. Then our main theorem can be cor
rectly presented. The proof ofthe theorem needs the demon
stration of several intermediary lemmas. 

1. The function spaces Cy and D. The operator spaces 
C: and D* 

Let us now present the function space Cy and D in 
which we are looking for solutions. 

Definition: Cy is the set offunction/(x,y) such that 
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(111.2) 

is finite. The space C d.O is defined as the intersection of all the 
Cy space for Y finite 

C", = n Cy . 
Yfinitc 

It is easy to see that Cy is a vectorial space and II II y is a 
norm on the space. 

Definition: D is the set of functionsj(x, y) which are 
indefinitely differentiable with respect to the second variable 
y near y = ° and such that the expression 

Illflll" = [ (dx(~a''f(X,y=0»)2]'12 (111.3) 
Jo n! ay" 

is finite for n = 0,1,2.··· . 

D is a vectorial space and III III" is a seminorm on O. 
It is not a norm because III fll I" can be equal to zero withf 
not being the zero function. 

It is also necessary to define the spaces of integral opera
tors. First, let us write the kernel K (x, y; x*, Y*l in terms of 
the reduced kernel M (x, y; x* ,v) 

K (x, y, x*, y*) = ~ M (x,y; x*, y;) . (IlIA) 

If we make the change of variable 

y* 
y* -+v = -

y 
(111.5) 

the action of the operator % on a functionfbecomes 

f(x, y)-+% f(x, y) 

= LX dx* f dv M (x, y, X*,v)f(x*, yv) . (III.6) 

The spaces of operators C~ and D* can now be defined. 
Definition: An operator % belongs to the C: space if its 

norm \I ,/Vfll~, defined by 

II ~/'IIY 

= [ ( dx (X dx'" ( (' dv Max I M(x,y; x*,V)I)21 ' /
2 

, Jo Jo Jo <ky, y 

(III.7) 

is finite. 
We define C! by 

C! n Cy . 
Y fmite 

We shall also say that the kernel K or even the reduced ker
nel M belongs to C:. 

It must be noted that the norm II II y is not the usual 
norm fi( .5f) of a linear operator on a normed vectorial 
space which is defined by 

uY( %) = Maxll % flly, 

where the Max must be taken on the unit ball of Cy: Ilfll y 

=1. 
However, it can be shown that 
Lemma I: The norm II II y is always an upper bound for 

the usual norm A/' 

(IlL&) 
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If % belongs to C:, % is a bounded operator in the usual 
sense. If, moreover, the functionf belongs to Cy, so also does 
the function .3Y f 

The proof of this proposition is straightforward. By 
definition one has 

II ,W fll~ 

= ( dX( Max I ( dx'" (' dVM(x,y;X*,v)f(x*,YV)I)2 Jo o· y y Jo Jo 
The maximum of an integral is less than the integral of the 
maximum of the integrand, and using V( 1, one obtains 

II ·;"fll~ 

(LX dX[ (x dx* ( t dv Max I M(x,y, X*,P)I) () Jo J, 0.- y' y 

X C~axy If(X,Y)I) r, 
which can be bounded using the Schwarz inequality 

and finally 

II % flly <II ·)f'lIy IIflly, 

which means 

.F(%)= Max(il ;~{fIIY) <II %lly· 

It is also useful to define the 0* space. 
Definition: A linear operator ,W, with a kernel 

K (x, y; x*, y*) = O/y) M (x, y; x*, y* /y) 

belongs to the space D* iffor any n;?O, the expression 

III .WIII" 

= [ (X dx (X dx* ( (dv 1 J.. a"M(x,y = 0, x*,v) 1)2]'12 
)() Jo Jo n! ay" 

(UI.9) 
is finite. 

The generalization of Lemma I to the new space is 
Lemma 2: Iffbelongs to 0 and % to 0* then %1 

belongs to 0 and, for any n;?O 
II 

III ,W filL, < I III·~;VIII" I Illflll,· (III. 10) 
I ~~ 0 

The proof of this lemma is similar to that of the first 
lemma. 

It is now possible to state the main theorem of this 
section. 

2. The theorem 

Theorem 1: If an operator ,;V belongs to C~ and D* and 
if the function g belongs to Cy and D, then the equation 

fix, y) = g(x, y) 

+..1 (dx* r'dy*K(x,y;x*,y*lf(x*,y*), Jo Jo 
(III. II) 

[(x,y) = g(x, y) 
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+,1 ( dx* (dvM(x,y;x*,V)/(X*,yv), 
Jo Jo 

(III. 12) 

has a unique solution which belongs to Cy and 0 for any 
value of A. The only A dependent singularities of/lx, y) con
sidered as a function of x, y and A are an infinite set of fixed 
poles in A: 1/(,1 - A"J with n = 0,1,2, ... and i = 1,2, .. ·. The 
position of the poles is independent of x and y, independent 
of the function g, and only depends on the operator jV. 
More precisely, An .• for i = 1,2,.·· is the set of eigenvalues of 
the operator defined by the kernel 

f,,·n)(x, x*) = f dv vn M (x,O,v* ,v) . 

This kernel is an 2"2 kernel and thus has only a discrete 
spectrum. The function/(x, y) can also have singularities in 
the variable x, independent of A, if ever g or K has such 
singularities. 

The method we use to solve the equation is to decom
pose/ex, y) into a sum of N + 1 terms 

N-I n N 

/(x,y) = ,,~o/n(X):! + l(x,y) ~! (111.13) 

and to write integral eql!.ations verified by the functions/n (x) 
(n = O,I, ... ,N - 1) and/(x,y). Then we prove that the inte
gral equations verified by /n (x) are of the Fredholm type and 
that the functionl(x, y) can be obtained as the sum of a con
vergent perturbative series of A. Before beginning the de
monstration we must define g and ii, the Taylor remainder 
of the functions/and M, and we give their properties. 

3. Taylor remainders g and M 
Definition: The Taylor remainder g(x, y) of g is defined 

by the relation 
N _ 1 n N 

g(x,y) = ,,~o gn(X):! +g(X,y) ~! ' (II1.14) 

where 

() a" g(x, y = 0) 
g x = , 

n ay" 

and the Taylor remainder ii (x, y; x*,v) of M is defined by 

M (x, y; x* ,v) 
N--I y" _ yN 

= I M,,(x,x*,v)- +M(x,y;x*,v)-, (III. 14') 
,,~O n! N! 

where 

M ( 
*) a"M(x,y=O,x*,v) 

n x, x ,v = 
ay" 

The functions g and if verify the following properties. 
Lemma 3: If the function g bdongs to 0 so does its 

Taylor remainder g. If the reduced kernel Mbelongs to 0* so 
does its Taylor remainder M. 

Proof Let t (y) be a function which is indefinitely deriv
able and r( y) its Taylor remainder defined by 

N -- 1 ant ( _ 0) " N 
t(y)= I y- L +r(y)L. 

n~O ay" n! N! 

The function r admits an integral representation 
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(111.15) 

and since t is indefinitely differentiable 

akr(y) =N (aN+kt(uy) uk(l-ut- 1 du. 
ayk )0 ay¥+k 

(111.16) 

If we put y = ° in the previous equation we have 

akr(y=O) = r(k+ l)r(N+ I) aN+kt(y=O) 

ayk r (N + k + 1) ay¥ + k 

(III. 17) 

The III Illk norm ofg(x,y) [see Eq. (111.3)] can be obtained 
using this last equality 

III -III. = r(k + l)r(N + 1) III III 
g k r (N + k + I) g N + k , 

which proves that g belongs to 0 if g belongs to D. In the 
same manner we find 

III Mill = r(k + 1)r(N + 1) III Mill 
k r (N + k + 1) N + k , 

and thus ii belongs to 0* if M belongs to 0*. 

4. Integral equations verified by fn{x} (n = 0, 1, ... ,N - 1) 
and f(x) 

Let us put the decomposition (III.13) of/(x,y) and the 
expression (III. 14) and (III.14') of g(x, y) and M (x, y; x* ,v) 
into Eq. (111.12) 

N - 1 n N 

n~oln(X)~! +l(x,y) ~! 
N-I y" _ yN 

= I g,,(x) , +g(x,y)-, 
n~O n. N. 

+,1 (dx* (dV(Nfl Mn(x,x*,v)yn 
)0 )0 n ~ 0 n! 

_ yN) 
+ M(x,y,x*,v)

N! 

X (Nfl /n (x*) (yv)" + I(x*,yv) (yvt). (BUS) 
n=O n! N! 

The identification of the coefficients ofyn (n = O,I, ... ,N - I) 
of the two members of the equation gives the set of integral 
equations for /n (x) 

In (x) = hn (x) + A LX dx* j In'''i(x, X*)/n (x*) , (111.19) 

with 

h" (x) = gn (x) 

+ A ~t~ c~ LX dx* jln,l)(x, x*)ft(x*), (111.20) 

and 

jln,/)(x, x*) = 11 dv Vi M" _,(x, x*,v) . (111.21) 

The identification of the remainder in the two sides of 
(1II.1S) gives an integral equation for l(x, y) 

l(x,y) = h(x,y) 
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( iY 

( *)"1 +A Jo dx* 0 dy* yy , K(x,y;x*,y*)l(x*,y*), 

with 

h(x, y) = g(x, y) 

+AL
x 

dx* t dVM(x,y;x*,V)(NII!,,(X*) (YU)") () Jo n __ () n! 
2(S I) y" N 

+AN1 I --
n _ S n! 

X (1 NI Ie;, LX dx* pn.1l(x, X*)/(1I(X*)). (1II.23) 
Nil () 

All the identifications are possible because the func
tionsg(x, y) and if (x, y, x* ,u) have no singularity wheny goes 
to zero (see Lemma 3 and the definition of the D-space). 

The first interest of this set of coupled integral equa
tions is the possibility of obtaining the solution step by step: 
The inhomogeneous term ho(x) of the integral equation veri
fied by /o(x) is a known function and thus the equation can be 
solved independently of the functions/nix) 
(n = 1,2, ... ,N - 1) or/; oncefr)(x) is known, the inhomoge
neous term h I(X) of the integral equation verified by /dx) is 
also known and it is possible to solve the equation and to 
obtain/I(x), and so on for all the functions/n (x) andl(x, y). 

5. Solution of Eq. (J/J.19) verified by 'n(x), n = 0, ' , ... ,N - 1 

We prove in this subsection the following results: 
Lemma 4: The kernelpn,nl(x, x*) and the inhomoge

neous term h n (x) are square integrable functions and th us the 
integral equation (111.19) can be solved by the usual Fred
holm methods. The functions/n (x) are square integrable and 
their only singularities, which depend on A, are fixed poles 
lI(A - A l.i) (/ = 0,1 , ... ,n and i = 1,2,···), where A I.i is the ith 
eigenvalue of the operator j 11.1 I(X, x*). 

Proof We do not recall here the classical Fredholm 
theorems which can be found in Ref. 8 for the case of ,,/'2 

functions. In order to apply these theorems it is necessary to 
show that the kerneisp"·nl(x, x*), and the inhomogeneous 
term hI! (x) are square integrable. The kernels/'1.n)(x, x*), 
and, more generally, all the kernelsp"'/)(x, x*) are bounded 
by 

1i"'/)(x,x*)1 < t dv I Mn_ [(x,x*,v)l, Jo 
(III.24) 

which are square integrable because the operator,5V belongs 
to D*, and thus are square integrable. 

We now prove simultaneously by recurrence that!" (x) 
and hn (x) are square integrable. The functions gn (x) are 
square integrable because g belongs to D. Since 
ho(x) = go(x), ho(x) is square integrable and it is possible to 
apply the Fredholm theorems to the first integral equation 
and then to prove thatfr)(x) is also square integrable. Let us 
suppose now that for! = O,I, ... ,n - 1,J,(x) is squareintegra
ble; aspn.1l(x, x*) is also square integrable, so (due to the 
Schwarz inequality) is the term 
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r dx* j (n./l(x, x*)J,(x*), 
)() 

and hn(x) being a finite sum of square integrable terms, is 
also square integrable. Finally, using the Fredholm theorem, 
/n (x) being the solution of the integral equation is also square 
integrable. 

The functions/n (x) have a set of singularities in A which 
consists of two parts. 

(i) The set of singularities of the first term hn(x), which 
is the set of all the singularities of all the J, (x) for 
1= O,I, ... ,n-1. 

(ii) the new singularities coming from the Fredholm 
determinant. These singularities are fixed poles in A, the po
sitions of which are the eigenvalues ofj(n,n). 

In other words the set of all singularities off" is a set of 
fixed poles l/(A - Au), 1 = 0, l, ... ,n, where Au is the ith ei
genvalue of j,I.IJ(X, x*). 

6. Solution of Eq. (111.22) verified by {(x, Y) 

Before giving the main results of this subsection a pre
liminary lemma must be proved. 

Lemma 5: Let be JY an operator of C: and A a fixed 
finite number. Then there exists an integer number N which 
depends only onA andon% and such thatforanYA <A the 
.. f-norm of the operator A % N-il CY*/y)N % is less than 
one 

.1",(A <~ N ) < 1. (III.25) 

Proof Due to the inequality (111.8) proved in the 
Lemma I, it is enough to show that A 2 IN < I where 

In =//%nllt 
= fX dx fX dx* ( fl dv vn Max I M (x, y; x* ,V)I)2 

Jo Jo Jo 0>, Y" Y 

(111.26) 

In can be written 

In = r' dVI v711 dV21 v~ H (VI> vz), Jo 0 

with 

H(v l, v2) = ( dx fX dx* (Max I M(X,y,x*,vl)l) 
Jo Jo O"y<" Y 

xC~:xY I M(X,y,x*,v2)1). (IIL27) 

H is a positive integrable function, and thus for any € > 0, 
there exists cp > 0 such that for any ({! < cp, we have 

l o -.!.... < 11-"'dv
1 

f'-'+' dv2H(v
l
,v

2
)<Io ' 

2 0 Jo 
The variables VI and V2 being less than one, we have for any ({! 
less than the same cp as above 

In - .!... < dV I v7 dV2 v; H(v., v2)· il--'I' il- 'I' 

2 0 0 

In this last integral, we can bound v7, and v~ by (I - ({!)", 

and finally we find 

I" < (1 - q; )211 10 + el2 . 
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By taking N such that (1 - cp fN < E/2Io, we see that In < E 
when n>N. Finally choosing E = 1/ A 2 we achieve the proof 
of the lemma. 

Lemma 6: In the integral equation (111.22), the inhomo
geneous term ii (x, y) belongs to Cy and the operator jY N 

belongs to C:. Thus the functionl(x, y) is the sum of the 
convergent Neumann series 

1= ! (A jY NY ii , (111.28) 
I~O 

for all the values of A less than A in modulus and belongs to 
Cy . Furthermore iibelongs to 0 and KN to 0* and thusl 
belongs to D. Finally the only singularities ofl(x, y) for IA I 
less than A, are the poles of/nix) (n = O,I, ... ,N - 1). 

Proof The function ii (x, y) is given by Eq. (111.23). The 
function g(x, y) can be written 

g(x,y)= N! (g(X,y)
yN 

g(x,O) = _a"--!' g~(x....:..,::....y_=_O..:...) 
JyN 

if y>O, 

if y=O. 

Using the fact that g belongs to Cy and to 0, the con
tinuity of g(x, y) when y goes to zero, Lemma 4, and the 
relation 

Max (yn) = Y" < 00 , (111.29) 
0,.", y" Y 

it is easy to prove that g belongs to Cy • 

In the ~ame manner we prove that Mbelongs to C:. The 
proof that h (x,y) belongs to Cy is now straightforward by 
again using Lemma 4 and Eq. (111.29). 

The proof that ii (x,y) belongs to 0, follows from 
Lemma 3 and Lemma 4 for n = O. The kernel jY N has a 
reduced kernel M N which is equal to 

MN(X,y; x*,u) = UN M(x,y; x*,u) , (111.30) 

and thus belongs to the same spaces (C: and 0*) as jY. 
By taking the N defined in Lemma 5, one sees that the 

Neumann series converges for all the values of A less than A 
in modulus. The function/has the same set of singularities as 
ii, that is to say all the singularities of the/n for 
n = O,l, ... ,N - 1. Each term of the Neumann series belongs 
to Cy and 0 (see Lemmas 1 and 2) and since the convergence 
is uniform, this is also the case for its suml(x, y). 

Theorem 1 is a consequence of Lemmas 4 and 6 and of 
these two last points: (i) In Lemma 5, A has been chosen in 
an arbitrary way and thus can be taken arbitrarily large. (ii) 
The function/(x, y) is a finite sum of terms which belongs to 
Cy and 0 [see Lemmas 4 and 6 and Eq. (1I1.29)}, and thus 
belongs to Cy and D. 

7. Generalization of Theorem 1 

Theorem 1 cannot be directly applied to the integral 
equation (11.18) and it is necessary to slightly generalize it by 
imposing less restrictive conditions on the inhomogeneous 
term and on the kernel. If we define a new unknown function 
lby the relation 

lex, y) = p(x)/(x, y) 
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wherep(x) is any function ofx,jis solution ofa modified 
integral equation 

l(x, y) = g(x, y) 

+A LX dx* f dy*K(x,y;x*,y*)l(x*,y*), 

(111.31 ) 

where the functions g and K are defined by 

g(x,y) =p(x) g(x, y), 

K(x y' x* y*) = pix) K (x y' x* y*) ", p(x*) ", . 

In the same way, the function 

j(x,y) =p'(x,y)/(x,y) 

(111.32) 

verifies an int~ral equation with an inhomogeneous term g 
and a kernel K equal to 

g(x, y) = p'(x, y) g(x, y), (111.33) 

K (x, yo x*, y*) = p'(x, y) K (x y' x* y*) . (111.34) 
, '( * *) ", p x ,y 

The generalization of Theorem 1 is 

Theorem 1': Let us consider the integral equation 
(111.1). If there exist two functionsp(x) andp'(x,y) such that 

p'(x, y)<p(x) < 1, (I1I.35) 

and such that g belongs to 0, K belongs to 0*, g belongs to 
Cy , and K belongs to C; , then Eq. (111.1) has an unique 
solution/Ix, y) such thatlbelongs to 0 andjbelongs to Cy . 

The only A dependent singularities off (x, y) considered 
as a function of x, y, and A are an infinite set of fixed poles in 
A: lI(A - An.;)withn = 0,I,2,"'andi = 1,2,· ... The position 
of the poles is independent of x and y, independent of the 
function g, and only depends on the operator c;Y. More pre
cisely, A n,i i = 1,2,.·· , is the set of eigenvalues of the opera
tors defined by the kerneljl,,·nJ(x, x*) 

= [p(x)lp(x*)J S~ du u" M(x,O,x*,u). 
These kernels April are y2 kernels and thus have only 

a discret spectrum. The function/Ix, y) can also have singu
larities in the variable x, independent of A if g or K ever have 
such singularities. 

Proof The demonstration of the theorem is a direct gen
eralization of the one of Theorem 1. We are not going to redo 
all of it but only present the main changes. 

(1) The demonstration of Lemma 4 must be done on the 
set of equations 

In (x) = fin (x) +..{ LX dx* j(n,n)(x, x*) In (x*) , (111.36) 

obtained by mUltiplying Eq. (III. 19) by pix). 
(2) In the same way, the equation 

<= ." 

l(x,y) = ii(x,y) 

+ A LX dx* L
Y 

dy* (y*)N K (x, y; x*, y*) 
"" 0 0 y 

X l(x*, y*) , (111.37) 

with 
'" 
l(x, y) = p'(x, y)l(x, y), 
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h(x,y) =p'(x,y) h(x,y), 

and which has been obtained by multiplying Eq. (111.22) by 
p'(~, y) must be used in Lemmas i,and 6. The only delicate 
pomt comes from the proof that h (x ,y1 belongs to Cy • For 
example, let u~onsider the first term g of the finite sum 
which defines h [see (111.23)]. We have 

g(x, y) = ( g(x, y) _ Nf 1 ang(~,O) < p'(x, y)) N~ 
n ~O ay n. y 

if y>O, 

~(x, 0) = p'(x,O) aNg(x,O) if y = ° . 
ayN 

z Using the hypotheses of Theorem I', the continuity of 
g(x,y) wheny goes to zero, Lemma 4, and the inequalities 
(1II.29) and (111.35), it can be proved thatgbelongs to Cy • 

It must be noted that we have proved that the Neumann 
series 

... '" ... 
1= L (,L~'N)" h, (111.38) 

n=O 

of the integral equation (111.37), is convergent. But, since we 
have 

(.0/ N)" h(x, y) = p'(x, y) (% N)" h (x, y) , (111.39) 

the series (111.38) is nothing other than the Neumann series 
(1II.28) of Eq. (III.22) itself which thus is also convergent. 

Before ending this part let us make a last remark. All 
the results proved here are also valid when the functions 
belong to the spaces Coo and C! instead ofCy and C: for Y 
finite (see the definitions of Coo and C! in Sec. 111.1). 

IV. SOLUTION OF THE INTEGRAL EQUATION VERIFIED 
BY THE OPEN AMPLITUDE 

In this section it is shown that Theorem I' can really be 
applied to the integral equation verified by the open ampli

tude F(0',8,y) 

F(0',8,y) = Fl(0',8,y) + A. 1'00 dO'* f d8* iCC dy* 

xJ(0',8,y; 0'*,8*,y*) F(0'*,8*,y*), (IV.I) 

with FM,8,y) and J (0',8,y; 0'*,8* ,y*) given by Eqs. (II.23) 
and (11.19). In order to apply Theorem 1', it is necessary to 
begin with verifying that Eq. (IV.I) is of the type (111.1). x 
stands for the set of variables! 0',8 l and X for the set! 00, Il ; 
to y corresponds the variable y, and to v = y* Iy corresponds 
y*ly = (O'IO'*) u. The limit of integration is determined by 
the (J function in Eq. (11.19). Using the inequality 

U(0',8,0'*,8*)<;V(0',0'*) = inf(l, O'*IO'), (IV.2) 

we find that, when the change of variable (111.5) is per
formed, the upper limit of integration on v = (O'IO'*) u is 
bounded by 

~ U(0',8,0'*,8*)<, ~ v (O',O'*)<' I . (IV.3) 
O'* O'* 
Finally we find that to M (x, y; x* ,v) corresponds 

(O'*IO') L (0',8,y; 0'*,8*,(0'*10') v). 
We can now prove the following theorem: 
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or 

Theorem 2: When the conditions 

- 1 <x, 

t < 4m 2
, 

At - 2m2(1 + ~ I - t 14m2) <p~ 

< 2m2(1 + ~ I - t 14m2) i = 1,2,3,4, 
if O<,t <4m2, 

- 4m 2 < p; <4m2 if t<,O, 

(IV.4) 

(IV.5) 

(IV.6) 

are verified, there exist two functions 

r(O') = exp( - UJm 20'), 

r'(O',y) = exp( - UJm 20' - UJ'm 20'y), 

where UJ and UJ' are positive numbers which depend on t, p~, 
and x, and such that the hypotheses of Theorem l' are veri
fied. Then F(0',8,y) exists for any value of A.; the function 

F(0',8,y) = r(O') F(0',8,y), (IV.7) 

belongs to D and the function 

F(O',tS,y) = r(O',y) F(O',tS,y) , (IV.8) 

belongs to Cy . The singularities of F (0',8,y) are a set of fixed 
poles 1/(A. - A n.i) with n = 0, I ,2,,,, and i = 1,2, .... The 
poles An" i = 1,2, .. · are the eigenvalues of the .'[2 kernel 

J (n.n)( 0',8,0'* ,8*) 

= exp[ - m 2(1 - (U) O'* - m2(UO'] 

X du - un +
x i

u (a,lJ,a',/3') ( O' )n 
o O'* 

X exp( - O'm 2 ~ + t8(1 - 8)(1 - u) ). (lV.9) 
l-u 

Proof 
Definition and properties of the constant P 2: Let us de-

fine p 2 by 

P 2 = Max [p~, (i = 1,2,3,4); At - p~, (i = 1,2,3,4) 

;m2+!t] if 0<'l<4m 2 (IV. 10) 

or 

p 2 = Max [p~, (i = 1,2,3,4); - P7, (i = 1,2,3,4); m 2
] 

if t<,O. (IV. 10') 

Using Eqs. (IV.6), (IV. 10), and (IV. 10'), weshowthatp
2 

verifies 

At _ P 2 <p~ < P 2 , 

if t<,O. (IV.lI) 

(ii) Proof that i belongs to D*: To show ibelongs to 0*, 
that is to say that for any value of n III jill n is finite, we must 
prove that for any value of n 

1= dv -- ~i (0',8,y = 0, 0'*,8*, - v 
[

ala') U II an ( * O'* ) I 
() n! ay" O' O' 

belongs to !t'2(0',8,0'*,8 *). Using the bounds (C3) and (C4) 
verified by the nth derivatives of the reduced kernel i, and 
the inequality (IV.3), we find 
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1 
1<-- exp[ - m2(1 - w) u* - (m2w -.it) u] 

x+ 1 

X ~ (up
2t C k + 1 if 0";;t<4m2, 

£.. k' n+1 
k=O • 

1< _1_ exp[ _ m2(1 - w) u* - m2wu)] 
x+l 

X ~ [u(p
2 

- V)]k Chi if t..;;O. 
£.. k' n+1 

k=O • 

These bounds are integrable when u and u* go to infinity if 

t/4m2<w<I if 0..;;t<4m2, 
(IV. 12) 

If the condition (IV. 12) is verified, we can use inequality 
(B2) and obtain 

- 1 (1 1 )1/2 
IIIJllln<x+I 2m2(1-w) 2(m2w-lt) 

X(l + p
2 

)n+1 if 0..;;t<4m2, 
m2w -.it 

- 1 (1 1 )112 
IIIJllln<x+1 2m2(1-w) 2m2w 

( 
p2 _ It)n +1 

X 1 + m2w
4 if t";;O, (IV. 13) 

which are finite. 

(iiiL Proo/that j belongs to C:, : In order to prove that the 
kernel J belongs to C:, it is enough to show that 

I' = ra1a

-) U dv Max Ii (u,8,y,U*,8*, ~ v) I Jo O<y< '" u 

belongs to 2'2(u,8,u* ,8 *). 
Using Eqs. (ClO), (C4), and (IV.3), we find 

1'< _I-Do, 
x+I 

which is square integrable ifthe conditions (IV.12) are 
verified. 

(iv) Proo/that PI belongs to 0: The function PI belongs 
to 0 if for any value of n, I (lIn!)an PM,8,y = O)layn I ' is 
square integrable. The nth derivative of PI verifies the bound 
(016). 

/
1 anPI(u,8,y = 0) / C- ( A-) - < exp-(7. 'a n , n. yn 

(IV.I4) 

where A and en are given by Eqs. (09), (09'), and (017). A 
sufficient condition for I (lin!) anpI(u,8,y = O)layn I to be 
square integrable is that the coefficient A of u in the exponen
tial of (IV. 14) is strictly positive. When O..;;t <4m2, the func
tion 2 [m 2(p 2 - At ) - P 2] 1/2 being a strictly positive func
tion of p 2 for m 2 + (t /4) <p 2 

< 2m2[ 1 + (1 - t /4m2)1/2], it is always possible to choose 
w verifying the condition (IV.I2) and such that 

A>O. 

For example one can take 

w = Max (_t_ 
4m2 

' 
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(IV. 15) 

(IV. 16) 

The case t..;;O is identical to the case t = O. 
Finally, if the conditions (IV.4) are verified and if we 

take suitable w, we find that 

(IV.17) 

(v)Proo/that ~ belongs to Coo: In ordertoprovethat~ 
belongs to Coo, it is enough to show that 

Max I ~(u,8,Y)1 
O<y< 00 

is square integrable. It can be shown [see Eq. (020)] that the 
previous quantity is bounded by 

[lI(x + 1)] exp( - uA) , 

where Ais given by Eq. (09) or (09'). If w is taken as before, 
Ais positive [Eq. (IV. 15)] and 

= 1 1 
IIFIILx> < -- v2A < 00. 

x+I 2A 

v. RECONSTRUCTION OF THE PHYSICAL AMPLITUDE ... 
The regular part if (x,t) of the Mellin transform of the 

physical amplitUde M can be expressed as an integral of the 
function F(u,8,y) [see Eqs. (11.25)] 

M(X,t)=--1. 2 1°O du fd8 1'" dyyXUX+I 

Xexp[ - u(I + y) m2
] F(u,8,y). (V.1) 

It must be verified that this integral is convergent for 
any value of --1., including the one for which the perturbative 
series diverges. 

In this section we will use the following notation: 
F';" (u,8) is the nnlh derivative with respect to y, taken at 
y = 0, of the open amplitUde Fm (u,8,y) associated to the 
graph with (m + 1) rungs 

F';,,(u,8) = a
n
Fm (u,8,y = 0) 

ayn 

(let us remark that the notation of the derivative differs from 
the one of Sec. III). 

The decomposition (III. 13) can be used order by order 
in the number of rungs. (The constant N depends on the 
value of the arbitrary constant A -see Lemma 5.) We get the 
following list: 

FI(u,8,y) = F~(u,8) + Fi (u,8) y + ... 
N-- I N 

+ F7 - l(u,8) y + F;(u,8,y) L, 
(N-I)! N! 

F 2(u,8,y) = F~(u,8) + Fi(u,8) y + ... 
yN-I _ yN 

+ Ff-I(U,8) + F 2(u,8,y) _, 
(N-I)! N! 

F(u,8,y) = FO(u,8) + F l(u,8) Y + ... 
yN-I _ yN 

+F N- I(U,8)--!--- +F(u,8,y)-. 
(N-I)! N! 
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Let us recall the results of the previous sections. 
(1) The integral 

A. 2 (~ d(J (' do (X dy (JX + I yX exp[ - (J(1 + y) m 2 ] 

Jo Jo Jo 
X Fm «(J,o,y) 

is finite, as it represents nothing but the regular part of the 
Mellin transform of the amplitude of the ladder graph with 
(m + 1) rungs, which has no singularity (see Sec. II). 

(2) Each function jin«(J,o) = r«(J)Fn«(J,o) is the solution 
of a Fredholm integral equation (see Theorem 2, Theorem 
1', and Lemma 4). 

(3) The series 1.,';; ~ I Fm «(J,o,y) converges in the domain 

A. <Amin 

where Amin is the smallest eigenvalue of the set An,;, 
n = 0,1,2, .. · and i = 1,2,.· (see Theorem 2). Amin is positive 
as all the F m 's are positive, 

In the same domain, the series 
x 

Fn«(J,o) = I F~n«(J,o) (n = O,l, ... ,N -1), 
rn-=-l 

and 

F«(J,o,y) = f F,n «(J,o,y) , (V.3) 
m= 1 

are also convergent. 
(4) The function F «(J,o,y) is solution of an integral equa

tion for which the Neumann series converges in the domain 
[cf. Lemmas Sand 6 and Eqs. (111.38) and (III.39)] 

A. <A, 

and consequently Fis regular in A in this domain. 
Thus the series (V.3) is convergent not only when 

A. <Amin but in the largq domain A. <A. 
We will now buildM (x, t) [cf. (V. 1)] in two steps. First 

we define the partially integrated amplitude/«(J) 

I«(J) = L do 100 

dy yX (JX+ I exp[ - CJ(1 + y) m 2
] 

X F«(J,o,y) , (V.4) 

and we prove the existence of/«(J) in the domain [0,00]. Then 

we show that the last integration 

(V.S) 

is convergent. 
One of the difficulties of the demonstration comes from 

the fact that, due to the r" factor, each term of the sum 
l.~'~o Fn«(J,o)(ynln!) + F«(J,o,y)(yN IN!), is not 
integrable. 

In Sec, V, 1, bounds are exhibited for the functions F" 
and F';", These bounds are used in Sec, V,2 to prove the 
existence ofj((J) in the domain] 0,00]. Then the existence of 
1(0) is directly establis,lJed. Finally integral (V.S) is performed 
and the existence of M is proved. 

1. Bounds on ;=n«(J, 0) and ;=::'«(J, 0) 

Bounds on ;=n((J, 0) 

The function jin verifies the integral equation 
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ji"«(J,o) = H "«(J,O) 

+ A. IX d(J* L do* ]<",n)«(J,o; (J*,o*) jin«(J*,O*) , 

(V.6) 

with]<"''') given by Eq. (IV.9) andH" by Eq. (III.20) with the 
needed changes of notations, 

To obtain a bound on ji" we first prove the following 
theorem: 

Theorem 3: Let 

1«(J,0) = h «(J,o) + A.I°C d(J* L do* k «(J,o; (J* ,0*)/«(J* ,0*) , 

(V.7) 

be a Fredholm integral equation, 
If the kernel k and the first term h verify the bounds 

1 k «(J,o; (J*,0*)1 <c exp( - a(J - b(J*) , (V,8) 

1 h «(J,o) 1 <P,«(J) exp( - a(J), (V,8') 

where P,((J) is a polynomial of degree I in (J, and where a, b, 
and c are three positive constants, then for any value of A., the 
solution/((J,o) verifies the inequality 

1 1«(J,0) 1 < (p,«(J) + .#"(..1») exp( - a(J) , 
!iJ(A) 

(V.9) 

where A/(A. ) and !iJ (A) are two entire functions of A., !iJ (A. ) 
being the Fredholm determinant. 

Proof In the following, P" «(J) means any polynomial of 
degree n in (J, The solution of a Fredholm integral equation is 
given by the formula 

1((J,0) = h ((J,o) 

- A. (OC d(J* (' do* H ((J,o; (J* ,0*,A ) h ((J* ,0*) . 
Jo Jo 

(V.lO) 

The resolvent kernel H is the ratio of two entire functions of 
A. 

H «(J,o; (J* ,0*,A ) 

!iJ «(J,o; (J* ,0 * ,A ) 
!iJ (A. ) 

1.: ~ 0 dm «(J,o; (J* ,0*,A ) 

!iJ(A) 

where !iJ (A ) is the Fredholm determinant and 

dm «(J,o; (J*,0*,A ) 

(V.11) 

(_A)m II I ex, 5('''''5m) = - ... K * d5(· .. d5m , 
m! , Sl"",Sm 

k(Xl'X~) 
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In the two last equations. x means the set of variables! u,/j J. 
The kernel k can be written 

k (u,/j; u* ,/j*) = exp( - au - bu*) kc (u./j; u* ,/j*), 
(V.I2) 

where kc is a bounded kernel 

kc(u,/j; u*./j*)<c. 

Using the expression (V.l2) of k. we have 

K(X' •... ,xn)= exp(-a i u -b i tr') \xr, ... ,x~ i= 1 I i= I I 

I
kc(X,. xn, ...• kc(xn. xr) I 

X kc(x,.x~) •...• kc(xn'x~) • 

(V.l3) 

and using the bound (V. 13) on kc and the Hadamard's theo
rem.8 we obtain 

K t~·:.·.·.~;) < exp( - a it, U j - b itl ~) en nn12 . 
Finally as a + b is positive we see that dm is bounded by 

I dm(u./j; u*./j*,A)1 <exp( - au - bu*) c 

(Ac/(a + b ))m (m + l)(m + 1)/2 
X , 

m! 
(V.I4) 

and thus 

I 9 (u,D; u*,8*,A)1 < exp( - au - bU*)jr '(A). 
(V. IS) 

where ,r '(A ) is an entire function of A, 
To obtain the bound onf(u./j) it remains to put the 

inequalities (V.8') and (V. IS) in Eqs. (V.II) and (V. 10) and 
we find that 

ff(A.) = c' ff'(A.), (V. 16) 

where e' is a constant. 
In order to apply this theorem to the functions pn(u.8), 

we are going to prove that the kernelsj<",n) and the first term 
li"(u,/j) admit the bounds (V.8) and (V.8'). First, using the 
inequalitites (C7) and (DlO) or (DlO') we find 

I 1 ]'(n,l)(uD' u* 8*)1 
(n -I)! ,., 

<Pn _I(U) exp[ - m2(1 - w) u* - uA] . (V.I7) 

Then using the expression (III.20) for li" and (D16), and 
applying successively the previous theorem for 
n = 0,1 •.. .• N - 1. we prove by recurrence that 

I jjn(u./j)1 <Pn(u) exp( - uA). (V. 18) 

I F"(u,D) I <p"(u) exp( - uA). (V.I9) 

Bounds on F::'(u, DJ 

Weare going to prove by recurrence on m that 

I F~(u,D)1 <p"(u) exp( - uA). (V. 20) 

It is true for m = 1 [see the bounds (DI6)]. 
If we decompose the relation 

F':" +, (u,/j.y) = A. i'" du* f d8* 

X iUdU L (u.8,y;u* /j*.U)P':,,(u*,8*. :* yu). 
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in powers of y and we identify in the two members the term 
with the same power, we obtain 

P':,,+,(u,/j)=A i C~ ('" du* 
1=0 Jo 

X f d/j* j(n,l)(u,/j; u*,/j*) P~ (u*,8*). 

(V.2t) 

Using the bound (C7), and assuming that the functions 
P'", verify the inequalities (V.20), we find that F':" + 1 also 
verify the same inequalities. 

2. Existence of f (u) and of M 

It is now quite easy to prove the existence off(u) in the 
domain ]0,00]. Let us consider the last line of Eq. (V.2). 
Using bound (V. 19) and Eq. (V.4), we find that the contribu
tion to feu) of 

F"(u,/j) L = _1_ P"(u.8) L 
n! r(u) n! 

is bounded by 

J.. rex + n + 1) 1 ex [_ ,..Im2(1 _ w) A)] P (u) 
n! m2(x + n + I) u" P V\ + n' 

(V.22) 
which is finite for u> O. 

Using bound (V.20), the partial integral (V.4) on /j and 
y can be performed for the function F':., (u.8) y"ln! and it is 
bounded by the same expression as (V.22). 

The functions Fm (u.b,y) y N / N! being finite sums of 
partially integrable terms are themselves partially integrable 
in yand D. 

ThefunctionsF(u.8.y) y N IN! being the sum oftheab
solutely convergent series (V.3) for A <A. is also partially 
integrable in y and 15 in the same domain. 

This achieves the proof of the existence off (u) for u > a. 
When u goes to zero, the limit off(u) is 

lim [feu)] 
,,---0 

= lim ( r'd/j ('" dyu x +' yX 
,,---0 Jo Jo 

exp( - uym2)F(u= a,8,y»). (V.23) 

The value of the function F for u = a can be obtained 
using the integral equation (IV. 1). We have 

1 1 
F(u = a,/j.y) = ----

I+yx+l 

X (1 + i'" du* f d/j* exp( - m2u*) F(u*,/j*,D)) . 

The integral in u* and /j * is convergent because we al
ready know that the integral equation has a solution. We 
have thus obtained the bound 

F (u = a,/j, y) < cst. (V.24) 

Finally, if we combine (V.23) and (V.24) we find that 
lima---O [f(u)] exists and is finite. 

Sincef(u) is always bounded when O<u< 00, the only 
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point we have to examine is the convergence of the integral 
(V.S) when 0- goes to infinity. The bound (V.22) of the contri
bution of F"(o-,c5) y "In! to/(o-) is integrable when 0- goes to 
infinity. It is the same situation for the function 
F;~(o-,c5) y"ln!, and since the integral (V.I) exists for 
F", (0-,15, y), the contribution of Fm (o-,c5,y) Y N IN to/(o-) is inte
grable when 0- goes to infinity. Thus the contribution of 
F(o-,c5,y) y NIN! is also integrable when 0- goes to infinity. 
The function /(0-) being a finite sum of integrable functions 
when 0- goes to infinity, is itself integrable wh~en 0- goes to 
infinity and the integral (V.S) which defines M exists. 

CONCLUSION 

We summarize here our steps and their main results. 
We want to obtain information on the hadronic amplitude 
from Lagrangian field theory. The study is carried out here 
for the interacting Lagrangiangcp " and a drastic approxima
tion is done by retaining only the ladder graph series. The 
method used to obtain the sum of the perturbative series is 
based on a nonperturbative property of this sum: the fact 
that it is the solution of an integral equation. Contrary to 
perturbative method, which could give information only in
side the convergence circle, we can build the amplitude in the 
whole plane of the coupling constant and the position of the 
first singularity does not play any crucial part; in that sense, 
it is legitimate to hope that the ladder approximation, for 
which the number of graphs contributing at each order in the 
squared coupling constant stays equal to one and thus the 
convergence radius is finite, is technical and not basic. 

The method proceeds through three stages: 
(1) First, we show that the "regular part" of the Mellin 

transform of the "open amplitude" [see (Eq. 2.9)] is the solu
tion of an integral equation. This amplitude being a real 
quantity turns out to be a very good and simple tool. Integral 
equations of the same type can also be written when the 
dimension of the space is not equal to 4 or when there are 
different masses on vertical and horizontal lines. It must be 
noted that the equation is written in terms of the Mandel
stam invariants and not in terms of the momenta as for 
Bethe-Salpeter equation, and thus the solution is manifestly 
Lorentz invariant. 

(2) Though the integral equation is singular, we prove 
the existence and unicity of its solution and show explicitly 
its singularity structure. Our fundamental result is that for 
each given value of the squared coupling constant A, the 
solution can be written as a finite sum of solutions Fn of 
Fredholm equations plus a function Fwhich is the sum of an 
convergent series in A 

N~\ y" _ yN 
F(o-,c5,y) = L Fn(0-,8) - + F(o-,c5,y) Nt' 

n =() n! . 

whereN dependsonA:N = N(A). ThefunctionD (x,t,A) [see 
Introduction, Eq. (16)] can be given explicitly 

N -- \ 

D (X,t,A ) = II D" (X,t,A ) , 
n-::-O 

whereDn (x,t,A ) is the Fredholm determinant of the operator 
p".n) ofEq. (IV.9). 

It can be easily shown that all the demonstrations can 
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be performed in arbitrary dimension d, provided d is strictly 
less than 6. This reflects the well-known fact that at d = 6, 
the sum of the cp' ladder graphs possesses fixed cuts instead 
of Regge poles. 'i 

(3) Finally we integrated the open amplitude to obtain 
the amplitudeM itself. The singularities of M are the same as 
the ones of F(o-,c5,y) and are the zeros of the equation 
D (x,t,A ) = 0, which provides us with a set of moving poles in 
the x plane 

x = X n . i (t,A) n = 0,1,2, ... ; i = 1,2,.·· . 

The expression of D gives us a natural classification: The first 
index refers to the Fredholm kernelj<,,·n) and the second 
index is the number of the eigenvalues of this kernel. 

In the present paper we have given only the first results 
of a wider work. 10 In a future publication the dominant tra
jectory will be extensively studied: limits g~, g.-..,. 00, lower 
and upper bounds, trace approximation; then results will be 
established, such as multiplicity of daughter trajectories. A 
step of first importance will also be to get rid of the ladder 
restriction and to write an integral equation verified by the 
sum of all the planar graphs. 

APPENDIX A: RECURRENCE RELATIONS VERIFIED BY 
Pn and A~/Pn for q = s, t, 1,2,3, or 4 

We recall the following definitions: 
(I) A tree is a connected graph with no closed loop. 
(2) A cut is a set of lines ofa connected graph such that 

this graph falls into two connected subgraphs when they are 
removed, and such that none of its subsets possess the same 
property. 

(3) A s-cut is a cut such that vertices 1 and 2 are at
tached to one subgraph, vertices 3 and 4 to the other one (see 
Fig. 6). The corresponding definition for a t-cut is straight
forward. Similarly, an i-cut (i = 1,2,3,4) is a cut for which 
the vertex i is isolated in one subgraph, the three other ver
tices being attached to the other subgraph. 

P, 

Let us define 

a~ = an + an + \ f3nlcn + I' 

a;,*=a;, +a~+If3nlcn+\' 

I3n+' 

~, 

130 
I 

a) 

(AI) 

P, 

I3n-1 

b) 

FIG. 6. (a) The one s-cut for a ladder graph. (b) An example of I-cut. 

C. Gilain and D. Levy 1804 



                                                                                                                                    

wherec,,+J =/3n+J +an+ 1 +a~+J +/3n· 
Letf be a function of (3n + 1) scalar variables. Then we 

will denote 

f = f( /3n ,an ,a~ ,/3" - J ,an - J '···./30)' 

J* =/( (J~,a~,a~*,f3n -1 ,an -I ,···,(Jo), 

and we define the recurrence operation r as 

r(f) = Cn + J*. 

(A2) 

(A3) 

We will denote Gn the ladder graph with (n + 1) rungs (n 
loops). 

1. The recurrence for Pn 

The polynomial Pn is defined by 

p" = I (II a j ), 
tree 

(A4) 

where L trec means the sum over all the connected subgraphs 
with no closed loop (the trees) (see Fig. 7). (ITaj ) is the pro
duct of the Schwinger parameters a j of all the lines which do 
not belong to the tree. 

Pn is a homogeneous polynomial of degree n, and of 
first degree in each variable. 

Pn can be written 

P" = a/3n + b, (A5) 

where a and b do not depend on /3". The coefficient of /3 n is 
nothing else than Pn - J 

a = Pn - J' (A6) 

In order to express Pn + I in functions of Pn , we must 
know how all the trees of G n + I can be constructed from the 
trees of G". If in the tree of Gn , the upper loop 
(/3n f I ,a" ,a~ ,/3,,) has been opened by cutting the/3n line, the 
upper loop of G n + I can be opened only by cutting one of the 
lines a" , J' a;, + J , or /3n + I' If in the tree of G", the upper 
loop has been opened by cutting one of the lines an' a~, or 
/3" _ I , the uPl?er loop of G n + I can be opened by cutting 
a" , I' a;, + l' /3" + I' or /3n· In other words, if P" is given by 
Eq. (AS) then 

Pili I =a/3n(an+1 +a~+1 +/3n+l) 

+ b (an + 1 + a~ + 1 + /3n + J + /3n). (A 7) 

In fact Pn depends on the variables [/3" ,an ,a~ I only 
through their sum 

P, 

U4 

u J 

Uz 

cr., 
Pz 

~4 

63 

fill 

a, 

So 
oj 

(Ii. 

a' 3 

a' 2 

a, 

P, 

(It. 
~4 ai. 

a 3 
III a' 3 

"2 f3 2 az 

PI. 
a, S, a' 

Pz ' PI. 

FIG. 7. Two examples of contribution to the polynomials P
n

• The first one is 
equal to a ,p,a;P4 and contributes to the term aPn ofEq. (AS). The second 
one is equal to a ,p,a; a~ and contributes to the term b. 
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P, 

P, p) _-°0 +1-
130+' a~+l--hV:= 

13n 
an an __ on_ ~~~ a~ 

an_, I3n-l a~_1 an_I 
I3n-l 

o'n-l 

0) b) 

FIG. 8. Building A ~, , ,. (a) The three [-cut destroying the upper loop of the 

graph with n loops. (b) How to destroy the supplementary loop when bui Id· 
ing A ~, f- l' 

PM = a(an + a~ + /3n) + b " (A8) 

where a and b ' do not depend on an' a~, or /3". 
Then 

P" + 1 = a/3n (an + 1 + a~ + 1 + /3n + 1 ) 
+ [alan +a~)+b'](a"+1 +a:'+1 +/3,,+1 +/3,,) 

=a(a~+a~"'+/3~)Cn+1 +b'c"+I' (A9) 

or Pn +! = rcP,,) 
Using Eqs. (A 7) and (A6) we find 

(AW) 

2. The recurrence relation for A~/Pn 

The polynomials A s, A t, and A j (i = 1,2,3,4) are de
fined by 

A q = I P IP2 II aj' (All) 
q·eut I jl 

where q stands for s, t, or i (i = 1,2,3,4), [jJ labels the set of 
lines consituting the cut and where PI and P2 are the polyno
mials P attached to each remaining subgraph. 

For a ladder graph there is only one s-cut, which, fol
lowing the notation of Fig. (3), is the product over all the/3. 
The remaining subgraphs being trees, the polynomials PI 

and P2 of Eq. (A 11) are equal to 1. Then 

A ~ = fI /3j' 
;=0 

from which we deduce 

A ~ + J = rCA ~), 

and 

3. The recurrence relation for A~/Pn 

Let we write A ~ under the form (see Fig. 8) 

A ~ = a"a~Pn _ I + ~~: an (U: /3j) a;Pj _ 1 

+ ~~: a~ (U: /3j) ajPj _ 1 +A ~r 

C. Gilain and D. Levy 
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whereA ;" corresponds to all the terms of A ~ for which the t
cut does not destroy the last loop. The dependence of A ~' on 
the variable (an ,a~,/3") is through a polynomial Pup at
tached to the upper subgraph. 

When we want to build A ~ + I from A ~, we can group 
the different obtained terms in four classes [see Fig. 8(b»). 

(i) The cut remains unchanged. Then the only change is 
in the polynomial corresponding to the upper subgraph: PuP 
becomes r('pup)' 

When we modify the cuts, we obtain four supplemen
tary cuts: 

(ii) The cut ana;, may be modified in two ways 

ana~-(an+la~ +a"a;'+l)13n' 
(iii) The cuts an 13" -I'" and a;, 13" _ I .• , become respe-

cively an + I 13" I3n -I ••• and a:. + I /3" 13" -I •.•. 
(iv) Finally we have to add a new term: a" + I a;, + I p". 
We may try a priori the same recurrence as for A ~ and 

p". Using (A9), we write easily 

r(A ~) 

(AI6) 

Comparing (A16) with the four classes of terms of 
A ~ + 1 , we see that r(A ~) possesses an extra term 
[an + I a;, + I (f3~/c" + I )p" -I ], and on the other hand that 
the term a" + I a;, + I p" is missing. 

We have then obtained 

A~+l =r(A~)+a"+la;'+1 [PM -(13~/C"+I)Pn-I]' 
which we rewrite, using (A 10), 

(AI7) 

or 

(A18) 

P, 

P, P1 

an+l 
~n+l a;"', 

an tin o'n 
On 

tin an 
°n-, tJn-, 

o~_, 
°n_, 

tln- 1 a~_, 

a) b) 

FIG. 9. Building A ;" I from A ~. The thin lines are the materialization of 

the Z·cuts. 
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P, P3 

a...., 1Jn., a~+1 
P, P1 

an tin o~ an tin a' n 

an-1 tin-, a~-l 0,...1 tin-I an-I 

a) b) 

FIG. 10. Building A :, , I from A ~. The thin lines are the materialization of 
the I-cuts. 

4. The rec:urrence relation for A~/Pn and A~/Pn 

Clearly the polynomials A ~ and A ~ will obey the same 
recurrence. The expression of A ~ is [see Fig. 9(a») 

A ~ = ~t; ai + I CVo 13j ) 

X Pn-i-I(I3",a",a;', ... ,ai+"a;+I,l3i+,)' (A19) 

A ~ + I is built from A ~ in the following way [see Fig. 9(b»): 
(i) We keep the cut: the only change is then in the 

polynomial 

Pn - i-I-r(P" -i-I)' 

(ii) We have an extra cut, for which the polynomial is 1: 
an + I fI7= 013". From (AI9), we write r(A ~) 

r(A ~) 

= en + I a~ ()X I3j ) + ~t>n +1 a i + 1 ([l
o

l3j ) P~- i-I 

=a"+1 JI
Q

131 + ~t: a i + 1 C~t13j)r(Pn-i-I)' (A20) 

i.e., 

and 

A ~ + 1 = (A ~ )*. 
Pn + I Pn 

Similarly we have 

A~+l _ (A~)* ---- - . 
Pn + I Pn 

s. The rec:urrence relations for A~/Pn and A~/Pn 

Let us finally turn to A ! and A ! 

A ! = itl a i CUI pj ) Pi - 1 (l3i - 1 ,ai -1 ,a; -I , .. ·,/30)' 

(A21) 

(A22) 

(A23) 

It is straightforward to build A ! + I fromA ! (see Fig. 10). (i) 
The product over the 13 's has to be taken up to n + 1. (ii) 
There is an extra term: an + I Pn + I p". 

Using (A23), we obtain 
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r(A ~) 

=Cn+la~p~Pn_1 + ~t: cn+lai Cv: Pj)P~Pi-1 
=Pn+1 A~ +an+1 Pn+I(P~/Cn+I)Pn-I' 

and so 

A~+I =r(A~)+an+1 Pn+1 [Pn -(P~/cn+I)Pn-l] 
=r(A~)+an+1 Pn+1 Pn+I/Cn+l , (A24) 

or 

A~+I = a n+1 Pn+1 + (A~)*. 
Pn+ 1 cn+1 Pn 

(A25) 

A ~ follows, of course, the same law as A ~ 

+ (~: y. (A26) 

APPENDIX B 

In this appendix we give a series of elementary relations 
which will be useful elsewhere. 

(1) If a is a positive constant, we have 

("" exp( - au) ( i C~ (Ubt) du = J.. (1 + .!!...-)n, (B1) Jo k ~o k. a a 

and 

("" exp( - au) ( i C~ (Ub;t) ( i C~ (Ub~)k) 
Jo k ~ 0 k . k ~ 0 k . 

< ~ (1 + Ib l l : Ib2lyn. (B2) 

Let g I be the function 

() 
exp[ - ax - bx/(c + x») 

glx = , a>l, c>O. 
(1 + x/c)a 

The expansion at (x = 0) provides us with the inequality 

I
J.. angl(x = 0) I 
n! axn 

< (!!...)n i (Iac l + Ib I)k 1, C~. (B3) 
c k~O a k. 

(2) Let g2 be the function 

g2(x)=exp[ -(a l +a2)x-bx/(1 +x»). 

We have 

I 
J.. an

g2(x = 0) I 
n! axn 

n 1 
<exp(lall) I (la21 + Ib I)k - c~. (B4) 

k~O k! 

(3) Let g3 be the function 

g3(X) = _1_ exp (_ (a
j 
+ a2)x _ b _x_) . 

x+1 x+1 
We have 

I 
J.. an

g3(x = 0) I 
n! axn 

(B5) 
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(4) Let g4 be the function 

gix) = exp[ - ax - bx/(c + x)] 

In the case 

a>O 
b> - ac, 

we have 

Max [gix») =giO) = 1. 
0.;;;, x < 00 

(5) Finally, we have 

Ma~ [exp(-X)Xk]<exp(-X)k\ if X>O. 
X>X 

(B6) 

(B7) 

APPENDIX C: BOUNDS ON THE KERNEL L(u,8, y,u*,8 *,u) 

1. Bounds at y = 0 

The kernel 
L(u,8,y;u*,8*,u) = [r(u)/r(u*)]L (u,8,y,u*,8*,u) can be 
written 

L(u,8,y,u*,8*,u) = c _1_ exp (- ay - b -y-), (C1) 
y+1 l+y 

with 

c = U
X exp[ - m 2(1 - cu)u* - m 2uu 2/(1 - u) 

+ ut8(1 - 8)(1 - u) - m 2cuu], 

b = u [t8( 1 - 8) - pi 8 - pj (1 - 8)] (1 - u), 

a=al +a2, 

a l = m2uu2/(l - u), 

a2 = m 2uu. 

Using (B5) we have 

I
J.. anL(u,8,y = 0;u*,8*,u) I 
n! a~ 

<ceQ, -I ~ (a2 + Ib I)k CHI. 

k~O k! n+1 

(C1') 

Since 0<8< 1 and V - p2<p~ <p2 for i = 1 and 3, we find 
that 

Ibl<u(1-u)(P2-V) ift<O, 

and finally 

I
J.. anL(u,8,y = O;u*,y*,u) I xD 

<u n' 
n! a~ 

with 

Dn = exp[ - m 2(1 - cu)u* - (m 2cu - At)u] 

X ~ (UP2)k Ck + I 

k~O k! n + I if t;:;'O, 

Dn = exp[ - m 2(1 - cu)u* - (m2cu - V)u] 

X 
~ (UP2)k Ck + I 

k~O k! n + I if t;:;'O, 

(C2) 

(C3) 

(C4) 

(C4) 

If, in the case n = 0, we use (B4) instead of (B5), we obtain 

L(u,8,y;u*,8*,u) < u xD, (C5) 
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with 

Let us define: 

~",/) ( ". * "*) _ IUd (~ )1 an - iL(CT,8,0;CT*,8*,u) ix CT,o,CT,o - U U . 
o CT* at' 

Using inequalities (C3), (IV.2), and (IV.3), we obtain 

1 

__ l_i~n.l) (CT 8'CT* 8*) I < 1 D . 
(n - /)! ", x + 1+ 1 " - 1 

2. Bound for 0..:; y < 00 

The kernel L(CT,8,y;CT*,8*,u) 

(C7) 

= [r'(CT,y)/r'(CT*,y*)] L (CT,8,y;CT*,8*,u) can be written 

L(CT,8,y,CT*,8*,u) = c _1_ exp (- or - b -y-), (C8) 
l+y l+y 

with 

0= a + m2CTw'(1 - u), (C8') 

and a, b, c defined by Eq. (CI '). Using the bound (C2) we see 
that, if w' verifies the inequality 

p 2 

w'> -2 if 0..:;t<4m2, 
m 

p 2 -It 
w' > 2 4 if t < 0, 

m 
then the bound (B6) can be used and we find 

Max L(CT,(),y,CT*,8*,u) = c..:;uxDo· 
0..;, Y< oc 

(C9) 

(ClO) 

APPENDIX D: BOUNDS ON THE FIRST TERM Fr(u,8,yJ 

1. Bounds for y = 0 

In this subsection, we give bounds on the modified first 
term [see Eq. 11.23)] 

F.(CT,8,y) = r(CT)Fl(CT,8,y) = exp( - m2CTw)F1(CT,8,y). (DI) 

The function F. can be written 

F.(CT,8,y) = LX> dYof( yo,8,CT) g(yo,y,CT), 

with 

Yo 
f(Yo,ll,CT) = exp[ - CTA (yo,ti)] 2 ' 

(1 + YoY+ 
A (Yo,8) = m2w + m 2yo 

t8( 1 - 8) + p~ 8yo + pW - ti)yo 

1 + Yo 
1 

g(yo,y,CT) = [1 + yl(1 + YO)]x+2 

X exp (+ CTb (Yo,8) Y ) , 
1 + Yo 1 + Yo + y 

b (Yo,8) = [pi8 + p~(1 - 8) ](1 + Yo) 
- [t8(1 - 8) + p~8yo + p~(1 - 8)yo]. 

1808 J. Math. Phys., Vol. 22, No.8, August 1981 

(D2) 

(D3) 

(D4) 

(D5) 

(D6) 

We recall that we are working under conditions (IV.4)
(IV.6). 

We defined a constant p2 [see Eq. (IV.lO)] which veri-
fies [see Eq. (IV. 1 1 )J 

it - p2 <p~ <p2, 

P 2> m2 + it if r>o, 
p2>m2 ift..:;O. 

Bounds on the function A(y,8) 

(i) 1f0..:;t<4m2 

A (y,8»A (y) = m2(w - 1) - p2 + m 2(1 + y) 

+ (p2 - At)!(1 + y) 

A (y»if = m2(w -1) - p2 +2 V m2(p2 - it). 

if also verifies 

m 2w -V>A. 
(2) Ift..:;O 

A (y,8»A (y) = m2(w -1) - p2 + m2(1 + y) 

+ p2/(1 + y) 

A (y»if = m2(w -1) - p2 +2 V m2p2. 

if also verifies 

m 2w>A. 

Bounds on the nth derivative of F; 

(D7) 

(D8) 

(D9) 

(DlO) 

(D8') 

(D9') 

(DlO') 

The nth derivative ofF. with respect to y is the integral 
of the nth derivative of g 

1 a"F.(CT,8,y) = 100 

d f( 8) ~ an
g(yo,y,8). (Dll) 

I a',n Yo Yo, I a,,n n. ron. r 

Inequality (B3) can be used, and we find 

1

1 ang(yo,y = 0,15) I 

n! at' 
<{x +2)" t (_I_CT 1b(Yo,8)I)k ~C~. 

k=O x+2 l+yo k! 
(D13) 

As the p~ (i = 1,2,3,4) verify the inequality (D7), we have 

Ib (y,ti) I <b (y) = (2p2 - V)(1 + y) 

- (P 2 _ V) if O..:;t < 4m 2
, 

(DI4) 
Ib (y,ti) I < b (y) = (2p2 - it )(1 + y) - p2 if t..:;O. 

Using these inequalities and (D8) or (D8') we easily 
show that 

Ib (Yo,8) I < if A (Yo), 
1 + Yo 

where if is a constant. 
Using inequality (D8) or (D8') we find 

f(Yo,lj,CT) < fa 2 exp[ - CTA (Yo)). 
(1 + YoY+ 

Putting these two last inequalities in Eq. (D13) and us
ing (D 11) we obtain 
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\
..!.- anF,(er,D,y = 0) \ (+ 2r (00 d Yo 
n! a~ <X Jo Y°(l+YO)X+2 

xexp[ - erA (Yo)] i ( Ii erA IYo))k ..!.. C~. (DI5) 
k=O x+2 k! 

Using (B7), it is possible to perform the integral and 
finally we have 

1

1 a"FI(er,D,y = 0) I C- ( A-) - < exp - CT. , 
n! a~ n 

(D16) 

with 

(D17) 

2. Bound for 0.:;; y < 00 

The modified first term F;(u,c5,y) = r'(er,y)F1(er,D,y) 
can be written 

(DI8) 

with 
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x exp (-Qm2{J/Y+ ub(yo,y) y ) 
1 + Yo 1 + y + Yo ' 

(D19) 
andfand b defined by Eqs. (D3) and (D6). 

If w' verifies the inequality (C9), the bound (B6) can be 
used and we find 

= 1 -
Max F,(u,c5,y) < -- exp( - uA ). 

O<Y<oo X + 1 
(D20) 
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An e~plicit construction. of representations of supergroups is given in terms of direct products of 
covanant.and contravanant fundamental representations. The rules of supersymmetrization are 
charactenzed by exten~ed Y o~ng supertableaux. This constructive approach leads to explicit 
transformatIOn properties of higher representations as well as to closed explicit formulas for 
characters from which other invariants such as dimensions and eigenvalues of all Casimir 
operators can be calculated. We have applied this approach so far to the supergroups SU(N 1M), 
OSP(N 12M), P(N), for which we have obtained all the representations constructible as direct 
~roduc~s .o~ the fundamental (defining) representations. An argument is presented toward the 
IrreducibIlity of all these representations. 

PACS numbers: IUO.Pb, 02.20.Qs 

J. INTRODUCTION 

Supergroups and superalgebras I have been proposed to 
construct models in various areas of physics.2 The first evi
dence of the existence of super symmetry in nature has come 
with the supersymmetric model of nucleiJ based on the SU 
(6/4) supergroup where the bosonic and fermionic levels of 
five different nuclei are placed in the same supermultiplet. In 
this work certain aspects of the representation theory of su
perg~oups :-ver~ used as developed by us in Ref. 4. Indepen
dent investigations by other authors5

•
o partially overlap with 

ours. 
The basic technique of Ref. 4. is a symmetrization-anti

symmetrization procedure (supersymmetrization) associat
ed with Young tableaux generalized to supergroups (super
tableaux). The main observation was that known results for 
the characters of ordinary groups can be generalized to su
pergroups by a simple replacement of traces by supertraces 
in thefundamental representation. Once the supercharacters 
are obtained, it is straightforward to derive many properties 
of the super groups including dimension formulas and eigen 
values of Casimir operators. Using this technique in Ref. 4 
we derived character and dimension formulas for certain 
representations ofU(N 1M) and OSP(N 12M) type super
groups. Formulas for the quadratic Casimir operators were 
included along with a general procedure for calculating 
higher order Casimir operators from the characters. 

The representations ofU(N 1M) supergroups studied in 
Ref. 4 are the ones which can be constructed using only co
variant or contravariant basis vectors of either class I or class 
II representations. An extension of that work is presented in 
Sec. II, where we discuss the representations obtained by 
taking tensor products of both covariant and contravariant 
basis vectors of the same class, as well as tensor products or' 
class 1 with class II representations. 

For the ordinary SU(N) group all representations can be 

alRe~earch supported in part by the U.S. Department of Energy under Con
tracts Nos. DE·AC02·76ER0374 and EY·76·C·02·3075. 

written in terms of only covariant tensors, but for the super
group SU(N / M) a contravariant tensor cannot be rewritten 
in terms of covariant ones, so that the representations we 
discuss here are not included in our work of Ref. 4. We give 
character and dimension formulas for such representations 
of supergroups. A further set of representations for 
SU(N 1M) is obtained by taking direct products of class I and 
class II representations which differ from each other by in
terchanging bosons and fermions. These products turn out 
to give new representations of SU(N 1M). Character and di
mension formulas are provided for these representations as 
well. 

In Sec. III we apply similar techniques to the PiN ) type 
supergroups. We find that the structure of either class I or II 
representations for P(N) are formally similar to those for 
Sp(2N ),just as we showed in Ref. 4 that OSP(N 12M) had the 
same structure as O(N). We calculate the characters of mixed 
class I and II representations of these supergroups, from 
which other quantities such as dimensions and Casimir oper
ator eigenvalues can be computed. The supergroup Q (N) is 
the only "classical" supergroup whose representations re
main to be investigated. 

We have thus derived the characters and the dimen
sions for all representations that can be constructed from 
direct products offundamental class I and II representations 
of all super groups [except Q (N)]. This leaves out certain non 
integral representations7 ofSU(N /1) which cannot be ob
tained from the fundamental representation. 

II. REPRESENTATIONS OF U (N/M) 

The fundamental (defining) representation of the super
group U(N / M) has two bases, 

(t/>,,) - (l/Ja) SA = l/Ja and SA = ¢" ' 

which we caIl class I and class II, respectively. In SAt/> a' 

a = 1 ,"',N are bosonic and l/J",a = 1,.··,Marefermionic. For 
this representation the degree of the index A is g(a) = 0 and 
g(a) = 1. On the other hand, in [4 the components l/Ju, 
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a = 1,. .. ,N are fermionic and <Po., a = l,..·,M are bosonic; 
we then haveg(a) = 1 andg(a) = O. Both of these basis vec
tors transform with the same supergroup element 

5" ~ = °2;!5"B and f~ = W!fB' (2.1) 
with 

!3{)) (HN - = ex pi t 
fj;) 0 

(2.2) 

Note that in contrast with Ref. 4 we are distinguishing be
tween lower and upper indices. Here the N X N matrices 
(.0",Hn) and the M XM matrices (fiJ,HM ) have bosonic ele
ments while the N X M matrices (.q; ,0 ) and the M X N matri
ces (Cr;',O t) have fermionic elements. The unitarity condition 
is implemented by requiring that H Nand H M are Hermitian 
and 0 t is the Hermitian conjugate of O. Hermitian conjuga
tion is defined to interchange the order offermions in a given 
product. The supertrace, which is defined as 

Str (1/ = I( _1)g(AIU2;~, (2.3) 
A 

is an invariant ofthe supergroup; so is the superdeterminant 

Sdet u2; = exp[Str(ln 02;)]. (2.4) 

The condition Sdet 02; = 1 is identical to Tr HN = TrHM. 

A. Covariant and contravariant class I representations 

For class I (and similarly for class II) representations 
the contravariant basis vector 5" A is defined as the Hermitian 
conjugate of the covariant basis vector, 

(2.5) 

The Hermitian conjugate of the matrix W of Eq. (2.2) is 

(1/2; t)~ = (u2t *)!. (2.6) 

Following Eqs. (2.5) and (2.6) one can show that the basis 
vector 5" A transform as 

(2.7) 

For the supergroup U(N / M) the only invariant tensor is the 
Kronecker delta o~, with one lower and one upper index. 
Unlike SU(N), there is no completely "antisymmetric" in
variant tensor since the superdeterminant is not a finite poly
nomial. We can write 

(2.8) 

This implies that 5 AO~ 5 B is an invariant. If w! and u2t rare 
interchanged in a product one picks up some minus signs 
from the fermionic components. The general rule as given in 
Ref. 4 is 

11B '11 tD = (_ 1)Ig(AI ~-g(BIJ·Ig(CI-g(DIlr7J.tDO).B 
A C -U C U A' (2.9) 

Using this property and Eq. (2.8) it can be shown that the left 
inverse is equal to the right inverse, i.e., 

(2.10) 

The supersymmetrized and superantisymmetrized ten
sor products of two covariant (and similarly contravariant) 
vectors belonging to the same class are given by 

1811 

{: _ {: (I1{: (21 + {:(21e-ll) 
~IABI-~A~B ~A~B' 
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(2.11) 

e- _ e-(l)e-(21 _ t-(2Ie(l1 
~(A,BI-~A~B !:>A!:>B' (2.12) 

Note that the order of the indices is kept the same while the 
wavefunctions are interchanged. Higher order supersymme
trized or superantisymmetrized tensor products follow the 
same rule. These tensors form irreducible bases since we 
have no invariant, covariant or contravariant tensors. We 
have studied such representations in Ref, 4. The character of 
the class-I representation obtained by using covariant bases 
and associated with a single row supertableau containing n 
boxes [as in Fig. l(a)] was given as4 

(2.13) 

where 02; is the fundamental representation given in Eq. (2.2) 
and C is a contour around the origin. The character of the 
representation (n1,nZ'''·) associated with the supertableau [as 
in Fig. lIb)] with n 1 boxes in the first row, n2 boxes in the 
second row, etc., was given as4 

JY1n"n,,. .. ) = det (Hn) + i _j) 

Hn, Hn,-l H···· n~ - 2 

Hn,+l Hn, H· .. • n,- J 

Hn, +2 Hn, + 1 H···· 
(2.14) = 

n, 

where we have shown the ijth element of the matrix whose 
determinant is calculated. The rank of the determinant is 
equal to the number of nontrivial rows in the supertableau. 

Representations obtained by using contravariant bases 
are associated with the supertableaux which are mirror im
ages of the covariant supertableaux, and are indicated by 

"- boxes 

1,,/t/t/1/] . 
(0) 

" / , / / /l / ", , / , / , / / 
/ 

/ 
/ 

/,// ,//" , , / 
/ 

/ 
/ 

/ 
/ / 

/ / , / 
, / / 

/ / / / n2 
/ 

/ 
/ 
, , / / / 

/ 

/ 

/ / , 
/ / / / 

"3 / 
/ , / 

, 
/ 
, 

/ / 

/ / 
/ , , , / 

/ , 
/ 

/ 
/ 

, ....... //' 

L 

FIG. I. Supertableaux corresponding to the representations \a) 
\"·,O,O;n,O, ... ) and \b) \ .. ·,O;n J,n2,n3, .. )ofthesupergroupSU\N IM)which are 
constructed only covariant basis ve<;tors. 
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dotted boxes [as in Fig. 2(a)]. They are required to satisfy 
n I > n 2 > n, > .... These contravariant supertableaux corre
spond to new representations which cannot be obtained 
from the covariant ones, unlike the ordinary SU(N) represen
tations. This is due to the lack of an invariant completely 
superantisymmetric tensor. Note that even though there ex
ists an invariant superdeterminant it does not correspond to 
an invariant supertensor. 

If we replace '.0' by 0' t in the character formulas of 
covariant representations, we obtain the character formula 
of contravariant representations. This follows from Eq. (2.S). 
For example, the character of the representation in Fig. 2(b) 

I 

det(H .' ", .' I I- j) = .·.H .. n, 

with n dotted boxes is obtained from (2.13) as 

~/' = H = ~ __ z ___ _ f d " I 

. n . n C 2rri Sdet(1 _ z1/t) 
(2.1S) 

It is convenient to define H .. " with a negative index ( - n), 
where the dot on H "reminds us of the contravariant re
presentation which uses "11 t instead of (i' . Note that accord
ing to Eqs. (2.13) and (2.1S) H" = 0 = H "if n is negative 
while Ho = Ho = 1. 

The character of the representation 
( - n l , - n2 , - n1,''') obtained by using contravariant basis 
vectors is given by 

(2.16) 

H. n,' I 

···H· H . '" + 2 ". I- I Ii - "J 

in which .:;r t appears instead of uk and otherwise it is formal
ly identical to Eq. (2.14). This result follows with the meth
ods of Ref. 4. 

B. Mixed covariant-contravariant class I 
representations 

We now consider representations obtained by taking 
tensor products of both covariant and contravariant bases of 
the same class. Since we have an invariant mixed tensor 
(Kroenecker delta) such tensor products are not irreducible. 
They contain invariant subspaces which we need to elimi
nate by demanding that the supertrace with respect to any 
two pairs of covariant and contravariant indices must van-

L/·/t·/ / / 

/ 
/ / 

/ 
/./ /. /. /. 

/ / / / 

/ / / / /. /. 
/ • / • / / / 

/ 
/ 

/ / 

/ 

./ /. /. 
/ / / 

/ / 
/ 

/./ /. 
/ / 

(0) 

n- boxes 

FIG. 2. Supertableaux corresponding to the representations (a) 
I .. " - n" - n2• - n,; 0.0 ... ·) and (b) ( .. ·,0, - n;O,O, ... ) oft»e supergroup 
SU(N 1M) which are constructed using only contravariant basis vectors. 
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ish. We will study some examples below. Representations 
obtained in this way are associated with the mixed supertab
leaux in Fig. 3 (a), where nj and - mj indicate the number of 
the boxes, respectively. We denote such representations as 

\/./ / 
/ / / / / 

/ 
/ 

/ 
/ 

/ 

, 
/ 

/ //1/'\ • ./ / / 
/ / , /. /. / / / / 

/ 

/ / 
/ 

/ 
, 

/ / / / / / 
/ 

/ / 

/./ • / 

/ /. 
/ / / 

/ , 
/./ /.' 

/ / 

/ ./ 
/ 

/ 

/ • / , 

, , 
/ /. , / / 

/ 

/ / / , 
/ 
, ./ / / 

/ / / 
/ / / 

/ / 
/ • / , / 

/ / / 
/ 

/ / 
/ • / 

/ / 
/ 

/ 
/ /. 

/ 
/ 

/ / 

(0) 

C21ZJ/ · / / / 

/ 

//e/ 

(a) 

/ / , , , / / , 
/ / / 

/ , / 
/ / / , / , , / / 

/ / 
/ / 

/ / 

/ 
/ 

FIG. 3. Supertableaux corresponding to the representations (aj 
I .. ·, - m" .. m" - m,;n"n"n""'j, (b) ( ... ,0, - U,O,. .. ), and (e) 
( ... ,0, - \,- \; \ ,0,. .. ) of the supergroup SU(N 1M). 
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( ••• , - mj ,"', - m 2, - m t; n t,n2,··,n;,.·,). For example, 
( - 1;1) is the representation obtained from one contravar
iant and one covariant basis vector; similarly, ( - 2; 1,1) is the 
representation obtained from four basis vectors: two covar
iant ones which are antisymmetrized and two contravariant 
ones which are symmetrized. In both cases the invariant sub
spaces are subtracted. We write the covariant indices on the 
left and the contravariant indices on the right as in 
t{! ABC .. DEJ-"'. As a first example we will explicitly construct 
the class I representation ( - 1; 1) represented by the super
tableau in Fig. 3(b). This is the adjoint representation. The 
basis s! of this representation is constructed as 

S ~ = s ~It (21B - [8!/7J(N - M)]t~ltI2IC( - l)giCI, (2.17) 

where the second term insures that the supertrace of t! is 
zero, i.e., ( - 1 )giA IS ~ = O. Note that the second term is in
variant under the supertransformations since 
( - 1)8\Cls ~IS (21C = 5 12/CS ~I is invariant according to Eqs. 
(2.1), (2.7), and (2.8). The factor 7J = + 1( - 1) for class I, (II) 
representations. Under the supergroup SU(N 1M), S ! trans
forms into 

(2.18) 

where the supergroup element u~ !;: in this representation is 
obtained by transforming t ~ I and t (21B according to Eqs. 
(2.1) and (2.7). In obtaining (i~ !;; the order of the factors 
Y~~'S~:S(2IB'Y2-'~1! is important important because o~'s and 
u~t's must be shifted to the left of the expression. This shift
ing produces certain minus signs and yields 

u~!~: = (_ l)lgIA'I-8\B'lligiBI-gIB'IJ02-'~'(i2-'ll! 

- 8!( - 1)giA'18~:/7J(N - M). (2.19) 

The character of the representaton ( - 1; 1) is the supertrace 
of this matrix, To take the supertrace we letA' = A,B' = B, 
multiply the whole expression by ( - I )8\A I( - I )gjBl, and sum 
over A and B. We obtain 

(2.20) 

From Eqs. (2.13) and (2.15) we have H \ = Str &2-' and 
H _ 1= Str (.z.-t. Therefore, (2.20) can be rewritten as the 
determinant 

}/' \ H_ \ HI) \ . 
• /1 1- I,ll = I Ho HI I (2.21) 

As a second example we will study the representation 
( - I, - 1;1) associated with the supertableau in Fig. 3(c). 
The basis of this representation is 

S~·B) 

_ /;' /;,IA.BI 
-:,c:, -

(2.22) 

where we use 

tlA,BI = Si l lAS l21B _ SI2IAtIIIB, 

which is the basis of the representation ( - 1, - 1). Note that 
S ~,B I is supertraceless in the sense of 
(- lj81 DIS if},BI = 0 = (- l)gjD)( - lr(DI'gjA)S~·DI. The sec-
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ond expression follows from the fermionic properties of 
some of the components and is consistent with the inter
change rule 5 \A,B) = ( - 1 )gjA )·gjB IS (B,A ) as given in Ref. 4. 

Under the supergroup t IA.BI transforms into 

S'IA.BI = SW,B'I&2-'iA',B'IIA,B), (2.23) 

where the transformation matrix can be constructed accord
ing to the methods of Ref. (4) as 
U),t IA,BI_ \ [( l)g(B'llgiA'1 -g(AIJo),tA Q),tB 
(L IA ',B'I -::> - (L A' (L B' 

_ (_ 1)8(AlgjBI( _ l)gjB'JlgjA'I-gjBIJQJ--~~Q2-'1,A] 

(2.24) 

Using Eqs. (2.15) and (2,16) the character of this representa
tion is 

On the other hand, the basis o( the representation 
( - 1, - 1; 1) transforms into 

f:" (A,BI _ /;' IA ',B'IG)/t CIA,BI 
:, c - :, C {< IA ',B 'IC ' 

(2.25) 

(2.26) 

where, after shifting all ~ and GJ-- t's to the right according to 
Ref. 4, we obtain 
G)/t CIA.BI _ {( l)lglCI - g(C)llgIA 'l-g(B'I-glC'1l 
It IA',B'le --

C'J--C"1it, ,IA.BI_ 1 [(_I)gIC'ISA8c:'11t,B 
c IA.BI 27J(N-M)-2 CAB 

_ ( _ 1 )g(C'1 + g(A 'l,g(B'18~8~: U); ~,8 

_ ( _ 1 )glC'1 +- KIA )·gIB 18~8 A' C' (-'t 1, A 

+ ( _ l)g(C'1 + g(A 1'8\BI+ glA '/-gIB'18~8~: C/a~ ,A]}. (2.27) 

The character of this representation is obtained by setting 
A = A ',B = B ',C = C',multiplyingby( _ l)gjAI +g(BI +g(C), 

and summing over A,B,C. We obtain 
go/' ,y/, c¥/, or/' 

,/I I _ I. _ \;1) =,/1 1'./1 I - I, _ II - ,/I - I (2.28) 

which, using Eq. (2,25), can be written as 

H -I N -2 0 
:Y • 1- I, - 1,;11 = No iI -1 H(} (2,29) 

0 No HI 

We perform similar calculations for other mixed covar
iant-contravariant class I representations ofU(N 1M). We 
find the general rule that for the representation 

( - m k ) - m k -1 , ••• , - m 2, - m};nl'n2,···,ni __ l,n i ) 

the formulas (2,21) and (2,29) can be generalized as 

k - boxes 

FIG. 4. For the group SUIN) the rule to replace (l column ofundolted boxes 
by a column of dotted boxes. 
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iI -m, iI _ m,-l Hn,_2 Hn,_3 

iI -- m, + I iI Hn,_l Hn,_2 -m, 

% - 'n"'.··. - m 1;n 1.··.f1, = (2.30) iI - m, + 2 iI ~ml + 1 Hn, Hn, - I 

iI 
- fM2+ 3 iI - m 1 + 2 Hn,+l Hn, 

The rank of this determinant is determined by the number of 
nontrivial rows in the generalized supertableau of Fig. 3{a). 
The structure of this determinant can be remembered as fol
lows. On the diagonal we start with the obvious sUbscript 
and we increase the index going downward or decrease going 
upward. We must substitute Hn = 0 = iI _ n if n < O,f 
which are constraints that automatically follow from Eqs. 
(2.13) and (2.15). This result unifies all class I 
representations. 

The dimension of the representation is now easily calcu
lated by computing the character of the matrix 
( - I)KiA 18! = f!" or 

In Ref. 4 we have already calculated 

and now we note that H __ n (f) = D n has the identical value 
for any SU(N 1M). By substituting these expressions in Eq. 
(2.30) we obtain the dimension formula which generalizes 
our results in Ref. 4. The same remarks apply to the eigenval
ues of Casmir operators. 

If we apply the same procedures to the ordinary SU{N) 
group, we will end up with the same formal expressions as 
Eq. (2.30) for the analogous mixed Young tableaux, except 
that we will be substituting traces instead of supertraces. 
This formula for the character ofSU(N) is unfamiliar and, as 
far as we known, it might be new in the literature. Of course, 
forSU(N), if we replace Utbyaproductof(N - 1) U'swhich 
are appropriately symmetrized, our formula does reduce to 
the familiar expressions.4

•
8 For SU(N) the general rule9 for 

changing from purely covariant notation to mixed covar
iant-contravariant notation is to replace any column with k 
undotted boxes by a column of N-k dotted boxes as in Fig. 4. 
The new resulting Young tableau should be of the form of 
Fig. l(b). For SU(N) our new formula correctly reproduces 
the known expressions for characters, dimensions, and Casi
mir invariants. The new approach is very useful in those 
cases for which the usual Young tableau contains long col
umns which could be rewritten conveniently in terms of a 
few dotted boxes. Then all expressions and calculations sim
plify by many orders of magnitude. 

We must again emphasize that for the supergroup 
SU(N 1M) the replacement of dotted boxes by un dotted boxes 
is not allowed. 
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c. Direct products of class I and class II fundamental 
representations 

Before concluding this section we want to remark that 
similar methods can be employed to study the representa
tions constructed by taking direct products of both class I 
and class II basis vectors. We recall that the class II funda
mental basis vector differs form that of class I by an inter
change of the grades (bosons±:>:fermions). We denote covar
~ntl':ontravariant) class I and II basis vectors by SA (S A) and 
SA (S A), respectively. In the rest of this section we will put 
tilde signs on class II indices. For the grades of A and A we 
have the relation 

g(A)=g(A) + 1, mod2. (2.31) 

We recall the transformation property of the basis vectors 

S4 --+G/,I !SB' fA--+G/,I!fB' 

where 

(2.32) 

Now, let us consider the supersymmetrized tensor 
product SAB of one class I and one class II covariant basis 
vector 

SAB = S~IS~I + ( - 1)81.1 1·g1BIS~ISlp. (2.33) 

The same form was obtained from the supersymmetri
zation4 of two class I vectors after placing the wavefunctions 
in the same order. Note that the sign is { - l)RIA 1'1(181 and not 
{ - 1)g1AI.gI81. The elements of this basis have their grades 
interchanged (bosonst;fermions) in relation to the corre
sponding purely class I case. Equation (2.33) forms the basis 
of a new representation. Indeed, repeating steps analogous to 
those in the corresponding class I case,4 we find that s.~/l 
transform as 

f:_ (..' __ c~A'ii'f:_ 
~H8----+!; AB - '/14ii !:I A '8" 

where 

'I/~jt = ~(- l)gIA'I-II((8 1 gIH'llul/~ ~;/r 

(2.34) 

+ (_ l)gIAI·gIBI( _ l)glA'l·l glAI gljj'111/~'11f 

(2.35) 

We see that the result is formally identical to the correspond
ing purely class I case4 [cf. also Eq. (3.22) of this paper]. 
Therefore, even though the two bases have their grades inter
changed, they transform with identical matrices. This prop
erty follows from an analogous property of the fundamental 
class I and II representations [Eq. (2.32)]. From this result it 
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follows that the character of the representation (2.35) is for
mally the same as the corresponding pure class I representa
tion. The only difference is that in one case we have to sum 
over indices A with the appropriate grade g(l') as opposed to 
summing over indices A with gradeg(A ). When the dust set
tles, the two characters can differ from each other only by an 
overall minus sign. Finally, to calculate the dimensions we 
must compute the characters of /! = ( - l)glA 18! or 

J'1 = ( - 1)gIAI8~ for the appropriate representation. Clear
ly the two representations have the same dimension with the 
number of bosonic and fermionic components interchanged. 

We find that the remarks of the previous paragraph, 
which apply explicitly to the example above, are actually 
more general. In this paper we will discuss one more example 
explicitly. Let us consider the representation constructed by 
taking the tensor product of one class I covariant basis 5A 
and one class II contravariant basis l8. The basis 5! of this 
representation is 

c5~ 5 1115 121C. 
(N-M) C 

(2.36) 

Note again the formal similarity between this basis and the 
purely class I case of Eq. (2.17). The apparent difference in 
the second term can be explained if we note that for pure 
class I we could write the invariant subspace as 
5 ~15 i21C ( - WICI·glcl while for the new basis we would write 
5~~15i21c( - WICI·gICI. We then remark that 
( - 1)gIC I'&1 CI = ( _ 1)g1CI while ( - l)gIC).gICI = 1. Note that 

the basis 5!, constructed from two basis vectors of the same 
class, ofEq. (2.17), issupertraceless, while the basis 5 ~ ofEq. 
(2.36) is traceless. The transformation of the new basis is ob
tained by steps similar to those that led to Eq. (2.19). We find 

(2.37) 

where'!I!~: is again identical to Eq. (2.19) after taking Eqs. 
(2.18) and (2.37) into account. Using the symmetrization and 
antisymmetrization procedure and taking away traces, one 
can similarly construct the bases of higher representations 
from the direct products of fundamental class I and II repre
sentations. 

One final remark before we conclude this section is that 
quadratic and higher-order Casimir invariants for the repre
sentations discussed here can be obtained using the methods 
of Sec. V of Ref. 4. 

III. REPRESENTATIONS OF P(N) TYPE SUPERGROUPS 

In the first part of this section we will briefly review the 
character formula for the representations of the Sp(2N) 
group, which is related to P(N) type supergroups. The repre
sentations of the Sp(2N) group are labeled by a partition into 
Nparts: tn l ,n 2, .. ·,nN j, where n l :> n2 :> ... :> n'V :> 0. The 
character of the irreducible representation corresponding to 
this partition isH 

Xlln,.n" ... nvl) =~det(hn,+i_J +hn,-i-J+2)' (3.1) 

where h" is given by4 
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h =f dz z-n-I 

n 2rri det( 1 - zS) 
(3.2a) 

n 1 (TrSl)kl 
= I II -, - c5(n - k I - 2k2 - ... - nkn )· 

k,.k, ..... k"I~1 k1• I 
(3.2b) 

In the above expression the matrix S is the fundamental re
presentation of Sp(2N). 

The antisymmetric tensor Cab given as 

(Cab) = (_OIN I;) (3.3) 

is the only invariant of the Sp(2N) group. Hence symmetrized 
tensor products of the fundamental representation form irre
ducible representations of Sp(2N). However, antisymme
trized tensor products of the fundamental representation 
contain invariant subspaces due to the existence of an invar
iant antisymmetric tensor. In particular, Eq. (3.1) gives the 
character of the representation t n,O,O, .. ·,O 1 as hn , which is 
the character of the completely symmetrized tensor product 
of n fundamental representations. To illustrate this point, we 
consider the basis <Pa of the fundamental representation 
which, under group, transforms into Sab<Pb' The symme
trized product <Pab of two such bases, given as 

A. = A. II)A. 121 + A. (2)A. II) 
'f'lab I 'f' a 'f' b 'f' a 'f' b , 

transforms into 

<P lab I = Slab 1.la·h·1 <Pla'b '1. 

where 

Slahl.la·h·1 = HSaa,Sbb' + SUb,Sbu·]. 

The character of this representation is then 

X I2 .O •... 1 = H(TrS)2 + TrS2], 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

which is equal to hz by Eq. (3.2b). In the same way one can 
show that the character of the representation which trans
forms the completely symmetrized product ofn <Pa's is hn , in 
agreement with Eq. (3.1). 

On the other hand, the antisymmetrized tensor product 
<Plu.b I of two basis vectors, given as 

A. _ .1.111.1. 121 _ .I. 121A. III (3.8) 
'f'(a.h) - f./,I a f./,I b (j.J a 0/ h , 

contains an invariant subspace Cah <Pla.h I' Therefore, the basis 
<Pub of the representation ((1,1,0, ... )) can be written as 

(3.9) 

The basis (3.9) transforms as <P ~b = Sla.hl.la·.h·l<Pa·b· with 

Sla.hl.la·.h·1 = HSau,Sbb' - Sab,Sha'] - C ab C a·h·/2N. 

The trace of the matrix (3.10) is the character of this 
representation: 

XIII.I.n.l) = H(TrS)2 - TrS2] - 1. 

(3.10) 

(3.11 ) 

At this point we can express the above results in terms 
of the elementary symmetric functions a" 's defined as 

f dz 
a - -

" - 2rri 
det(l - zS) 

(3.12) 

which can be rewritten in terms of h m 's as an n X n 
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determinant,4 

an = det (hj _ i+ I)' (3.13) 

The function an (S) is the character of the representation 
which transforms the completely antisymmetrized tensor 
product of n <Pa's [without taking away any traces, of. Eq. 
(3.8)] Using Eq. (3.13), Eq. (3.11) can be rewritten as 

X((I.I.O .. I) = a2 - 1 = a2 - ao. (3.14) 

Alternatively, Eqs. (3.1) and (3.13) give the character of the 
completely antisymmetric representation ! 1, 1, ... ,n p = 1, 
np+ 1 = O, ... ,OJ ofSp(2N) as 

XII.I ..... QI =~det(hl+i_j +h3 _ i _ j )=ap -ap _ 2 , (3.14a) 

i.e., ap _ 2 is the contribution coming from the invariant sub
space which is subtracted from ap ' the character of the re
ducible, completely antisymmetric representation. In par
ticular, for p = 2 one gets X(I.I,O, ... 1 = a2 - ao, which is the 
character of the representation (3.9) as shown above. Simi
larly, using the same symmetrization-antisymmetrization 
procedure, one can construct higher representations and 
verify that their characters are given by Eq. (3.1). In this 
procedure one starts with tensors symmetrized according to 
the rules of the Young tableaux and then takes away 
"traces" by contracting with the antisymmetric tensor Cab' 

The matrix which transforms this basis gives an irreducible 
representation of Sp(2N) and its character agrees with the 
previous results ofEq. (3.1). 

Now we can extend the above results to the P(N) type 
supergroups. We denote the basis for the fundamental (de
fining) representation by ¢ A which contains Nbosons and N 
fermions. Under the supergroup, ¢A transforms into 
¢~ = JI AB¢B' where JI is the element ofP(N) in the 2N 
dimensional fundamental representation. JI is of the form 

&J) 
fiJ' 

(3.15) 

where N X N matrices c~ and fiJ have commuting elements 
and &J and CC have anticommuting elements. The p conju
gate of the matrix JI is defined as 10 

j{P = (~~ ~;). (3.16) 

For P(N) type supergroups the group element JI should sat
isfy the condition 

.~,.ljP = 1 (3.17) 

together with Sdet ,,,I{ = 1. 
For matrices with fermionic elements the ordinary ma

trix transposition (Jl IJl2) T is not equal to JI f JI r Howev
er, supertransposition, defined as 

.~5T = (~1' - CC~ (3.18) 
&]T ,qJT j' 

satisfies (v#' IJl2)51' = JI~1'JI~T. One can show thatJlP
, de

fined by Eq. (3.16), can be rewritten as 

.~p = - c,,,I{5TC, (3.19) 

where C is given by Eq. (3.3). Using (3.19) condition (3.17) 
takes the form 

(3.20) 
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i.e., the antisymmetric tensor CAB is an invariant of the P(N) 
supergroup. Hence one should eliminate invariant subspaces 
from "antisymmetrized" [in the sense of Eq. (2.12)] tensor 
products of ¢ A'S. 

The symmetrized tensor product of two basis vectors, 

¢IABI = ¢~I¢~I + ¢~I¢~I, 
transforms with the supergroup element 

// _ 1'( l)gjA')[gjBI-gjB'IJ // // vUIABI,IA'B'1 - it - vU AA'vU BB' 

(3.21) 

+ ( - l)gjA IgjBI( _ 1 )gjA 'l[gjA 1- gjBIJ.~ BA ,JI AB' J, 
(3.22) 

The character % of this representation is then given by the 
supertrace of (3.22) 

% = mStr JI)2 + Str .~2). (3.23) 

We repeat the same calculation for the symmetrized pro
ducts of more than two vectors. The characters of such re
presentations are expressed by the same formula as of Sp 
(2N), except traces are replaced by supertraces. 

On the other hand, the antisymmetrized tensor product 
of two vectors, 

¢IA.BI = ¢~I¢~I- ¢~I¢~I, (3.24) 

is no longer irreducible. But ¢[A.B i' defined as 

¢[A,B I = ¢IA.BI - (CAB I2N)CCD¢IC.DI' (3.25) 

is. Under the supergroup ¢[A,B J transforms with 
// _IJ( l)gjA'I[gjBI-gjB'IJ ({ // 

.M [A.B LlA ',B' J - 21: - vI" AA ,.4f BB' 
_ ( - l)gjA IgIBI( _ l)gjA ')[gjA l-gjBII.~ BA"~ AB' 

- CABCA'B./2N}. (3.26) 

Upon calculating the supertrace we find the character to be 

,;VIl.LI = H(Str Jlf - Str Jl2] - 1, (3.27) 

which is formally the same as Eq. (3.14) for Sp(2N), except 
traces are replaced by supertraces. 

Similar calculations for other representations corre
sponding to various partitions are repeated both for Sp(2N ) 
and P(N), For the representations corresponding to the same 
partition, characters are given by the same formula, except 
that traces (or determinants) are replaced by supertraces (su
perdeterminants). We conclude that the character of the ir
reducible representation of the P(N) supergroups corre
sponding to the partition ! n I ,n 2'''' J should be 

,;Vln,.n" .. ) = ~ det (Hn, + i _ ) + H n, - i" j + 2)' 

where 
1 dz z-n -I 

Hn = J 21Ti Sdet( I - zJl) , 

(3,28) 

(3.29) 

The dimensions of these representations, Din"", . . j , can 
again be found calculating the character of the matrix f' of 
Eq, (2,33a), One gets 

DI""n,.) = ~det (Dn, + i _ j + Dn, _ i _ j + 2)' (3,30) 

where 

(3,31 ) 
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IV. DISCUSSION 

This article, together with previous work,4 exhausts all 
the finite dimensional representations of SU(N 1M), 
OSP(N 12M), and P(N) type supergroups which can be ob
tained from the direct product of fundamental representa
tions using the symmetrization-antisymmetrization tech
nique. This leaves out certain nonintegral representations of 
SU(N II) which cannot be obtained from the fundamental 
representation as well as the representations of Q (N) type 
supergroups. Through our supertableau techniques we dis
covered the fact that as we generalize from Lie groups to 
supergroups the characters and other invariants of higher 
representations are obtained from those of ordinary Lie 
groups by replacing traces and determinants ofthefunda
mental representation appearing in the invariants of the the
ory with supertraces and superdeterminants. To use this 
trick we first need to write the characters and other invar
iants of the ordinary Lie groups in terms of traces of various 
powers of the fundamental representation.4 In this process 
we have found what seems to be a new expression for the 
characters of the ordinary group SU(N) [Eq. (2.30)]. A de
scripton of the representations of superalgebras is given in 
Ref. 6 in terms of highest weights. Our approach and our 
mathematical expressions are different and very convenient 
for physical applications. 

A rigorous proof of irreducibility of our representations 
remains to be given. However, we want to outline some argu
ments towards a proof of irreducibility of those representa
tions. For simplicity, we will consider only the representa
tions ofSU(N 1M) obtained from class I covariant bases of 
fundamental representation. An extension of these argu
ments to mixed cases (covariant-contravariant, class l-class 
II) is straightforward. 

We consider the decomposition SU(N IMPSU(N) 
X SU(M) X U(l) of the representations in question. For sim
plicity we assume N > M. The U( I) quantum numbers ofthe 
fundamental representation are assigned as 

where..at = (lIN)IN' g; = (lIM)IM' with IN(IM) being the 
N XN(M XM) identity matrix. 

Let us assume that the representation we want to con
sider is associated with a supertableau containing k boxes. 
This representation will be reduced to SU(N ) X SU(M) xU (I) 
representations, which we will symbolically denote as 
~ G) (SU(N), SU(M ))U(I).quantum number' An example is given 
in Fig. 5. The total number of boxes ofSU(N) and SU(M) 
Young tableaux will be k in each of these direct product 
r~pres~ntations. Successive components in this decomposi
tion Will have one less (more) box in the SU(N) (SU(M)) tab
leau. They can be obtained by starting from the first (non
vanishing) representation which contains the largest number 
ofSU(N) boxes and by applying to it a supergenerator which 
can be thought of as a step-down operator for SU(N) boxes 
and a step-up operator for SU(M) boxes. Each time the su
pergenerator acts, it moves the U(l) quantum number by 
( - liN + 11M). This is because each SU(N) box gets liN 
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for the U(l) quantum number while each SU(M) box gets 
11M. 

If the given representation were reducible into smaller 
representations described by fewer boxes, it would be impos
sible to find the same SU(N) and SU(N) content with the same 
U( 1) quantum numbers. This is because SU(N) and SU(M) 
representations, occuring in the decomposition, automati
cally receive their U( I) quantum numbers from the number 
of boxes they contain: A component that contains n boxes 
forSU(N)andmboxesSU(M)(suchthatm + n = k ) receives 
a U( I) quantum number equal to nl N + ml M. Therefore, it 
is impossible to decompose anyone of our representations into 
representations containing fewer boxes. 

There remains to consider the possibility of reducibility 
to other representations associated with supertableaux, each 
containing the same number of boxes as the supertableau of 
the orginal representation in question. We consider the de
composition of the original representation into SU(N) 
X SU(M) X U( I) and concentrate on the components with 
the minimum or the maximum value of the U(l) quantum 
number. In the example of Fig. 5 these are the representa
tions 

( ~1)4lNand (l,BD )4/M' 

We call these the maximal and the minimal representations, 
respectively. They contain the maximum and the minimum 
values of the U(l) quantum number. These extremal repre
sentations are easily obtained in our approach. For a class I 
representation, if all the fermions in the fundamental repre
sentation SA are set equal to zero the supertableau reduces to 
the SU(N) tableau of the same shape which describes the 
maximal representation. On the other hand, if all bosons are 
set equal to zero, we obtain the minimal representation, the 
Young tableau of which is obtained from the supertableau by 
reflecting it along the diagonal. If either the maximal or the 
minimal (or both) representations were unique, then it is im
possible to reduce the original representations into smaller 
representations associated with supertableaux containing 
the same number of boxes as the original one. This is because 
the whole representation can be constructed by applying the 
supergenerators on either the maximal or the minimal 
representation. 

r (tf "t e (EP,oj,.t (§,o), , 
N N M N+M 

FIG. 5. The decomposition of the representation (···,0,0;2,1,1,0 .... ) of the 
supergroupSV(N 1M )intotherepresenatationsofSV(N) X SU{M) X U( 1). In 
each parenthesis the first Young tableau corresponds to the SV(N) and the 
second tableau to the SV(M) representation. The V( 1) quantum number of 
each direct product representation appears outside the parenthesis at the 
lower right hand corner. 
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What is left is to find out if all of our representations 
contain a unique maximal or minimal representation. In our 
construction both maximal representations are clearly 
unique for supertableaux with less than N + 1 columns and 
less than M + 1 rows. Therefore, these representations are 
irreducible. The representations containing M + 1 or more 
rows but less than N + 1 columns have a clearly unique 
maximal representation, and similarly there is a unique 
minimal representation with the roles of Nand M inter
changed. Thus, these are also irreducible representations. 
There remain the representations containing N + 1 or more 
rows and columns. For such representations, if we set all 
fermions inSA equal to zero the SU(N) Young tableau of the 
same shape vanishes. Similarly if all bosons in SA are set 
equal to zero the SU(M) reflected Young tableaux vanishes. 
Therefore, the maximal and minimal representations cannot 
be directly obtained from the supertableau. We must now try 
to determine them by decomposing the superrepresentation 
to SU(N)XSU(M)XU(I) and finding the components with 
maximum and minimum values of the U( 1) quantum num
ber. If the maximal representations obtained in this way are 
unique then the superrepresentation will be irreducible. In 
each case in which we are able to perform these operations 
we found that indeed the maximal representations were 
unique. Thus, we believe that all the representations we dis
cussed (including mixed cases) satisfy this property. Howev
er, at this point we do not have a rigorous proof of this last 
point. When this is established it will complete the proof of 
irreducibility of all the representations we have discussed. 
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Incompressible fluid turbulence at large Reynolds numbers: Theoretical 
basis for the t- 1 decay law and the form of the longitudinal correlation 
function 
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Approximately valid for large values of the time t, a formal solution to the Hopf if> equation is 
obtained here as an asymptotic power series in t - I. This approximate solution is directly 
applicable to grid-generated isotropic homogeneous turbulence at large Reynolds numbers 
during the initial (inertial-force dominated) period of decay; thus, the solution accounts for the 
observed t -I decay law and the fact that the longitudinal correlation functionfis independent oft. 
It is observed that the longitudinal correlation function measured by Frenkiel, Klebanoff, and 
Huang is consistent with the theoretical asymptotic behaviorf=(const)r- 3 as r-+oo and fitted by 
the expressionf = [1 + 0.770(r/M)]-3, where M is the grid mesh length and the separation 
distance r is greater than the Taylor microscale (IOvt )1/2. Interestingly enough, this form for the 
longitudinal correlation function is shown to be derivable from a variational principle. 

PACS numbers: 47.25.Cg, 47.10 + g, 47.30. + s 

I. INTRODUCTION 
Letu = [ul(x,t), U2(X,t), u3(x,t)] denote the velocity field 

of an incompressible fluid governed by the Navier-Stokes 
equation 

(1 ) 

in which v, p are positive constants. For boundary-free flow 
with x = (X I,X2,X3 ) in R 3, the incompressibility condition 
V·u = 0 can be used to eliminate the pressure term from (1); 
the resulting integro-differential equation 

au 2 
- = - (u·Vut + vV u=Q(u) 
at 

(2) 

features the transverse (solenoidal) part of the inertial term, 
where for any vector field in R 3, 

vtr(x)=v(x) - V{V- 2 [V.v(x)]} 

===v(x) + -V d 3X'. 
1 f V.v(x') 

41T Ix -x'i 
(3) 

A statistical state of incompressible fluid turbulence is 
described by a Gibbsian ensemble of solenoidal velocity 
fields that evolve dynamically according to (2). All equal
time multipoint velocity correlation tensors are contained in 
the complex-valued Fourier transform of the probability 
measure, the Hopf characteristic functional I 

if> (y,t)=== 1 + zf (uj(x',t )Yj(x') d 3X' 

- !f (uj(x',t )uk(x",t )Yj(x')Ydx ") d 3X' d 3X" 

- ~ f (uj(x',t )u k (x" ,t )ul(x"',t) 

XYj (X')Yk (X")yl (x"') d 3X' d 3X" d 3X'" + .... (4) 

In Eq. (4), the real parameter field Y = [YI(X), h(X), Y3(X)] is 

·'This work was supported by NASA grant NAG 1-1 10. 

required to be continuous, differentiable and in L 2(R3) (i.e., 

liY11 2= f y.y d 3X < 00) but is otherwise arbitrary and dispos

able. Since the correlation tensors inherit the solenoidal 
quality of u, the characteristic functional depends exclusive
lyon the transverse part of y: if> [y,t ] = if> [ytr,t]. The reality 
and non-negativity of the normalized probability measure 
implies that if> [y,t ]*=if> [ - y,t] and I if> [y,t] I < 1. Further
more, since all u satisfy Eq. (2), it follows that if> satisfies the 
time-evolution equation derived by Hopfl 

aif> = ifY (x)Q (-. _0_) d 3x if> 
at }) 10Y(X) 

f( ' tr() 0 V oif> = IY· x --- k--
J 0Yk(X) SYj(X) 

+ VYj(X)V2~) d 3X, 
oYj(x) 

(5) 

in which 0 /SYj(x) denotes the Volterra functional deriva
tive2 with respect to Yj(x). 

The if> equation [Eq. (5)] puts the theoretical problem of 
incompressible fluid turbulence in a nutshell: To determine 
all experimentally measurable velocity correlation tensors 
embodied by definition in Eq. (4), obtain the physically rel
evant solution to the single functional differential Eq. (5). 

II. FORMAL ASYMPTOTIC SERIES SOLUTION TO if> 

EQUATION 
Suppose that the desired solution to Eq. (5) depends 

parametrically on the constant velocity parameter U and the 
constant length parameter M, quantities associated with the 
turbulence-generating mechanism. Then for values of the 
time such that t>(M / U), the characteristic functional is giv
en to order t - IN - I) (units U = M = 1) 1;ly the asymptotic 
power series in t - I 

N-2 
if> = 1 + I n!t -In+I)(ilv t- n - 2r+O(t -N), (6) 

n=O 
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in which there appears the linear operator 

fl,,= - ijYY(X)_8_Vk_8_d3x 
8ydx) 8Yj(x) 

- vjYj(X)V2_
8_ d 3X, 

8Yj(x) 
(7) 

and where the functional r = r (y)==r (ytr) is independent of 
t and satisfies the condition 

(fl,,)'V - Ir = o. 

To see this, observe that Eq. (5) becomes 

a<l> Tt+ flv<l> =0 

(8) 

(9) 

in terms of the definition in Eq. (7). The left-hand side ofEq. 
(9) works out to yield 

aa~ +fl,,<I>=O(t --N) (10) 

by direct substitution of Eq. (6) and use of the condition in 
Eq. (8). Hence, by virtue ofEq. (10), the <I> equation [Eq. (9)] 
is satisfied to order t- IN - II by the asymptotic series in Eq. 
(6), thereby confirming validity of the latter asymptotic se
ries in powers of t - I. 

From Eq. (6) one obtains the N-term approximation for 
the characteristic functional 

N-2 
<1>95.1 + 2: n!t - In + II(fl,,)N .. n 2r (11 ) 

n=O 

for sufficiently large values of t. The optimum choice for the 
disposable integer N depends on the solution to Eq. (8) for r 
and the practical computational complexities that enter for 
large values of N. For t ranging from 20 to 40 [as is custom
ary in wind and water tunnel measurements for the initial 
period ofdecay,1-5 where (t + 10) is the approximate distance 
downstream from the turbulence-generating grid in units 
U = M = 1], the numerical coefficient n! t - In + II is of order 
10-5 for n = 3, and thus the asymptotic series in Eq. (11) 
with N = 4 would ordinarily be quite adequate in practical 
applications. 

A suitable functional r = r (y) must be prescribed in 
accordance with Eq. (8) in order to make Eq. (11) an explicit
ly useful approximate solution. Consider an ansatz of the 
Nth order polynomial form 

(12) 

in which the ,,(MI'S are totally symmetric and solenoidal ten
sors. Because the first integral operator in Eq. (7) reduces the 
homogeneity order of a functional of y by one while the sec
ond integral operator leaves the homogeneity order un
changed, Eq. (12) produces another N th order polynomial in 
yon the left-hand side of Eq. (8), and thus Eq. (8) provides 
precisely N tensorial conditions on the N y'MI'S. In the im
portant special case treated below, the latter N conditions 
are all satisfied identically. 
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III. APPROXIMATE SOLUTION FOR GRID-GENERATED 
ISOTROPIC HOMOGENEOUS TURBULENCE AT LARGE 
REYNOLDS NUMBERS 

In cases for which the turbulence is homogeneous and 
isotropic in space, the probability measure over the Gibbsian 
ensemble is invariant under translations and rotations of the 
spatial coordinates in a Galilean frame for which the mean 
velocity vanishes, (u(x,t) = O. Moreover, isotropy, homo
geneity, and incompressibility imply that the quadratic ve
locity correlation tensor has the generic form' 

(uj(x' ,t )u k (x" ,t) 

= u2(t)f(1 +.!... a.f\8jk _ ~ alXjXk] l 2 a-;') 2r ar 

=~U2(t)(8jk _ a
2 

V- 2
) (3/+,at\, (13) 

aXj ax k a-;') 

where u2(t )=(ul(x,t )2), Xj x; - x)" r (XkX, )112, and the 
longitudinal correlation lunction I = I(r,t ) is normalized to 
give/(O,t )= 1. The final member ofEq. (13) equals the second 
because 

(14) 

as verified by applying V2 = r- 2(alar)r(alar) to both sides. 
Hence, the quadratic term in Eq. (4) is expressible as 

<I> 121 = - !U2(t)f (31 + rt,) y'f(X') . y(x")d Vd 'x"( 15) 

by substituting the final member ofEq. (13) into Eq. (4). 
Experiments give the empirical t - I decay law l 

u 2(t) = UM lat (16) 

for the initial period of grid-generated isotropic homogen
eous turbulence at large Reynolds numbers, where U de
notes the mean fluid flow speed, M denotes the grid mesh 
length, and a is an absolute numerical constant (of order 102

, 

depending on the Reynolds number UM Iv). In view ofEqs. 
(15) and (16), the characteristic functional Eq. (4) becomes 

<I> (y,t) = 1 - UMf(31 + ,al\ ytf (x') 
4at a-;') 

·y(x") d 'x'd 'x" + 0 (yl). (17) 

Now although the semilinear integro-differential Na
vier-Stokes equation [Eq. (2)] is parabolic (with the highest
order x derivatives of u appearing in the viscous-force term 
vV 2u), the Hopf equation [Eq. (5)] is "hyperbolic" in the 
sense that the highest-order functional derivatives of <I> ap
pear in the inertial-force term. Thus, owing to the subordi
nate differential structure of the viscous-force term, Eq. (51 
can be expected to admit physically relevant solutions which 
are continuous and analytic in the parameter l' about v = O. 
It follows that the inviscid (v = 0) specialization ofEq. (11) 
ought to apply to inertial-force dominated varieties ofturbu
lence at large Reynolds numbers. Consider, in particular, 
grid-generated isotropic homogeneous turbulence during 
the initial period of decay and at large grid Reynolds num
bers, i.e., such that v < UM X 10- 4. Then Eq. (17) and the 
v--O limit of Eq. (11) are in natural correspondence if/is 
independent of t and the terms of order to t I are equal, viz., 
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(no)N- 2r = _ UMf(3/ + ,a[\."lf (x') 
4a a---;'Y 

:y(X") d 3x 'd 'X". ( 18) 

Indeed, experiments have shown that/is independent of t 
during the initial period of decay at large Reynolds numbers 
[see Appendix A, Eq. (AS)]. Furthermore, Eq. (18) is consis
tent with Eq. (8), as seen by applying 

no = - ifYJ'(X)-_O-Vk-O-d3x 
OYk (x) oYj(x) 

(19) 

to both sides of Eq. (18) and observing that 

_O-vk- O-f(3/ + ra.f\ylf(x') ·y(x")d 3x'd 3x" 
0Yk(X) oYj(x) a---;'; 

= 2f[v k (3/ + ,all , ) I o;~ (x - x') d 3X '==,=0, 
a-;') r = Ix -- x I 

(20) 

where o;~ (X)=OjkO(X) - Vj V k V- 2o(x) is the transverse part 
of the three-dimensional Dirac function. Because the inte
gral operator [Eq. (19)] reduces the homogeneity order of a 
functional of y by 1, the operator (no)N - 2 reduces the homo
geneity-order by (N - 2). Thus, the functional of homo gene
ity-order two on the right-hand side of Eq. (18) is obtainable 
from the single-term specialization ofEq. (12) 

r -- N) X ".x (i)Nf 
- N! r)"'1,( ili' , IN) 

XYi, (XII} )"'YiN (XIN ;) d 'xlll .. ·d 'XIN )' (21) 

Here yiN) is invariant under the Euclidean group of spatial 
rotations and translations, in addition to being totally sym
metric and solenoidal. By comparison with Eq. (4) one 
obtains 

<uj , (XIII )",uj , (X INi » 

= (N - 2)lt - IN - I)r)~t (XIII',,,,XIVI) (22) 

from the term in Eq. (11) with n = N - 2. Moreover, the n
point velocity correlation tensor for n < N is proportional to 
t - In - II times a (contracted, confluenced, and differentiat
ed) concomitant of yiN), according to Eqs. (4), (11), (19), and 
(21). That the triple velocity correlation tensor decays as t - 2 

during the initial period is consistent with the Karman
Howarth equation for/independent of t (see Appendix B), In 
fact, the connection between the n-point and (n + I)-point 
velocity correlation tensors [implied by the iterated operator 
(n,,)N - n - 2 in Eq, (11)] can be viewed as a suitably general
ized version of the Karman-Howarth connection-equation 
between the quadratic and triple velocity correlation 
tensors, 

Hence, the experimentally confirmed solution for grid
generated isotropic homogeneous turbulence is given by Eq. 
(11) with v = 0 for the initial period of decay at large grid 
Reynolds numbers. In turn, this provides a theoretical expla
nation for the observed t - I decay law [Eq. (16)] and the fact 
that/is independent of t. The N-point tensor yiN) in Eq. (21) 
remains disposable (modulo required symmetry), and thus 
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an additional statistical condition is required to fix the form 
of the longitudinal correlation function/in Eq. (17). 

IV. VARIATIONAL PRINCIPLE FOR THE 
LONGITUDINAL CORRELATION FUNCTION 

Consider the functional 

on the non-negative longitudinal correlation function 

(23) 

f = fir), where a in Eq. (23) denotes an adjustable positive 
numerical constant and M is the grid mesh-length constant. 
During the initial period of decay at large Reynolds num
bers, the form of/is such that ~ (f) defined by Eq. (23) is a 
minimum. That is, the observed longitudinal correlation 
function is derivable from the variational principle 

o~(f)=~(f + 8f) - ~(f) = 0, (24) 

in which o/vanishes at r = 0 and 00 but is an otherwise 
arbitrary continuous small variation, and admissible/satisfy 
the normalization condition/(O) = 1 and the generally re
quired asymptotic behavior [see (A4) in Appendix A] 

/(r)==lr- 3 as r--oo (25) 
with 1 denoting a positive constant. 

Proof 0/ Eq. (24): The Euler-Lagrange equation equiva
lent to Eq. (24) follows from Eq. (23) as 

-d'i +a2M- 2r- 1 =0 (26) 
d? 

and admits the first integral 

(~~2 = 2aM- 2px (27) 

with the constant of integration equal to zero by virtue of the 
boundary condition f( 00 ) = O. Substitution of the required 
asymptotic form [Eq. (25)] into Eq. (27) shows that a = i, 
and hence the square root of Eq. (27) is 

d, = ± (41',13 Mlf413
• (28) 

With the minus sign required in order to satisfy both bound
ary conditions, the admissible solution to Eq. (28) is 

/ = [1 + (4/3v3)(rIM)] - 3 

= [1 + (0.7698) (riM)] -3, (29) 

a result in close agreement with experimental data [see (A5) 
and the discussion in Appendix AJ. 

Therefore, the variational principle in Eq. (24), with 
a = ~ in the integral in Eq. (23), is confirmed by experimental 
observation. One would expect that this variational principle 
arises physically from the (nondissipative) transfer of energy 
to higher wave-number components of the flow by the non
linear inertial force, and this is indeed a matter for future 
investigation. 

APPENDIX A: FORM OF THE LONGITUDINAL 
CORRELATION FUNCTION DURING THE INITIAL 
PERIOD OF DECAY 

The existence of a normalized probability measure 
which varies continuously over velocity fields implies that 
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TABLE I. Comparison of experimental values for the longitudinal correlation function [Ref. 4. Fig. 2,f = R (rIU)) with values given by Eq. (AS). 

riM 
J(Ref.6) 
J[Eq. (AS)] 

o 0.\0 
1 0.80 

0.800 

0.20 
0.65 
0.65\ 

0.30 
0.52 
0.536 

0.40 
0.45 
0.447 

0.60 
0.32 
0.320 

quantity (4) satisfies the Fourier interference inequality l.6 

I cJ> [y ,t ] I < 1 for all admissible y such that ytr # 0 (or equiv
alently, such that Icurlyl #0). Clearly, this requires Eq. (15) 
to be finite and negative definite in if, since 
[cJ>(y,t) - 1 - cJ>(2l] = o (lIi'li 3) for parameter fields with IIi' 
II sufficiently small in magnitude. The r dependence infin
volves a physical decay distance L, which is either the mesh 
length M or the Taylor microscale3 A in the case of grid
generated turbulence. Hence, for a parameter field that is 
quasiconstant over the distance L [i.e., (Vi': Vi') <L - Zytr ·if 

for all x], Eq. (15) becomes 

cJ>(2l~ -1TU 2(t)I(t)fi '(X"1'Y(X")d 3x", (AI) 

in which 

I(t)==_1 f(3f +/,f\d 3x= {""(3f +r
a
l'\rdr 

41T a~} )0 a~} 

= -(~f)dr= lim [rf(r,t)]. i""a 
o ar r_oo 

(A2) 

The latter quantity (A2) must be finite and positive in (AI) 
since 

f yl'(x") . y(x") d 3X" = Ilyl'1I2 (A3) 

is positive definite ini'. Therefore, the final member of (A2) 
requires the asymptotic form 

f(r,t )==I(t )r-3 as r--+oo (A4) 

with I (t ) finite and positive. 
An immediate consequence ofthe general result (A4) is 

that the formal Loitsyansky invariant 100 

l:t(r,t )dris adiver

gent integral, as conjectured many years ago by Birkhoff.7 

From the nonexistence of the Loitsyansky invariant it fol
lows3•7 that the energy spectrum E (K,t) cannot be expanded 
as a power series in the wavenumber K about K = O. Hence, it 
cannot be demonstrated by power series analysis3 that the 
large eddies (i.e., small K flow components) retain their initial 
amplitude and store of energy during the decay of the 
turbulence. 

To check the consistency of (A4) with experiment, con
sider the initial period measurements of Frenkiel et a/.4 at 

TABLE II. Comparison of experimental estimates for - k [Ref. 4, Fig. 3, 
wind tunnel data having t~38.5 (M IU) and a = 74.1] with values given by 

Eq. (BS). 

riM 0 0.30 0.60 0.80 1.00 1.20 1.40 1.60 1.80 

- k(Ref. 
6) 0 0.037 0.047 0.048 0.047 0.044 0.036 0.030 0.026 

- k[Eq. 
0.037 \BS)] 0 0.045 0.053 0.053 0.050 0.047 0.043 0.040 
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LOO 
0.19 
0.180 

1.60 
0.09 
0.090 

2.00 
0.06 
0.061 

2.40 
0.04 
0.043 

2.80 
0.03 
0.032 

3.20 
.02-.03 
0.024 

Reynolds numbers UM I v from 12 800 to 81 000 and typical 
turbulence levels ulU ~0.02 in air and water, with U denot
ing the mean fluid flow speed. There is a beautiful universal
ity to this experimental data for values of r greater than the 
Taylor microscaleA = (IOvt )1/2, sincef(~R (rIU) by Tay
lor's equivalence approximationS with R (h ) as shown in Fig. 
2 of Ref. 6] is observed to be independent of t and to depend 
exclusively on the dimensionless geometrical ratio (riM). 
Table I shows that 

f(r,t) = [1 + 0.770(rIM)]-3 (AS) 

is a valid representation of the data for r > A ( ~ O.OSM). 
Clearly, the theoretical result (A4) is consistent with formula 
(AS) for the initial period at large Reynolds numbers,8 and in 
this case one finds that I (t ) = 2.19 M 3. As shown in Sec. IV, 
the form (AS) is derivable from Eq. (23) and the variational 
principle Eq. (24), in combination with (A4) and the normal
ization conditionf(O,t) = 1. 

APPENDIX B: CONSISTENCY WITH THE KARMAN
HOWARTH EQUATION 

For values of r greater than the Taylor microscale A, the 
viscous-force term is relatively negligible and thus the Kar
man-Howarth equation3

•
7
,9 becomes 

a 
-[u2(t if] ~K (r,t). 
at 

(Bl) 

Here u2(t) andfare as defined in Eq. (13), and K (r,t) appears 
in the contracted and confluenced triple velocity correlation 
tensor 

(udx',t )uj(x" ,tjudx" ,t J>=1K (r,t J (x; - xn, (B2) 

in which r==lx' - x" I. By virtue of the initial period decay 
law [Eq. (16)] andfbeing independent of t, (Bl) implies that 

K(r,t)~ - UMflat 2 (B3) 

for r> A = (lOvt )1/2. Hence, the triple velocity correlation 
tensor (B2) decays as t -2 during the initial period at large 
Reynolds numbers. 

The relation (B3) can be checked against experimental 
data. Introducing the auxiliary scalar function k = k (r,t ) 
which satisfies (see Ref. 3, pp. 53 and 100) 

K(r,t)= [U 2(t)j'/2(ak +~k) (B4) ar r 

and making use of Eqs. (16), (BJ), and (AS), one obtains 

_ k (r,t) ~ (_a_)1/2 r- 4 r s4j(s)ds 
UMt Jo 
~+(aS01/2 (~)[ 1+ O.770(rIM)]-J. 

(BS) 

In view of the experimental definition4 and Taylor's equiv-
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alence approximation,5 the left-hand side of(BS) is roughly 
equal to the third-order correlation function in time, 

- k (r,t )-:::::::.9P 2·'(h) for r = Uh, (B6) 

although with an accuracy significantly less than that in the 
Taylor approximationf~R (rlU) above (AS) [because the 
third-order correlation function on the right-hand side of 
(B6) is the difference between two experimentally measured 
quantities of the same sign and nearly-equal magnitudes]. 
Table II shows the - k values given by (B6) and wind tunnel 
measurements [Fig. 3 of Ref. 4, with t~38.S(M IU) and 
a = 74.1] along with the corresponding theoretical values 
given by the final member of (B5). In Table II, the approxi
mate agreement to two places beyond the decimal point is 
within the expected accuracy. Hence, (B3) is corroborated 
provisionally by experiment. 
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Convex covariant entropy density, symmetric conservative form, and shock 
waves in relativistic magnetohydrodynamics 

Tommaso Ruggeri and Alberto Strumia 
Istituto di Matematica Applicata, Universitd di Bologna, Via Vallescura 2, 40136 Bologna, Italy 

(Received 3 December 1980; accepted for publication 20 February 1981) 

The system of conservation laws governing the relativistic magnetohydrodynamics (MHD) is 
shown to possess a covariant entropy density which is a convex function of suitable field variables. 
Therefore, the results of a general theory developed in a previous paper hold and in particular: (a) 
there exists a mainjield such that the system exhibits a conservative symmetric hyperbolic form, 
in the sense of Friedrichs, and therefore the local Cauchy problem is well posed in a Sobolev space 
H S (s;;;.4); (b) the entropy increases across a shock wave front; (c) the shock propagation velocities 
do not exceed the speed oflight; (d) the jump of thermodynamic entropy determines the jumps of 
each field variable. 

PACS numbers: 52.30. + N, 52.60. + h, 04.20.Me, 52.25. Kn 

1. THE EQUATIONS OF RELATIVISTIC 
MAGNETOHYDRODYNAMICS 

Let (R 4,g) be a given Minkowskian space-time, whereg 
is the flat metric, x a point belonging to R 4 and xC< 
(a = 0,1,2,3) pseudocartesian coordinates of x. We denote 
by gaf3 the components of g-diag( + 1, - 1, - 1, - 1). 

The system of equations governing a perfectly conduc
tor-relativistic plasma form a set of covariant laws (see, e.g., 
Ref. 1): 

aa TaP = 0, (energy-momentum conservation), (1.1) 

aa (rua) = 0, (matter conservation), (1.2) 

aa(uaBP - uPB a) = 0, (Maxwell equations), (1.3) 

where aa = a/axa. The energy-momentum tensor has 
components 

T ap - Tap + TaP 
- fluid mag' 

with 

( 1.4) 

T~~id = rfuauP - pgaP, (fluid energy-momentum tensor), 
(1.5) 

T::!g = B 2(UaUP - ~P) - B aB{3, (magnetic coupling). 
(1.6) 

As usual r is the rest matter density,fthe index of the fluid, 

rf=p +p, (1.7) 

P is the proper energy density, p the pressure, and ua the unit 
4-velocity oriented towards the future, so that 

(1.8) 

B" = fJt)I/2Ha, with,u > 0 the (constant) magnetic perme
ability, and H a the proper magnetic field 4-vector (space
like). Furthermore, 

and the speed of light is equal to unity. 

( 1.9) 

(1.10) 

Now we must point out that the compact form (1.3) of 
the covariant Maxwell equations prevents us from following 
directly the way shown in Ref. 2, because of the presence of 

the 4-vector B a, the components of which are not indepen
dent variables because of the constraints (1.1 0). We shall 
overcome the difficulty without losing the explicit covar
iance of the equations by employing an orthonormalized tet
rad formed by constant congruences. Let Is",; ~J,I = 1,2,3 
be our set of congruences such that 

gaPS as {3 = 1, (timelike), 

g,,{3;~;~ = - t>m (spacelike), 

ga{3S a; f = 0, 

a{3Sa = 0, 

a{3(;~ = 0 (I,J = 1,2,3). 

( 1.11) 

For any 4-vector va we may define the invariant scalar com
ponents with respect to the congruences through the 
relations 

v = VaSa, VI = Va(;~' va = VS" + VI;~, (1.12) 

(it is easily found that VI = - VI). 
Taking into account the definition (1.12) and introduc

ing the operators 

aT=Saaa' al=;~aa' T=Sa xa, XI=;~Xa' 

(1.13) 

we can separate the components of(1.3) without losing co
variance. When we project (1.3) on Sa we gain the divergence 
equation 

a/(ulb - b IU) = O. (1.14) 

This is not a propagation equation since it does not in
volve time, but it represents a constraint that we shall verify 
holds at any time T if it is fulfilled at T = O. Therefore ( 1.14) 
will not be taken into account when we consider the hyper
bolic system of wave equations. 

While projecting (1.3) on (; ~ we reach 

aT(ub I _ ulb) + aJ(uJb 1_ ulb J) = 0, 

or equivalently, 

a"M I" =0, Mlct=u"bl-uIB". 

.\pplying al to (1.15) we obtain, 

(1.15) 

(1.16) 
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aT I al(bu l - ub III = 0, 

i.e., the condition that ensures us that Eq. (1.14) is fulfilled at 
any time T if it holds at T = 0. The procedure adopted is a 
covariant extension of that followed when one considers the 
divergence and curl equations of electrodynamics in a spe
cial frame. The previous procedure has been performed in 
special relativity for the sake of simplicity and clarity, but it 
could be of interest to investigate under which assumptions 
it may be extended to general relativity. 

Now the hyperbolic system (1.1), (1.2), and (1.16) is a set 
of eight independent wave equations for eight independent 
unknowns, in the conservative form 

Ta(3 

a"F' =f; F'== ru" , f=O, (fJ=0,1,2,3;I= 1,2,3). 
Mia 

(1.17) 

Now following Ref. 2 we may choose as a field variable 

r a (3s" 

ru (1.18) 

ub 1_ ulb 

the components of which are eight independent variables, 
unknowns of (1.17). 

The adiabatic condition uaaaS = ° arises as a conse
quence of (1.17) and the first principle of thermodynamics: 

rdf= rOdS + dp, (1.19) 

and through (1.2) we have the supplementary conservation 
law 

(1.20) 

S being the entropy per mass unit of the plasma and 0 the 
absolute temperature. 

2. OUTLINES OF THE GENERAL THEORY 

In the previous section we have seen that the hyperbolic 
system governing relativistic MHD is a set of covariant con
servative forms (1.17) possessing a supplementary conserva
tion law (1.20). In Ref. 2 a general theory for such systems 
has been developed, starting from some works by Lax and 
Friedrichs,l Friedrichs,4 Boillat,S Boillat and Ruggeri.6 We 
give a brief outline of the results of that theory. A supple
mentary conservation law (1.20) for a system of type (1.17) 
will exist if and only if suitable compatibility conditions 
hold, i.e., there exists a vector U' such that 

V'·8F" = U'·VF'8V=8h "~U·8V = 8h¢:::=::;>U = Vh, (2.1) 

(V = alaV), 

8V denoting a generic variation of V = F"Sa and 

h =h"s". (2.2) 

In Ref. 2 it is assumed that there exists at least one timelike 
covector Sa' independent of the field, such that h is a convex 
function of V in a convex domain Dr:;;;,.R N. Vnder this as
sumption the following have been proved: 

(I) the mapping V........--U' is globally univalent on D. It 
follows that V' can be chosen as a field vector; 
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(2) there exists a 4-vector h ' a defined as 

h 'a = V'.Fa _ h a, (2.3) 

such that F' = V'h 'a, (V' = a/aU), that is to say, the sys
tem (1.17) becomes symmetric hyperbolic and preserves the 
conservative form, when V'is chosen as field variable, i.e., 

LV' = f, L = V'V'h ,aaa' (2.4) 

Then the Cauchy problem is well posed in Sobolev space H·j

, 

(s>4) in a neighborhood of the initial manifold. 7 Moreover it 
has been pointed out that for physical systems U' seems to be 
a privileged field not only from a mathematical point of view, 
but also for physical reasons. This is why we called it the 
main field. 2 h 'a, considered as a function ofU, generates the 
differential operator Land therfore we called it the 4-vector 
generating function of the system. 

(3) If r is a non characteristic shock manifold in space
time, of the Cartesian equation <p(xa) = 0, <PEe 2

, the 
function 

(2.5) 

(<Pa = aa <P and [ J denoting the jump) defined on ris non
vanishing. In fluid dynamics this circumstance is equivalent 
to the increasing of the thermodynamic entropy across the 
shock. 

(4) If 1] is known as a function of the unperturbed field 
V. and <Pa , then the jump of each component ofU' is 
determined. 

(5) If the characteristic manifolds are time- or lightlike 
also, the shock manifolds are such. 

The aim ofthe present paper is to prove the convexity of 
the function h for relativistic MHD, a condition that is suffi
cient to ensure that the five important properties mentioned 
hold. 

3. CONVEXITY OF THE COVARIANT DENSITY h IN MHO 
Our goal is to prove the convexity of 

h = h aSa = - rSu, (3.1) 

as a function of the field V defined by (1.18). The first step is 
to evaluate the main field U'. Taking into account the first 
principle of thermodynamics (1.19) it has been shown else
where2 that for the fluid 

G being the free enthalpy, 

G=f- 8S- 1, 

dG = - Sd8 + (l/r)dp. 

From (1.4) and (3.2) we have 

08( - rSu) = - uuo(Tu(3S(3) + (G + 1)8(ru) 

+ uac5(T~gS(3)' 
But from (1.6), (1.8), (1.9), and (1.10) one obtains 

ua(T~gS(3) = - Bu8(uBa - uab), 

and through the decomposition (1.12), 

uac5(T~gS(3) = - bl 8(ub I - u1b). 

T, Ruggeri and A. Strumia 
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On introducing (3.6) into (3.5) and taking account of the 
compatibility conditions (2.1) and of (1.18) we arrive at 

- Ua. 

U'=~ G + 1, a = 0,1,2,3; 1= 1,2,3. (3.7) 
o - bl 

It is remarkable that in this case the components of U' 
are physical observables of major importance. In fact the 
first block of five variables is the same as the fluid and indi
viduates the velocity of the plasma, the thermodynamic 
quantities 1/0 and (G + 1)/0. In continuum mechanics 110 
plays an important role, which Muller called coldnesss: it 
appears as an integratingfactor in order that the rhs in (3.4) is 
an exact differential. The thermal potential (G + 1)/0 is also 
a quantity of prime importance, e.g., in the kinetic theory of 
the simple relativistic gas, as illustrated in the paper by W. 
lsrael.<> It was first introduced by Landau and Liftshitz to 
generalize the Fourier equation for a relativistic fluid con
ductor of heat. 10 The three variables in the second block 
represent the components of the magnetic field on the space 
platform and are also observables of the system. 

The last step is to prove the convexity of h = h as a' i.e., 
that there exists at least one covector Sa such that 

(3.8) 

Since with the field choice (1.18), U' = V' h for (2.1). 
then (3.8) is equal to 

Q=oU'·oU>O, 'VoU#O (3.9) 

From direct computation we have 

Q = o( - u,jO )O(T~~idS(3 + Tc;:.gS(3) + 8 [(G + 1)/0 J8(ru) 

+ 8( - bIle )8(ub I - ulb). 

Let Qf1uid be the quadratic form corresponding to (3.9) for the 
uncharged ftuid. 2 Then (3.9) looks like 

Q = QOuid - [8UCL8(T~gS{J) + 8bl 8(ub 1_ ulb )l!0 

+ oe! ua8(T~g5'fj) + b{8(ub 1_ u1b ll/02. 

The last term in the rhs vanishes due to (3.6); taking into 
account (1.8) and (1.10) after some calculations which do not 
involve conceptual trouble, one obtains 

OQ = eQf1uid - uB 28ua 8u" - u8B "8B" - 2B "8B"ou 

+ 2b8u"8B". (3.10) 

Since Q, Qfluid are covariant scalars and we are interest
ed in the signature of Q, which is independent of the frame, 
we shall put ourselves in the rest frame of the fluid y'. In Y', 
I u" I = [ (0 I and 8uo = 0, since uCl8u" = 0 for (1. 8). Then 
u=So {ju"{ju = -(8ilf,B()=Ofor(I.IOJand 
oB (I = 'S,oil, Ji'l ~j2, 8u = - foil, 8b = - f8B, 

b = B "s" = - B·s· 
Therefore in Y' Eq. (3.10) becomes 

o (Q - Qf1uid) = uB 2(8itf - u(B.8il)2 - 2b8il.oB 

- 2(B.8B) (f.8il) + u(8B)2. (3.11) 

If B = 0 and 8B #0 the rhs is positive. Then there remains to 
be examined the case B #0. We have to study the quadratic 
form of the vector (8il,8B) of the coefficient matrix 
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r:/=jjU(B 2
/ -B®!) 

. - - (bI + B ® S ) 
where I denotes the 3 X 3 identity matrix and ® the tensor 
product. The matrix is symmetric and its six real eigenvalues 
are easily evaluable. They are lUI = U, W2 = B 2 (u - 1); w] 

andw4 are the roots ofw2 
- u (B 2 + l)w + B 2 = O;w,andw" 

are the roots of w 2 
- u(B 2 + 1) lU + u18 2 - b 2 = O. Since 

u> 1 it follows that WI' wz, w,' and W 4 are positiv~.~lso (I)., 
" . °B ) b 7 °B 7 (B [:-)2 and w( are posItive SInce u- - - - = u~ - - .~ 

1 -+ --+" -, ---...., h 
>B2(u 2 -s- 2»Oforl =5'as" =s-g -S-=u--s-·T en 
.w is positive definite and the rhs in (3.11) becomes positive. 
It follows that Q>Qf1uid and the conditions implying convex
ity in the fluid case are enough also for MHO. 

The conditions are as follows: 
(i) - G = - G (O,p) must be convex, i.e., 

G 0 (3.12) III! < , 
J = D(GIJ,Gp)ID(O,p) = GSt3 Gpp - (Gop) >0, (3.13) 

where Go = (aG lao )p' Gp = (aG lap)o' These conditions 
are usual in thermodynamics (see, e.g., Ref. 11). 

(ii) The sound velocity must be smaller than that oflight 
in vacuo 

(aplap)s < 1. (3.14) 

Here we want to point out the fact that (3.13) is not indepen
dent since it follows from (3.12) and (3.14).12 In fact from 
(1.19) and (3.3) there result 

dG= -SdO+ Vdp, V= 1/r, 

dp = rOdS - fr2 dV. 

Then, 

D(V,S) 

D(P,S) 

D(Gp,Go) 

Dlp,S) 

(3.15) 

= _ D(Gp.Go ) Dlp,O)=JIGI!(I' 
D(p,e) D(P,S) 

( a
p ) = D (P,S) = DIp,s) D (V,S) = _ Jr2(aV)s 

ap s D(P,s) D(V,S) D(P,S) Jp 

= - fr2J IGIJ(J· 

Therefore if Goo < 0 and (aplap)~. > 1, we have J> O. 
Concluding, if(3.12) and (3.14) hold, h = - rSuus" is a 

convex function ofU in any convex domain D~R,H for any 
unit timelike covector Sa oriented toward the future. In Ref. 
4 the author gives an equivalent proof, under stronger as
sumptions, of the convexity of energy density. He considers 
the energy conservation law instead of entropy as the supple
mentary equation. We point out that even ifit is always pos
sible to interchange the roles of the equations, the physics of 
the shocks requires that the supplementary equation is the 
one that does not fulfil the Rankine-Hugoniot equations and 
generates the function Y/, increasing across the shock. 

4. CONSEQUENCES OF CONVEXITY; CONCLUSION 

As a consequence of the previous proof the system of 
MHO possesses the five properties stated in Sec. 2. In 
particular, 

(1) The system of MHO is a conservati ve symmetric 
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hyperbolic system in the main field U' given by (3.7), with a 
4-vector generating function (2.3) of the form 

h 'a = !(P + !B2)U a + b(bua - uBa))/O, 

and the local Cauchy problem is well posed in H '. The Le
gendre conjugate density 
h' = h wSa = U'·U - h is h ' = u(p + !B 2)10. 

(2) [S] > 0 across the shock manifold when uC;cP a < 0, uC; 
being the 4-velocity of the unperturbed plasma. 

(3) The knowledge of [S] as a function of the unper
turbed field U. and the shock normal CPa are enough to 
determine completely the shock. 

(4) The propagation velocity of MHD shocks never ex
ceeds the speed of light. 

The results (2), (3), and (4) are exactly the same as for the 
fluid since h has the same expression (for proof see Ref. 2). 

The result (4) had already been proved in a different way 
by Lichnerowicz I under the assumptions 7p < 0 and tpp > 0, 
with 7 = 7(P,S) = f fr. The former hypothesis is the same as 
(3.14) while the latter replaces (3.12). 
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The magnetized black hole solutions discovered by Ernst are studied. It is shown that no static 
magnetic-universe Kerr-Newman black holes exist if either a, the Kerr angular momentum 
parameter, or e, the ~lectric c~arge parameter, is nonzero. Robinson's identity is used to prove 
that ~he Schwarzschlld-Melvm black hole solution is the unique static, axisymmetric black hole 
solutlO~ of the sourceless Einstein-Maxwell equations which asymptotically resembles Melvin's 
magnetl~ unive~se. This may be viewed as a generalization ofIsrael's theorem, in which one extra 
assumptIOn (axlsymmetry) is required, but the boundary conditions at infinity are somewhat 
relaxed. 

PACS numbers: 97.60.Lf, 98.80.Dr, 04.20.Jb 

I. INTRODUCTION 

There are two distinct reasons for studying black hole 
solutions in magnetic universes. First, the effects of a cosmo
logical magnetic field on the electromagnetic and metric 
field structure near the black hole's horizon are of possible 
interest to astrophysicists seeking models of black holes in 
astrophysical environments. A cosmological magnetic field 
can represent (near the hole) the externally generated mag
netic field that an astrophysical black hole is likely to be 
immersed in, perhaps driven by currents in an accretion 
disk. Secondly, black holes in magnetic universes are of in
terest because the solutions are not asymptotically flat. Vir
tually all of our intuitions concerning black holes come from 
either the known exact asymptotically fiat solutions, or the 
general theorems of Hawking, Carter, Israel, et al., most of 
which assume asymptotic flatness as a boundary condition. 
Since we have no guarantee that the universe we live in is 
asymptotically flat, it seems worthwhile to attempt to find 
reasonable non-asymptotically-flat black hole solutions to 
the Einstein equations, and to attempt to extend the general 
theorems (or to find counterexamples to them), i.e., to study 
the generic properties of black holes in non-asymptotically
flat spacetimes. 

In this paper, I shall explore some of the uniqueness 
properties of the family of magnetized black hole solutions 
discovered by Ernst I and Ernst and Wild." These solutions 
are generated by applying a Harrison-type transformation.1·4 
to the usual asymptotically flat black hole solutions of the 
Einstein-Maxwell equations. The transformed solutions as
ymptotically resemble stationary cylindrically symmetric 
magnetic universes. One effect of the transformation is to 
turn the three-parameter Kerr-Newman solution" into a 
four-parameter Kerr-Newman-magnetic universe solution. 
Since the new parameter is simply the asymptotic cosmolo
gical magnetic field strength, which, set equal to zero, gives 
back the ordinary Kerr-Newman solution, these metrics 
may be regarded as a generalization of the ordinary 
solutions. 

Section II of this paper reviews the derivation of the 

"'Present address. 

Ernst solutions and sets forth several simple but necessary 
results converning the global nature of the solutions. An ex
plicit prescription is given for extending the local metric 
forms given by Ernst and Wild I." to a global form which has 
a regular symmetry axis (i.e., no cone singularities). Also, 
Ernst and Wild 1.2 have previously noted that the trans
formed black hole solutions asymptotically "resemble Mel
vin's magnetic universe" (MMU).6-<J This statement is made 
somewhat more mathematically precise by showing that the 
transformed Schwarzschild metric does, in a mathematical
ly meaningful way, asymptotically approach MMU, where
as if a or e is nonzero, the asymptotic region appears to be 
some sort of stationary, cylindrically symmetric electromag
netic cosmology, but not precisely MMU. 

Ernst has previously pointed out that placing a nonzero 
electric charge on a black hole in a magnetic universe leads to 
frame-dragging effects, due to the EX B circulating momen
tum fiux in the stress-energy tensor. In Sec. III I show that 
given a nonzero value of e, the electric charge parameter for 
the black hole, there is no way to adjust a, the Kerr angular 
momentum parameter, so as to yield a static solution where
in the two sorts of frame dragging would exactly cancel. 
Thus, the only static magnetic universe black hole solution 
obtainable by Harrison-transforming an asymptotically fiat 
black hole solution is the Schwarzschild-Melvin solution. 

The awkwardness of the previous sentence leads us to 
an obvious question: Are there other stationary axisymmet
ric magnetic universe black holes, or does the unique set of 
asymptotically fiat black hole solutions transform into a 
unique set of magnetic universe black hole solutions? In Sec. 
IV I take a small step towards answering this query by using 
Robinson's identitylO to prove that the Schwarzschild-Mel
vin solution is the unique static axisymmetric asymptotically 
Melvin's magnetic universe black hole solution to the Ein
stein-Maxwell equations. This uniqueness theorem also re
presents the first attempt to extend the black hole uniqueness 
theorems of Israel, Carter, Robinson, et al. II by relaxing the 
boundary conditions at infinity. 

II. REVIEW AND PRELIMINARIES 

The Ernst solutions are generated by means of a Harri-
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son-type transformation3
.4 applied to the asymptotically flat 

Kerr-Newman black hole metrics. The Kerr-Newman met
ric may be written in the form 

ds2 = ~ ( ~ £1 dt 2 + : + d8 2) 

+ As;28 (diP _ (2Mr;; e
2

)a dt y. (1) 

where 

£1 = r - 2Mr + a2 + e\ 
~ = r + a2cos2e, 

(2) 

(3) 

A = (r2 + a2f - £la2sin28, (4) 

M is the mass of the black hole, a = J / M its specific angular 
momentum, and e is its electric charge. The Kerr-Newman 
metric may also be written in the form 

ds2 =/-I( _ 2P -2 d;d;* +p2 dt 2
) - l(diP - (u dtf (5) 

by identifying 

d; = r- 1/2Gd~2 + id8 ). 

p = £1 1/2sin8, 

P= (A 1/2sin8)-I, 

/= - Asin28 /~, 

w = a(2Mr - e2)/A. 

(6) 

(7) 

(8) 

(9) 

(10) 

The transformation to a magnetic universe is accom
plished by replacing/and win Eq. (5) with new metric func
tions!, and w' which are defined by the following equations: 

!'=IAI- 2f, (11) 

Vw' = IA 12V(U +p/-I(A *VA -AVA *), (12) 

where 

A = 1 + B(/) - !Bif, ( 13) 

B is a constant representing the strength of the cosmological 
magnetic field, and (/) and Ie are the complex Ernst poten
tials 12.13 for Kerr-Newman metric. In the Boyer-Lindquist 
coordinate system of Eq. (1) the Ernst potentials are 

<I> a - ircos8 
= e r + iacos8 ' (14) 

",) __ ( 0 + 2 2Ma + i(2Mr - e
2
)cOs8) . 28 () - r a - a Sin 

r + iacos8 

(4 )1 ., 8) a - ircos8 - lY1a + Ie-cos . 
r + iacos8 

(15) 

The gradient operator in Eq. (12) is defined by 

"_ A 1/2 a . a 
v -,u - +1-. 

ar a8 
( 16) 

Corresponding to the new metric functions!, and w' are new 
complex Ernst potentials for the transformed spacetime. 
The new complex gravitational potential is given by 

(17) 

and the new complex electromagnetic potential is given by 

(/)'=A-I((/)-!BIe). (18) 

The electromagnetic field of the new spacetime may be 
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found from Eq. (18) and the definitions in Ref. 13. 
Since the magnetizing Harrison transformation is a lo

cal transformation of the complex Ernst potentials, one can
not a priori assume that the range of the coordinates in the 
transformed spacetime is the same as in the original space
time. The "local value of rr" for a small circle about the 
symmetry axis of the magnetized Kerr-Newman spacetime 
may be found by expanding goo and g<h<p in powers of 8 [or 
(rr - 8 )]near8 = o [or(rr - e) = 0] using Eqs. (5)-(15) in the 
magnetized metric. In order for the axis to be regular (i.e., 
free of cone singularities), it is necessary that the angular 
coordinate if; of Eqs. (5) and (11) have if; = 0 identified with 
if; = 2rrF (not simply 2rr), where 

F= [1 +~B2e2+2MaeB3+( ~: +M2a2)B4r2.(I9) 

Alternatively, one can define a new angular coordinate 
tf; = if; /Fwhich runs from zero to 2rr. 

As Ernst pointed out in his original paper, I the magne
tizing transformation applied to Minkowski space (i.e., with 
M = a = e = 0) yields the cylindrically symmetric electro
magnetic solution discovered by Bonnor6

•
7 and Melvin,K and 

studied thoroughly by Melvin9 and Thorne, 14 known as 
"Melvin's magnetic universe" (hereafter, MMU). Its metric 
IS 

with 

(21 ) 

The components of the magnetic field, in an orthonormal 
frame, are 

Hi = A -2B, H,; = H,;, = O. (22) 

The magnetized Schwarzschild solution is the easiest of 
the magnetic black hole solutions to study the global proper
ties of, since it is static. Its metric may be written 

d 2 ,[ ( 2Mj , ( 2~ - 1 d " "d8 ,] s = A - - 1 - ---;--) dt - + 1 -~) r + r -

+ A -2r2sin28 dif; 2, (23) 
the orthonormal components of the magnetic field are 

( 

2~1!2 
H, = A -2Bcos8, Hij = - A -2B 1 - --;--) s/;~' 

and 
A = 1 + !B 2r2sin28. (25) 

The global structure of the magnetized Schwarzschild solu
tion is evident from Eq. (23). Any if; = const slice through the 
spacetime gives a three-dimensional spacetime whose metric 
is exactly the Schwarzschild metric multiplied by a simple 
conformal factor. Its radial null geodesics can be identified 
with those of the regular Schwarzschild metric, and its caus
al structure and Penrose diagram are the same as the B = 0 
Schwarzschild case. Thus we see that the magnetized 
Schwarzschild solution is, in terms of the usual definitions, a 
black hole, with an event horizon and trapped surfaces. 

It is not so easy to determine the causal structure of the 
other magnetized black hole solutions, as they are only sta-
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tionary. The complexity of the metrics has prevented me 
from analyzing their global structure; it is natural to assume 
that they represent black holes in magnetic universes, but it 
should be emphasized that it has not been shown that the 
magnetized Kerr-Newman solution with a or e nonzero is in 
fact a black hole, despite everyone in the literature (including 
this paper) naming it as such. 

It is easy to see that the magnetized Schwarzschild solu
tion is, in a meaningful sense, "asymptotically Melvin's mag
netic universe." The MMU metric may be written in a 
spherical-type coordinate system as 

ds2 = A 1 [ _ dt 2 + dr + r de 2] + A - 2rsin2e deb 2, 

(26) 

where 

rl = p2 + Zl, tane = zip, 

and A is given by Eq. (25). Comparing the spherical form of 
the MMU metric in Eq. (26) with the magnetized Schwarzs
child metric, it is obvious that the magnetized Schwarzschild 
metric approaches the Melvin form as r-+ 00. The magnetic 
field components also asymptotically approach the MMU 
values ofEq. (22). Thus, in the same spirit in which one talks 
about the Kerr-Newman-de Sitter metric, it is meaningful 
to call the magnetized Schwarzschild solution, described by 
Eqs. (23)-(25), the "Schwarzschild-Melvin" solution. 

The obvious next question to ask is whether the more 
general magnetized Kerr-Newman metrics, with a or e non
zero, are in any sense "asymptotically Melvin's magnetic 
uni verse." 

An easy way to see that the magnetized Kerr-Newman 
solutions do not globally approach MMU is to evaluate the 
electric field on the symmetry axis. From Eq. (4.1) of Ref. 2 
we find 

E,(e = 0) = (AA *)-2B 2( ¥ - 2MaB + ~e3B 2 - ~e2MaB' 

_ ( ;~ _ M~a2e)B4} + li(r-I), (27) 

Eii(e= 0) =0, 

where AA * = F 2. Thus the locally measured electric field on 
the symmetry axis in general approaches a constant, nonzero 
value far from the black hole. Since MMU has zero electric 
field, the magnetized Kerr-Newman solution cannot global
ly (i.e., for all e) approach MMU. 

III. NO MAGNETIZED ELECTRICALL V CHARGED 
STATIC BLACK HOLES 

Thus far we have seen that there exists at least one static 
magnetized black hole solution, namely, the Schwarz schild
Melvin solution. One of the most fascinating aspects of the 
magnetized Kerr-Newman black hole solutions is that there 
are two independent sources of rotation and frame-dragging 
in these solutions. The magnetized electrically charged 
Reissner-Nordstrom solution I (a = 0, e#O) is stationary, 
not static, since the nonzero Poynting vector EXB shows 
that there is angular momentum in the electromagnetic field. 
The magnetized Kerr metric2 (a # 0, e = 0) is also stationary. 

Considering the magnetized Kerr-Newman solutions, 
we are led to the tantalizing question of whether there might 
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be some special values of a and e (where both are nonzero) 
such that EXB type frame-dragging exactly cancels the a 

type frame-dragging, leaving a static magnetized Kerr
Newman black hole with both a and e nonzero. In other 
words, are there any static Harrison-transformed Kerr
Newman black holes with both a and e nonzero? 

Such a solution would have Vu/ = 0, where u/ is de
fined by Eq. (12). Since the Reissner-Nordstrom (a = 0) and 
Kerr (e = 0) magnetized solutions are not static, it is clear 
that both a and e must be nonzero in the hypothetical static 
solution, which leads to horrendous complexity in the ex
pression for Vu/. In order to determine whether a#O, e#O 
static magnetized solutions exist, I have computed Vu/ for 
the magnetized Kerr-Newman metric. I will not, however, 
inflict the entire expression on either the journal or the read
ers (I estimate it would fill two to three journal pages). For 
the purposes of this section, it is sufficient to note that 

a{u' = _Ll_{ [_ B 4Macosesine (3 - cos2e) 
ae A 2~ 1 2 

-B'ecosesine ]r" + f'(rIO) + .,. + f(rO)}. 

(28) 

If there exist a # 0, e # 0 static magnetized black holes, 
the coefficient of rll in Eq. (28) must vanish for all e (this 
term will dominate w' at large r). There are clearly no nonze
ro values of e and a which will accomplish this. Thus, the 
Schwarzschild-Melvin solution is unique among the Harri
son-transformed magnetized Kerr-Newman black hole solu
tions in being static with no naked singularities. 

Ifwe make a further assumption, that the only station
ary asymptotically cylindrical magnetic universe black hole 
solutions are the transformed Kerr-Newman solutions, then 
the above proven uniqueness property has an extremely in
teresting consequence. A civilization living near an electri
cally charged black hole in the magnetic universe could ex
tract an infinite amount of energy from it via the Penrose 
process. 15 

If the hole is electrically charged, then either a, e, or 
both are nonzero. So long as the civilization is careful not to 
discharge the black hole, it can never evolve into the a = 0, 
e = 0 static Schwarzschild-Melvin solution. As the civiliza
tion uses the Penrose process to extract energy from the hole, 
a and e will evolve, and the shape and size of the ergosphere 
will change. So long as the black hole maintains its charge, 
the ergosurface can never retract onto the event horizon, and 
there will always be a finite ergosphere from which energy 
can be extracted. Where does this energy come from? It 
seems likely that it is extracted from the cosmological mag
netic field by the charged, rotating black hole. Thus, a 
charged rotating black hole may act as a catalyst for extract
ing energy from what was, in its absence, a static uniform 
magnetic field. 

IV. UNIQUENESS OF THE SCHWARZSCHILD-MELVIN 
SOLUTION 

So far we have seen two ways in which the Schwarzs
child-Melvin black hole is unique among the magnetized 
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Kerr-Newman solutions. First, in Sec. II, we saw that only 
the magnetized Schwarzschild solution asymptotically re
sembles Melvin's magnetic universe. Secondly, in Sec. III, 
we saw that the Schwarzschild-Melvin black hole is the 
unique static magnetized Kerr-Newman black hole solu
tion. 

In this section a different sort of uniqueness is proven 
for the Schwarzschild-Melvin solution. I will show that the 
Schwarzschild-Me1vin black hole solution is the only as
ymptotically MMU static axisymmetric black hole solution 
to the electrovac Einstein-Maxwell equations. 

The difference between the result of Sec. III and the 
result of this section is the set of spacetimes within which 
uniqueness is proven. In Sec. III the set of spacetimes studied 
was the Harrison-transformed Kerr-Newman metrics. In 
this section, the set of spacetimes considered consists of all 
static, axisymmetric, asymptotically Melvin's magnetic uni
verse, electrovac black hole solutions to the Einstein-Max
well equations. 

A precise statement of the theorem is as follows: 
Theorem: The only spacetime which 
(I) is static, 
(2) axisymmetric, 
(3) possesses a regular event horizon (with topology 

S"XR) and axis, 
(4) asymptotically approaches the solution known as 

Melvin's magnetic universe, 
(5) and which satisfies the sourceless (r = 0) Einstein

Maxwell equations is the Schwarzschild-Melvin solution. 
The method of proof is as follows. I first establish a 

lemma proving that any static magnetic spacetime must 
have zero electric field. The Lagrangian density for this 
problem may then be put into a form identical to the Lagran
gian density for the stationary axisymmetric vacuum Ein
stein equations. The divergence identity discovered and used 
by Robinson 10 to prove the uniqueness of the Kerr black hole 
is then applied to the problem at hand (with different bound
ary conditions than in the asymptotically flat case), yielding 
the desired result. I will rely heavily on the techniques, for
malism, and terminology of the asymptotically flat black 
hole uniqueness theorems. 11,16,17 

A few words about the assumptions of the theorem are 
perhaps in order. Since I assume the spacetime is static, the 
assumption ofaxisymmetry is necessary; Hawking's proof 
that "stationary black holes are axisymmetric" I K fails in this 
static limit. In the asymptotically flat case this is got around 
by the method of proving Israel's theorem 19,20: One shows 
that all static asymptotically flat electrovac black holes are 
spherically symmetric, then applies Birkhoff's theorem to 
yield the uniqueness of the Reissner-Nordstrom black hole. 
In the present case the spacetime is asymptotically cylindri
cal; there is no possibility of the black hole spacetime being 
spherically symmetric, and hence the static-implies-spheri
cal theorems developed by Israel for black holes are useless 
here, 

Hawking's proof that the topology of the event horizon 
must be spherical lK does hold here, Assumptions (3) and (4) 
of the theorem simply define the boundary conditions for the 
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spacetimes of interest. 
The spacetime's metric may be written in the form 

ds2 = - V dt 2 + 2W d</Jdt + X d</J 1 + gAB dxAdxB, 
(29) 

where the coordinates f and </J are defined uniquely (up to 
additive constants) by the time translation (k ") and axisym
metry (m ") Killing vector fields, 

f,a k a = </J,,,m" = I, 

f,a m" = </J,a k a = 0, 

(30) 

(31) 

t,["k(Jmy 1= </J,["k(3 my 1= 0, (32) 

A and B run from 2 to 3, and V, X, W, and gAB are functions 
only of Xl and x', 

The vector potential for the electromagnetic field may 
be written 

A = Y dt + IP d</J, (33) 

where Yand IP are again only functions of Xl and x', 
In Ref. 16 it is shown that the specification of the four 

functions X, W, Y, IP is sufficient to completely determine 
the spacetime, In our case, where the spacetime is assumed 
to be static, we already know that 

(34) 

Thus, the spacetimes satisfying Assumptions (1)-(5) of the 
theorem are completely specified by giving the three func
tions X, Y, and IP, which are related through the Einstein
Maxwell equations, 

Reference 16 defines an electromagnetic field to be stat
ic if 

(35) 

This definition requires that all magnetic fields vanish (as 
seen by the static observers). This is clearly an unacceptable 
definition for our purposes, where there is a cosmological 
magnetic field. I will insist only that the electromagnetic 
field be sourceless, 

ja = Fa(J;(J = 0 (36) 

and that the field be only a function of x2 and x" i.e., 

r, = Y.</> = IP" = IP,</> = O. (37) 

It is now necessary to show that the assumption that the 
metric is static actually requires that Y = const (no electric 
fields). 

Lemma: A spacetime satisfying Assumptions (1)-(5) 
has Y = const and hence no electric fields as seen by a static 
observer. 

Proof: Since the metric is static, the rotation vector of 
the time translation Killing vector must vanish 

Sa =!€a(Jyok(JkY;o=O, (38) 

Differentiation of Eq. (38), combined with the usual Killing 
vector-Ricci tensor identity, yields 

(39) 

sinceSa = 0, Using the fact thatR aa = Of or an electro mag
netic field, and noting that k r = 8, y, Eq. (39) implies that 

(40) 
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where i = 1,2,3, (¢,X2,X3). 
It is convenient at this point to switch to orthonormal 

frame components defined by the frame forms 

oi = Vl/ 2 dt , 

Wi =X I / 2 d¢, 

wi = (g22)1/2 dX2, 

(41) 

(42) 

(43) 

w X1 = (g.lJ )1/2 dx" (44) 

where I have assumed thatg23 is chosen to be zero [always 
possible by Sec. (10) of Ref. 16]. Equation (40) is then 

Toi=O. (45) 

Since the stress-energy tensor is given by 

T d t3 = _1_(F diipt3. _ h,d/iP..F1IV) 
41T !1 4" ltV , 

(46) 

this implies that 

(i=l) F02Fi·+F63Fi·=0 
2 3' (47) 

(i = 2) F 6i F 2
j + F 03F 2

j = 0, (48) 

(i = 3) F oiF 3
j + FOiF'\ = 0, (49) 

Equations (48) and (49) are trivially satisfied since F6i 
= Fi.\ = 0 under our assumptions. Equation (47) implies 

that 

(50) 

F6j = hFii' (51) 

where h = h (X 2
,X3). The boundary conditions at infinity [As

sumption (4)] tells us that Fji. and Fii are nonzero. If h = 0, 
then the lemma follows immediately; hence, in what follows, 
I assume h #0. Equations (50) and (51) take an interesting 
form when written in terms ofthe dual of the Maxwell 
tensor, 

namely, 

F6j = h *F6i" 

F6i = h *F6i, 

Fi i = - h - I * Fn , 

Fi3 = - h -I *FIJ. 

Maxwell's equations in a source-free region are 

F"t3;r] = 0, 

*F rJ. - 0 
" ;(3 - • 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

Setting a = 0 in Eq. (57) and applying Eqs. (53), (54), and 

(58), one finds 

*F6"h,,, =0, 

while a = 1 yields 

(59) 

*Fi"h,ii =0. (60) 

The implication of Eqs. (59) ~nd (69) !s most easily seen by 
noting that * Fa ii = B ii and F Iii = Eliif3 Et3 , the local magnetic 
and electric field vectors. Also noting that Eqs. (50) and (51) 

imply that 
(61) 
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we see that Eqs. (59) and (60) may be written in the form 

BiV;h =0, 

EijiB,V'h = 0 
I J • 

(62) 

(63) 

Obviously, the only solution compatible with Eqs. (62), (63) 
and the fact that h = h (X2,X

3
) is 

V;h =0, (64) 

which implies that h = const. Since Assumption (4) requires 
the electric field to vanish at infinity, this implies that h = 0, 
Alternatively, one may always perform a duality rotation, 
i.e., 

through an angle e = cot - I (h) which will reduce the electric 
field to zero everywhere. • 

Since the potential Yis always adjustable by an additive 
constant, we may now take Y = 0 without loss of generality. 
Thus, the spacetimes of interest are completely determined 
by the two functions X, lJI. 

Following Carter, 10 we note that the Lagrangian densi
ty for the Einstein-Maxwell equations in this case takes the 
simple form 

.Y" = IVX 12 + 21 VlJI I2 

2X 2 X 
where the Lagrangian integral tp be varied is 

1= fY' dAdl1, 

and A and 11 are X2 and x\ constructed according to the 
prescription of Ref. 16, with 2-space metric 

(65) 

(66) 

d 2 d Ad n - ( dJ.. 2 dil" ) 
Sl1 = gAB X X = .::. + ---. (67) 

J.. 2 _M2 1-11 2 

Here the mass parameter of the black hole, M (a positive 
constant) fixes the scale of the manifold, and the coordinates 
range over M <J.. < 00, - 1 <11 < + 1. The conformal fac
tor E is a well-behaved function which is nonzero every
where, inclUding on the axis. 

Introduction of a new function, Z = X 1/2, yields the 
new Lagrangian density 

,,/' = IVZ 12 + IVlJIl" 
Z2 

(68) 

which is formally identical to the Lagrangian density for the 
asymptotically flat Kerr uniqueness problem. 

At this point, one follows exactly the steps of Ref. 10 in 
proving the uniqueness of the Kerr black hole, with only the 
boundary conditions altered. 

The relevant boundary conditions are as follows. As 
11~ ± 1 (the axisymmetry axis), X and lJI are well-behaved 
and go like 

X = ('(1 -112
), (69) 

X-IX.,I = -2{t(I-I1")-1 + (i(I), 

lJI,). = ti(I-I1"), 

lJI"1 = fi (1). 

(70) 

(71) 

(72) 

As J..~M (the event horizon), X and lJI are well-behaved 
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functions such that 

X= &(1), X-I = &(1), 
(73) 

I/I.p. = &(1), 1/1.). = &(1). 

The main difference between the case at hand and the more 
familiar asymptotically flat case is in the boundary condi
tions at infinity. At infinity, we insist that X and 1/1 be well
behaved functions with asymptotic behavior given by 

p- 2X = (1 + !B 2p2f[1 + &'(..1, -I)]. (74) 

1/1= ~(l + ~)-I[1 + &(..1, -I)], (75) 
B 4B P 

where the asymptotic cylindrical coordinatep2 = ..1,2(1 - .u2) 
has been introduced to more easily display the asymptotical
ly cylindrical nature of the spacetime. 

Robinson's identity [Eq.(6) of Ref. 10], relating the 
Schwarzschild-Melvin solution (XI' 1/1 II to a second hypo
thetical solution (X2' 1/12) with the same values of M and B, 
may now be integrated over the two-dimensional manifold 
of Eq. (67). The application of Stoke's theorem and the 
boundary conditions [Eqs. (69)-(75)] shows that the bound
ary integral vanishes, just as in the asymptotically flat case. 
Exactly as in Ref. 10, the Einstein equations may then be 
manipulated, and the boundary conditions applied again, to 
yield the desired result, 

(76) 

1833 

and so the theorem is proven. 
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